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Abstract

In this article, a novel real-time object detector called Transformers Only Look Once (TOLO) is proposed to resolve
two problems. The inefficiency of building long-distance dependencies among local features for amounts of modern
real-time object detectors and the lack of inductive biases for vision Transformer networks with heavy computational
cost. TOLO is composed of Convolutional Neural Network (CNN) backbone, Feature Fusion Neck (FFN), and dif-
ferent Lite Transformer Heads (LTHs), which are used to transfer the inductive biases, supply the extracted features
with high-resolution and high-semantic properties, and efficiently mine multiple long-distance dependencies with less
memory overhead for detection, respectively. Moreover, to find the massive potential correct boxes during prediction,
we propose a simple and efficient non-linear combination method between the object confidence and the classification
score. Experiments on the PASCAL VOC 2007, 2012, and the MS COCO 2017 datasets demonstrate that TOLO
significantly outperforms other state-of-the-art methods with small input size. Besides, the proposed non-linear com-
bination method can further elevate the detection performance of TOLO by boosting the results of potential correct
predicted boxes without increasing the training process and model parameters.

Keywords: Real-time object detector, TOLO, Vision Transformer networks, Non-linear combination.

1. Introduction

Object detection is an attractive and challenging task
of Computer Vision (CV). The attraction comes from
its widespread applications such as autonomous driving
and robot navigation while the challenge is credited to
the changing scales, complicated shapes, and multiple
categories. With the quick development of the Con-
volutional Neural Network (CNN), the number of ob-
ject detection models has increased rapidly. Although
there are various models, all of them can be divided
into anchor-based [1, 2, 3, 4] and anchor-free methods
[5, 6, 7] and are built by deep stacks of convolution op-
erations which are sensitive to local interested regions
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and requires fewer parameters than Multi-Layer Percep-
tion (MLP).

However, a remarkable character of these methods is
image features extracted from detection networks are
only limited to the local regions. This lacks the long-
distance dependencies which are important for the net-
work to focus on the interesting regions and ignore
noisy ones within a whole feature map [8]. Besides,
the work in [9] has already mathematically proved that
the effective receptive fields of the extracted features are
much smaller than they theoretically own, which means
the mechanism of deep stacks of convolution operations
is not useful to build long-distance dependencies among
local image features.

Therefore, to overcome the limitation of the intrin-
sic locality of convolution operations, there are some
self-attention mechanisms based on local features have
been proposed [10, 11, 12]. On the other hand, Trans-
former [13], a creative network which was major in
Nature Language Processing (NLP) to mine the mul-
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tiple long-distance dependencies among time sequence
information parallelly, has recently been introduced in
CV and achieve state-of-the-art results in many vision
tasks. The success of adopting variants of vision Trans-
former networks has strongly proved the necessity of
building long-distance dependencies among image fea-
tures and the redundancy of repeating convolution op-
erations [14, 15, 16, 17, 18]. However, due to the lack
of inductive biases such as translation equivariance and
locality compared with CNN, vision Transformer net-
works can not generalize well during prediction, which
means the number of data should be sufficient [14] or
the reasonable combinations of training tricks should be
needed [15] during training. On the other hand, images
with high resolution are processed under the accumula-
tion of the Self-Attention Network (SAN) and MLP in
the vision Transformer networks will lead to the rapid
increasing of computational complexity.

Some works have already tried to combine the induc-
tive biases of CNN and the globality of vision Trans-
former network in image recognition [15, 16, 17, 18,
19], semantic segmentation [20] for the sake of improv-
ing model performance without the highly increasing
complexity. Inspired by this thinking, we try to incor-
porate both the CNN and the vision Transformer net-
works into the area of real-time object detection reason-
ably and hence propose our detector named Transform-
ers Only Look Once (TOLO). Specifically, our detec-
tor consists of a CNN backbone, Feature Fusion Neck
(FFN), and different lightweight vision Transformer de-
tection heads. The CNN backbone is employed to trans-
fer inductive biases to the vision Transformer networks
behind. FFN plays a role in the transition from CNN to
vision Transformer networks and offers abundant high-
resolution and high-semantic features. Finally, the pro-
posed vision Transformer detection head called Lite
Transformer Head (LTH) concentrates on building mul-
tiple long-distance dependencies among local features
and finding different objects with less memory over-
head.

