Temporal sparse feature auto-combination deep network for video action recognition
Journal article
Wang, Q., Gong, D., Qi, M., Shen, Y. and Lei, Y. 2018. Temporal sparse feature auto-combination deep network for video action recognition. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.4487
Authors | Wang, Q., Gong, D., Qi, M., Shen, Y. and Lei, Y. |
---|---|
Abstract | In order to deal with action recognition for large‐scale video data, we present a spatio‐temporal auto‐combination deep network, which is able to extract deep features from short video segments by making full use of temporal contextual correlation of corresponding pixels among successive video frames. Based on conventional sparse encoding, we further consider the representative features in adjacent nodes of the hidden layers according to activation states similarities. A sparse auto‐combination strategy is applied to multiple input maps in each convolution stage. An information constraint of the representative features of hidden layer nodes is imposed to handle the adaptive sparse encoding of the topology. As a result, the learned features can represent the spatio‐temporal transition relationships better and the number of hidden nodes can be restricted to a certain range. We conduct a series of experiments on two public data sets. The experimental results show that our approach is more effective and robust in video action recognition compared with traditional methods. |
Keywords | Action recognition; deep learning; feature map; sparsity; spatio-temporal convolution |
Year | 2018 |
Journal | Concurrency and Computation: Practice and Experience |
Publisher | Wiley |
ISSN | 1532-0626 |
Digital Object Identifier (DOI) | https://doi.org/10.1002/cpe.4487 |
Publication dates | |
22 Mar 2018 | |
Publication process dates | |
Deposited | 03 Apr 2018 |
Accepted | 25 Feb 2018 |
Accepted author manuscript | |
Output status | Published |
https://repository.canterbury.ac.uk/item/88q1w/temporal-sparse-feature-auto-combination-deep-network-for-video-action-recognition
Download files
Accepted author manuscript
84
total views101
total downloads1
views this month0
downloads this month