Hybrid Intrusion Detection System for Smart Home Applications
Book chapter
Hussain, Fida, Induruwa, Abhaya and Qi, Man 2020. Hybrid Intrusion Detection System for Smart Home Applications. in: Mahmood, Z. (ed.) Developing and Monitoring Smart Environments for Intelligent Cities IGI Global. pp. 300-322
Authors | Hussain, Fida, Induruwa, Abhaya and Qi, Man |
---|---|
Editors | Mahmood, Z. |
Abstract | Smart homes, which incorporate IoT technologies to provide home security, efficient environmental services, conveniences, and improved living standards, are becoming the centre of smart urban developments. With the increased inter-connectivity of smart objects and sensors, there is now, also, an increased level of cyber threats, which can compromise privacy and security. These threats either modify packets of information or inject modified packets into the networks. This chapter examines current intrusion detection systems (IDSs) and presents a unique solution to overcome intrusion detection challenges. It discusses the implementation of smart home IDS (SHIDS), using a machine learning based signature and anomaly intrusion detection scheme to detect network intrusions in the smart home. Suggested mechanism is based on naïve Bayes technique to improve the detection performance. The performance of SHIDS has been tested with network intrusions resulting from DoS, probe, remote-to-local (R2L), and user-to-root (U2R) attacks. |
Keywords | Smart city; Smart home; Rapid urbanisation; Intrusion detection; Network security; Automation; Machine learning; Naïve Bayes Technique |
Page range | 300-322 |
Year | 2020 |
Book title | Developing and Monitoring Smart Environments for Intelligent Cities |
Publisher | IGI Global |
Output status | Published |
ISBN | 9781799850625 |
ISSN | 2326-6139 |
2326-6155 | |
Publication dates | |
Nov 2020 | |
Publication process dates | |
Deposited | 27 Apr 2020 |
Digital Object Identifier (DOI) | https://doi.org/10.4018/978-1-7998-5062-5.ch012 |
Journal | Developing and Monitoring Smart Environments for Intelligent Cities |
Permalink -
https://repository.canterbury.ac.uk/item/8v292/hybrid-intrusion-detection-system-for-smart-home-applications
151
total views1
total downloads6
views this month0
downloads this month
Export as
Related outputs
Repairing process models with non-free-choice constructs based on token replay
Bai, E., Qi, M., Luan, W., Li, P. and Du, Y. 2022. Repairing process models with non-free-choice constructs based on token replay. Computing and Informatics. 41 (4), pp. 1054-1077. https://doi.org/10.31577/cai_2022_4_1054Transformers only look once with nonlinear combination for real-time object detection
Xia, R., Li, G., Huang, Z., Pang, Y. and Qi, M. 2022. Transformers only look once with nonlinear combination for real-time object detection. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-07333-yDeviation detection in clinical pathways based on business alignment
Tian, Y., Li, X., Qi, Man, Han, D. and Du, Yuyue 2022. Deviation detection in clinical pathways based on business alignment. Scientific Programming. 2022, pp. 1-13. https://doi.org/10.1155/2022/6993449Security vulnerabilities of popular smart home appliances
Qi, M., Induruwa, A. and Hussain, F. 2021. Security vulnerabilities of popular smart home appliances. in: Proceeding of The Twentieth International Conference on Networks April 18, 2021 to April 22, 2021 - Porto, PortugalImproved adaptive genetic algorithm for the vehicle insurance fraud identification model based on a BP neural network
Yan, C., Li, M., Liu, W. and Qi, M. 2020. Improved adaptive genetic algorithm for the vehicle insurance fraud identification model based on a BP neural network. Theoretical Computer Science. 817, pp. 12-23. https://doi.org/10.1016/j.tcs.2019.06.025Payments per claim model of outstanding claims reserve based on fuzzy linear regression
Yan, C., Liu, Q., Liu, J., Liu, W., Li, M. and Qi, M. 2019. Payments per claim model of outstanding claims reserve based on fuzzy linear regression. International Journal of Fuzzy Systems. 21, pp. 1950-1960. https://doi.org/10.1007/s40815-019-00617-xFuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model
Wang, Q., Chen, X., Zhang, L., Li, J., Zhao, C. and Qi, M. 2019. Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model. International Journal of Fuzzy Systems. 21, pp. 1894-1905. https://doi.org/10.1007/s40815-019-00678-yTemporal sparse feature auto-combination deep network for video action recognition
Wang, Q., Gong, D., Qi, M., Shen, Y. and Lei, Y. 2018. Temporal sparse feature auto-combination deep network for video action recognition. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.4487Soundness analytics of composed logical workflow nets
Liu, W., Wang, L., Feng, X., Qi, M., Yan, C. and Li, M. 2017. Soundness analytics of composed logical workflow nets. International Journal of Parallel Programming. https://doi.org/10.1007/s10766-017-0536-8A sliding window-based dynamic load balancing for heterogeneous Hadoop clusters
Liu, Y., Jing, W., Liu, Y., Lv, L., Qi, M. and Xiang, Y. 2016. A sliding window-based dynamic load balancing for heterogeneous Hadoop clusters. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3763Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems
Luo, C., Zhang, B., Xiang, Y. and Qi, M. 2017. Gaussian-Gamma collaborative filtering: a hierarchical Bayesian model for recommender systems. Journal of Computer and System Sciences. https://doi.org/10.1016/j.jcss.2017.03.007Facilitating visual surveillance with motion detections
Qi, M. 2017. Facilitating visual surveillance with motion detections. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3770Data security of android applications
Obiri-Yeboah, J. and Qi, M. 2016. Data security of android applications. in: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery : ICNC-FSKD 2016 : 13-15 August, Changsha, China IEEE Xplore.AL-DDCNN : a distributed crossing semantic gap learning for person re-identification
Cheng, K., Zhan, Y. and Qi, M. 2017. AL-DDCNN : a distributed crossing semantic gap learning for person re-identification. Concurrency and Computation: Practice and Experience. 29 (3). https://doi.org/10.1002/cpe.3766