In addition, as we stated above, the high complexity
of samples leads to the difficulty of detection, the works
in [21] and [22] found many correct boxes with low re-
sults and incorrect boxes with high results during pre-
diction for detectors, which we called false negative pre-
dicted boxes and false positive predicted boxes, respec-
tively. Similarly, this phenomenon has also existed in
our detector, especially for the false negative predicted
boxes. Therefore, to elevate the results of the false nega-
tive predicted boxes without increasing the training pro-
cess and model parameters, we propose a simple and
efficient method to combine the object confidence and

the classification score non-linearly only in the inferring
stage.

Our main contributions are summarized as follows:

(1) To efficiently build the multiple long-distance de-
pendencies among local features and transfer the
inductive biases to the lightweight vision Trans-
former network. We propose a novel real-time ob-
ject detector called TOLO, which contains CNN
backbone, FFN, and LTHs. It combines the in-
ductive biases of CNN and the globality of LTHs,
which can improve the detection performance
while keeping high inferring speed and adopting
less memory overhead.

(2) To further elevate the results of false negative pre-
dicted boxes. We propose a simple and efficient
non-linear combination method between the object
confidence and the classification score without in-
creasing the training process and model parame-
ters.

(3) To validate the effectiveness of TOLO and our
non-linear combination method, we conduct ex-
tensive experiments on different datasets. Ex-
perimental results indicate that our detector can
achieve 83.2%, 79.3% mean Average Precision
@50 (mAP@50), and 36.6% Average Precision
(AP) on the PASCAL VOC 2007, 2012 [23] and
the MS COCO 2017 datasets [24] respectively,
which significantly outperforms the existing state-
of-the-art methods with even smaller input size and
our proposed non-linear combination method can
further boost the detection performance with only
introducing marginal inferring process.

2. Related Works

2.1. Object Detection Models

The work in [25] has already pointed out that the dif-
ference between anchor-based and anchor-free methods
is just the way to define the positive and negative sam-
ples. Therefore, to better distinguish these methods,
they can be divided into one-stage or two-stage detec-
tors by determining whether to generate Region of Inter-
ests (RoIs). Specifically, unlike the one-stage detectors
which directly classify and regress anchor boxes [3, 4]
or anchor points [5, 6], the series of R-CNN methods
use Region Proposal Network (RPN) to generate RoIs
from massive anchor boxes and then focus on these re-
gions with fixed size after adopting RoI Pooling [2] or
RoI Align [26].
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Therefore, the advantage of one-stage detectors is the
fast detection speed but the disadvantage is naturally
the low detection precision. To ameliorate the existed
weakness, researchers mainly focusing on balancing the
ratio between negative and positive samples [27], de-
tecting multi-scale objects from feature maps with dif-
ferent levels [4], and introducing long-distance depen-
dencies among local features [28].

2.2. Transformer in CV

In NLP, the success of the Transformer network
can be attributed to regard building the multiple long-
distance dependencies as the main task and avoid the
influence of distance among time sequence information
[13]. The attention operation is computed as follow:

Attention(q, k, v) = softmax
(

qkT

√
dhead

)
v (1)

Where q, k, and v are vectors which indicate the
query, key, and variable of input, respectively. dhead rep-
resents the number of channel information for each at-
tention head in Multi-head SAN (MSAN).

While these kinds of dependencies are also needed in
visual elements as massive features are extracted within
local regions based on convolution operations. There-
fore, Vision Transformer (ViT) [14] is proposed for
the task of image recognition by dividing a whole im-
age into non-overlapped patches and treat each patch
as an embedding vector. However, the lack of induc-
tive biases inherent to CNN leads to the intensive re-
quirement of data, training tricks, and model parame-
ters. Hence, the following proposed methods begin to
incorporate the inductive biases into the different com-
ponents of their vision Transformer networks. DeiT
using the knowledge distillation method which consid-
ers the pretrained CNN as the teacher with multiple
training strategies [15]. Swin-T imitates the calculation
of CNN by only focusing on features within progres-
sively large window size and adjusts the window loca-
tion to build the complete long-distance dependencies
indirectly [16]. ConViT tries to modify the structure of
SAN to be generalized to convolution operation [17].
LocalViT incorporates convolution operation into MLP
with a slight increase of parameters [18].

2.3. Unreasonable Predicted Boxes Problem

Since the complexity of samples, the detection bias
results in massive false negative and false positive pre-
dicted boxes (i.e., precise boxes have low results and bi-
ased boxes yet own high results). To resolve the bias

existed in many detectors, the work in [22] incorpo-
rated a new network branch which is responsible for
outputting the variances related to the distribution of the
predicted boxes and adopts variance voting to adjust the
coordinates of predicted boxes. In addition, the work
in [21] proposed the Intersection over Union (IoU) net-
work branch with IoU prediction loss which shares the
parameters with the regression branch. Moreover, a mu-
tual non-linear combination method with different im-
portance between the predicted IoU result and the clas-
sification score is proposed in their work to greatly ele-
vate the low results for both prediction branches. How-
ever, these methods not only increase the process of
training and inferring but also the model parameters.

As false negative and false positive predicted boxes
are two boxes with conflict properties, our method aims
to find these false negative predicted boxes to elevate the
detection ability for better capture objects with nearly
free cost. We hence propose a simple and efficient non-
linear combination method to focus on boosting the re-
sult of false negative predicted boxes and avoiding the
increasing result of false positive ones at the same time
without adding extra network branch and training pro-
cess compared with [21] and [22].

3. TOLO with Non-linear Combination

In this section, we firstly introduce TOLO network
architecture in details which can be divided into back-
bone, detection neck and different detection heads and
then introduce our non-linear combination method in
the second part.

3.1. TOLO

TOLO is a creative real-time object detector which
combines the inductive bias of CNN and globality of
vision Transformer network to precisely detect object
with high speed. Our model can be mainly divided
into three parts called CNN backbone, FFN and LTHs.
When images go through the network, the backbone
in charge of extracting their features from local re-
gions and transfers the inductive biases of CNN to the
LTHs. Then, the proposed detection neck focuses on
combining the features from different layers for the
sake of incorporating high-resolution as well as high-
semantic properties. Finally, different LTHs are respon-
sible to efficiently build multiple long-distance depen-
dencies among local features and find objects with vari-
ous scales. The pipeline of our proposed model is shown
in Fig. 1.
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Figure 1: The pipeline of TOLO. It is composed of CNN backbone, Feature Fusion Neck and Lite Transformer detection heads for objects with
different sizes.

In the structure of YOLOv3 [4] and RetinaNet [28],
the detection neck is built by the Feature Pyramid Net-
work (FPN) with concatenation and addition mode, re-
spectively. Although they achieve competitive results,
two problems that existed in these structures are the
inconsistent connection among different layer features
and the massive increase of computational complex-
ity, which leads to the limited information that can be
learned for different detection heads and the decreasing
of model efficiency, respectively.

To resolve these problems above, we propose Feature
Fusion Neck (FFN). As can be seen from Fig. 2, we fo-
cus on the last three network layers with different sizes.
To the features in the last two layers, we use depth-wise
and point-wise convolution operations to squeeze the
channel dimension by half because the operations need
fewer parameters and FLOPs than the traditional convo-
lution operation [29]. It is worthy to note that the num-
ber of channels for squeezed features is related to the
original ones instead of a small fixed number in [30].
Therefore, we suggest this operation is not only better
to avoid the substantial loss of semantic information es-
pecially in deep layers but also efficient as the computa-
tional complexity is sufficiently decreased.

After squeezing, these features are upsampled with
bilinear interpolation to make the spatial size same as
the first layer features. Then, features in different layers
are directly concatenated together followed by fusion
operation which is also involved in depth-wise as well
as point-wise convolutions to avoid the massive increase
of computational complexity. Therefore, each layer fea-
tures can combine with others in the same path instead
of crossing multiple layers.

A novel vision Transformer network, Lite Trans-
former (LT), is proposed for real-time object detection.
Distinguish from the previous variants of vision Trans-
former networks, the characteristic of LT is lightweight,
which means the speed of training and inferring is
fast. The comparisons of model parameters and FLOPs
among different vision Transformers are shown in Table

Figure 2: The model structure of Feature Fusion Neck. Here we focus
on the last three network layers with different sizes.

Table 1: Comparisons of parameters and FLOPs among different vi-
sion Transformers

Model Params (M) FLOPs (G)
PVT [19] 2.28 0.66

Local ViT [18] 1.24 0.72
ViT [14] 1.23 0.71

Swin-T* [16] 1.05 2.21
LT 0.71 0.23

∗ Here we only compute a Transformer block without shifting and
the window size is 4.

I. Here we assume the width, height and the number of
channels about the input is 52, 52, and 256, respectively.
The patch size and the number of long-distance depen-
dencies we set for all models are 4. It can be apparently
noticed that our LT can effectively decrease the require-
ment of model parameters and FLOPs, which means it
can be well applied to elevate the model efficiency.

Specifically, LT can be divided into three different
parts in Fig. 3. The first part concentrates on dividing
the input features into non-overlapped patches and each
patch will be added with learnable positional embed-
ding to ensure its unique location. Lightweight convolu-
tion operation (depth-wise with point-wise convolution
operation) will be considered to decrease the computa-
tional complexity of the Transformer during the process
of dividing. Moreover, we incorporate GELU [31], a
non-linear activation function calculated in Eq. (2) to
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Figure 3: The structure of Lite Transformer. It is composed of three lightweight components that focus on generating embeddings, computing
long-distance dependencies among local features, and enlarging the capacity of the model, respectively.

strengthen the representation of complex knowledges.

GELU(x) = 0.5x

1 + tanh

√2
π

(
x + 0.044715x3

)
(2)

Algorithm 1: Lite Transformer

Input: F is the input features with fixed size;
N is the number of patches;
P is a hyperparameter about patch size;
PE is a set of positional embedding
Output: O is a set of long-distance

dependencies among local features
compute a set of patch vectors V from F in Lite
Patch Embedding module;

for each patch i ∈ [1,N] do
compute patch embedding Ei:

Ei = LN(GELU(Vi) + PEi);
compute query qi: qi = Wq × Ei;

end
compute E′ by reducing the number of patch
embeddings in Lite Spatial Reduction module;

for each path j ∈ [1,N/P2] do
compute key k j: k j = Wk × E′j;
compute variable v j: v j = Wv × E′j;

end
compute the long-distance dependencies S based

on Eq. (1) in MSAN;
for each path i ∈ [1,N] do

S i = S i + Ei;
S i = LiteMLP (LN (S i)) + S i

end
return O by reshaping S

After getting the patch embeddings added with po-
sitional embeddings, in the second part, the multiple
long-distance dependencies will be built in MSAN af-
ter getting the queries, keys, and variables of patch em-
beddings. It can be apparently noticed that we use lite

spatial reduction in both the key and variable branches.
The aim is to decrease the computational complexity by
compressing their spatial sizes with the lightweight non-
overlapped convolution operation. The complexity ratio
of self-attention operation between LT and ViT is:

Ω (MS ANLT )
Ω (MS ANViT )

=

(
2N2C

P

)
2N2C

=
1
P

(3)

Where P, N, and C represent the times of spatial re-
duction, the number of patches and channels, respec-
tively. Here we omit the complexity of computing q,
k, v, and the final output as they are the same for both
vision Transformer networks. The lite spatial reduc-
tion can decrease the complexity by P times. More-
over, compare with Pyramid Vision Transformer (PVT)
[19] which also considers decreasing the spatial size.
LT needs fewer parameters and FLOPs according to Eq.
(4):

k2M + MN
k2MN

=

WH
k2

(
k2M + MN

)
WH
k2 k2MN

=
1
N

+
1
k2 (4)

Where k, W, H, M, and N, indicate the size of con-
volution kernel, input width and height, the number of
former and latter channel dimensions, respectively. The
first and second items are the ratio of parameters and
FLOPs between LT and PVT in the branch of comput-
ing keys and variables. 4.

Lastly, MLP with shortcut connection will be used
to avoid the degradation of expressive power for SAN
with the increasing of network depth [31]. Nevertheless,
massive parameters that existed in MLP also slow down
the efficiency of network. Hence, our proposed MLP
in LT replaces the original large hidden layer with the
hidden layer that the size is same as the input, the ratio
of their computational complexity can be computed as:

Ω (MLPLT )
Ω (MLPViT )

=
2NC2

8NC2 =
1
4

(5)
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Figure 4: The model structure of different Lite Transformer Heads. Here we assume that the feature size of detection neck is 52×52×1024 and the
number of detection categories is 80.

Where N and C represent the number of patches and
channels, respectively. It can be observed that the MLP
in LT will save the parameters by four times compared
with the original one. Continue to squeeze the hidden
layer can further decrease the complexity but we find
the detection performance will degrade a lot. Lastly, we
use Algorithm 1 to summarize how Lite Transformer
work for the input features with fixed size.

Our detector consists of three different LTHs which
focuses on the large, middle, and small size of objects,
respectively. For all heads, LT will be used to effi-
ciently mine the long-distance dependencies among fea-
tures. Moreover, many previous experiments have al-
ready proved that different scale objects need informa-
tion with different properties [30]. Specifically, small
objects are sensitive to the resolution information but
large ones are more likely to need high-semantic infor-
mation, which means the channel dimension should be
large. Therefore, it is natural to believe that the structure
of each head should have its property. The structures of
different heads are shown in Fig. 4.

As can be seen from the figure, the dilated depth-wise
convolution will firstly be set to further enlarge the re-
ceptive field of feature for different heads and each head
has a different patch size in LT. In our implementation,
the dilated factor and patch size we set are 4, 2, and 1
for large, middle, and small heads, respectively.

To the large object head, the abundance of channel in-
formation from FFN was considered and the patch size
in LT was set to large. To the middle and small object
head, since the local changes of the image become more
and more important [30], we hence gradually focus on
the spatial information from FFN and the patch size is
set to small. Moreover, we suggest it is also vital to in-
corporate local information in these two heads. There-

fore, in the separation operation, we divide the features
from FFN into two parts which the channel dimension
of the divided features is half of the original one. One
part goes through LT and the other part concatenates
with the outputs from LT. Then, fusion operation is re-
sponsible to fuses the concatenation features with 1×1
convolution kernels followed by the Leaky ReLU ac-
tivation function. It is worth to note that in the small
object head, squeeze operation will firstly be used to
decrease the channel dimension of features from FFN,
and in the middle object head, AvgPool operation will
be used to compress the spatial size of local features.
Finally, projection operation adjusts the channel infor-
mation to adapt to the predicted results.

3.2. Non-linear Combination

Since the existing of massive false negative predicted
boxes decreases the ability of capturing objects, we try
to verify whether there can be a simple and efficient way
to mine the potential correct predicted boxes without in-
troducing the extra model parameters and prolonging
the training process. We therefore investigate the in-
ferring stage and find the combination between object
confidence and classification score in TOLO is direct
multiplication which is calculated as:

R = C · S (6)

Where R, C and S indicate the combination result, ob-
ject confidence and classification score, respectively.

Following this observation, we further devise a non-
local combination method which can be computed as
follow:

R = log3(1 + α ·C) · S (7)
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Figure 5: Comparisons between linear and non-linear combination
functions.

Where α is a hyperparameter which controls the result
of predicted boxes.

In Fig. 5, to show different combination functions
clearly, we analyze the combination result between the
object confidence and the classification score by assum-
ing the classification score of the most probable cate-
gory is one. The dashed line seen as a reference is a
standard linear combination. Compared with Eq. (6),
it can be apparently noticed that the object confidence
in Eq. (7) will be changed non-linearly and the pre-
dicted boxes with higher confidence also own stronger
suppression when α equals 1. When α equals 2, too low
confidence will not change the final result a lot, which
means it can avoid the influence of true negative pre-
dicted boxes (i.e. boxes with low IoU and low predicted
result). However, the combination result with relatively
low confidence will be elevated a lot within the range
from 0.4 to 0.6. Therefore, if there are massive poten-
tial correct predicted boxes (i.e., false negative predicted
boxes), increase the value of α will help to elevate their
combination results.

There is a potential problem that the result of false
positive predicted boxes will also be increased. How-
ever, according to our observation from the predicted
results, we found that compare with false negative pre-
dicted boxes, there are many false positive and true pos-
itive predicted boxes own relatively high classification
score but the former predicted boxes have relatively low
object confidence. That is why the non-linear function
we set is only for the object confidence as it can ele-
vate the combination result of false negative predicted
boxes and avoid the increasing of false positive ones at
the same time.

4. Performance evaluation

In this section, we evaluate the effectiveness of the
proposed object detector and the non-linear combina-
tion method on three datasets: the PASCAL VOC 2007,
the PASCAL VOC 2012 [23], and the MS COCO 2017
dataset [24]. We firstly introduce the information of
different datasets, the relevant metrics of evaluation,
and the training details. Then, the corresponding ex-
periments about TOLO and our non-linear combination
method will be described.

4.1. Datasets, Evaluation Metrics and Training Strate-
gies

The PASCAL VOC 2007 and 2012 datasets have 9,
962, and 22, 531 images for 20 object classes, respec-
tively. These two datasets are divided into train, vali-
dation, and test sets. Here we choose the trainval set
(5, 011 images for 2007 and 11, 540 images for 2012)
to train our detector and follow the standard PASCAL
VOC protocol, i.e., the mAP as the evaluation metric to
test our detector on the test sets.

The MS COCO 2017 dataset has 80 object classes
and is divided into train-2017, val-2017, and test-dev
sets, respectively. We train our model on the MS COCO
train-2017 set (about 115K images) and test it on the
val-2017 and test-dev set (about 5K and 20K images),
respectively. For evaluation, we use three metrics AP50,
AP70 and AP, which are the standard PASCAL criterion,
i.e., IoU>0.5, IoU>0.7 and the standard MS COCO cri-
terion, i.e., computing the average of mAP for IoU ∈
[0.5 : 0.05 : 0.95], respectively. Moreover, objects with
small, middle and large sizes will also be evaluated by
adopting APsmall, APmiddle, and APlarge, respectively.

As for the training strategies, Stochastic Gradient De-
scent (SGD) is used to optimize our model by setting the
initial learning rate as 0.001 trained on 2 GPUs (GTX
3090). The cosine learning rate schedule is also set
from 0.001 to 0.00001. The weight decay and momen-
tum is 0.0005 and 0.9, respectively. Moreover, accord-
ing to [32], some training tricks are applied to avoid the
overfitting and improve the model generalization such
as mixup and label smoothing.

The batch size for all datasets we set is 24. The im-
age size is 448 with multi-scale training (320, 352, 384,
416, 448, 480, 512, 544, 576, 608) for 50 epochs on
the PASCAL VOC and 320 with three scales training
(320, 352, and 384) for 300 epochs on the MS COCO,
respectively.
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Table 2: Comparisons among detection heads with different combina-
tions of LT and CNN

Architecture mAP@50 Params (M)
Only convolutional sets 82.2 55.54

Only LTs 82.8 55.09
Local features in the middle head 82.9 56.44
Local features in the small head 83.1 55.43
Local features in the both head 83.2 56.79

4.2. Experimental settings

In this part, we discuss the different combinations
in TOLO, the effectiveness of FFN, and the suitable
parameter settings in LTHs and perform the relevant
experiments on the PASCAL VOC 2007 and 2012
datasets. Then we compare TOLO with other state-
of-the-art methods on the PASCAL VOC and the MS
COCO datasets, respectively. Finally, some quantitative
results are illustrated to clearly show the responses of
different LTHs.

We firstly analyze the effectiveness of combining
CNN and our proposed vision Transformer network. As
we stated above, the inductive biases of CNN such as
locality can be adapted to image features. However,
this locality will lead to the weakness of building long-
distance dependencies among local features. Vision
Transformer network is adept at mining long-distance
dependencies but at the cost of more data or training
tricks to achieve strong generalization. Therefore, the
ablation study for the combinations of CNN and LT is
shown in Table 2. We can see that the best performance
is generated when they combine reasonably.

Specifically, for the first row in Table 2, we replace
all LTs with convolution sets and keep the converted
model owns comparable parameters with the original
one. However, it can be apparently observed that the
performance drops to 82.2% even the converted model
has slightly larger parameters, which means the long-
distance dependencies among features are important for
the task of object detection and massive stacks of convo-
lution sets can not generate long-distance dependencies
well compared with LT. Moreover, we also notice that
only use LTs among detection heads also can not get
the best performance compared with the model incorpo-
rated local feature branch, especially in the small object
head. This suggests that local features are also useful to
help the detector find small and unobvious objects.

We then evaluate the contribution of FFN. Results are
reported in Table 3, where we compare with FPN [30]
and concatenated FPN [4]. It can be noticed that our
FFN can achieve good performance with only occupy-

Table 3: Comparisons among TOLO equipped with different detection
neck networks

Neck Params (M) mAP@50 mAP@75
FPN (256) [30] 2.23 82.4 45.1

FPN (512) 8.00 83.1 48.6
Concatenated FPN [2] 14.94 82.9 50.2

FFN 1.41 83.2 49.7

ing fewer parameters.
To be specific, the better performance of FPN (512)

compared with FPN (256) indicates the importance of
abundant features in the neck. Our FFN is fewer than
concatenated FPN nearly 10 times of parameters but ac-
quires better performance in mAP@50 and comparable
performance in mAP@75. We suggest this detection
performance can be attributed to the features from each
layer can combine with features from other layers by
the same path. On the other hand, due to the fact that
shallow layers contain high-resolution features and deep
layers contain high-semantic features, which means the
fused features can own both characteristics simultane-
ously for different detection heads to analyze.

To further analyze the proposed detector, we next fo-
cus on the part of detection heads and find the suitable
parameter settings about LTHs. In particular, the num-
ber of attention heads in MSAN, the size of MLP, and
the times of spatial reduction in the Lite Spatial Re-
duction module are all significant for detection heads
to achieve good performance.

The work in [33] has already indicated that there is a
tradeoff between the attention heads and the number of
channel information in MSAN. Hence, finding a suit-
able setting is important for our model to achieve good
performance. As shown in Table 4, these experimental
results indicate that multiple attention heads can build
different long-distance dependencies among features to
help our model pay attention to different interesting re-
gions on a whole feature map. To the LTHs, the best
performance we achieve is when the number of atten-
tion heads equals 2. On the other hand, there is not
a positive correlation between the attention heads and
the performance as the capacity of information for each
head is dropped a lot when increasing the number of
attention heads.

MLP is also useful for vision Transformer networks
to avoid the degradation of long-distance dependencies
expression [31]. Here we analyze the influence of MLP
with different hidden layer sizes to LTHs. In Table 5,
we find that with the increasing of hidden layer size in
MLP, the detection performance also increases and at-
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Table 4: Comparisons among LTHs with different attention heads

Head Dim/head mAP@50
Large Middle Small

1 1024 512 256 83.18
2 512 256 128 83.21
4 256 128 64 83.17
8 128 64 32 83.11

16 64 32 16 83.04

Table 5: Comparisons among LTHs with different scales of hidden
layer in MLP

Hidden scale Params (M) mAP@50
0.25× 54.72 83.05
0.5× 55.41 83.10
1× 56.79 83.21
2× 59.54 83.16
4× 65.05 82.81

tains 83.21% when the layer size equals the input layer
size. However, the detection performance begins to
drop when the size of the hidden layer continues to in-
creases. We suggest the smaller hidden size also only
owns the lower expression power of long-distance de-
pendencies among local features but the higher hidden
size results in the overfitting of MLP, especially in the
large object heads as the number of channel information
has already large enough.

Lite Spatial Reduction can reduce the FLOPs by
slightly increasing the model parameters. As shown in
Table 6, compared with the LT without the spatial re-
duction, the default setting can help the detector save
0.63 G FLOPs (43.39G vs 44.02G) by increasing 0.34
M (56.45M vs 56.79M) parameters. More importantly,
we find this operation can further bring the gain of per-
formance especially when expand the reduction scale.
Specifically, by adjusting the scales of spatial reduction
in the middle or small detection head and fixing the rest
of the ones, we can find that the larger scale we set,
the better mAP@50 we will get. Also, there are some
similar characteristics for mAP@75. These experimen-
tal results indicate that incorporating the local operation
into the self-attention mechanism can boost the model
performance and further demonstrate the importance of
the combination between CNN and vision Transformer
network.

We then compare TOLO with other state-of-the-art
detectors included one-stage or two-stage categories.
We can see from Table 7 that our model can pro-
duce 83.2% mAP@50 and 79.3% mAP@75 on the

Table 6: Comparisons among LTHs with different scales of spatial
reduction

Head mAP@50 mAP@75 Params (M) FLOPs (G)
Middle Small

1 1 82.65 49.06 56.45 44.02
1 2 82.79 48.81 56.52 43.77
1 4 83.01 48.61 56.52 43.65
2 1 82.77 49.16 56.71 43.77
2 2 83.06 49.58 56.78 43.51
2 4 83.21 49.68 56.79 43.39

Table 7: Detection results on PASCAL VOC datasets for two-stage
and one-stage detectors

Method Backbone mAP@50
VOC 2007 VOC 2012

two-stage
Fast R-CNN [1] VGG-16 70.0 68.4

OHEM [39] VGG-16 74.6 71.9
HyperNet [40] VGG-16 76.3 71.3

Faster R-CNN [2] ResNet-101 76.4 73.8
ION [38] VGG-16 76.5 76.4

MR-CNN [41] VGG-16 78.2 73.9
R-FCN+ASM [37] ResNet-101 81.8 78.3

one-stage
RON [34] VGG-16 75.4 73.0
DSSD [35] ResNet-101 78.6 76.3

SSD [3] VGG-16 79.8 78.5
RefineDet [36] VGG-16 80.0 78.1

YOLOv3 DarkNet-53 82.3 78.4
TOLO DarkNet-53 83.2 79.3*

∗ http://host.robots.ox.ac.uk:8080/anonymous/VTTBNT.html

VOC 2007 test set and VOC 2012 test set, which sur-
passes other one-stage detectors, e.g., RON [34], DSSD
[35], and RefineDet [36]. Similarly, comparing with
the two-stage detectors such as Faster R-CNN [2] ,R-
FCN+ASM [37] and ION [38], our detector still per-
forms better performance with lower input size.

Moreover, according to Table 7, we also reimplement
YOLOv3 with the same training strategies as TOLO.
It can be noticed that our detector can outperform
YOLOv3 over 0.9% and 0.8% on PASCAL VOC 2007
and 2012 respectively with fewer parameters (56.79 M
vs 61.63 M).

To further validate the proposed detector, we conduct
experiments on the MS COCO 2017 dataset [15]. As
pointed out in [30], the input size significantly influ-
ences detection performance as the inputs with high res-
olution can make the detectors see small objects more
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Table 8: Detection results on MS COCO val-2017 set with different combination methods

Combination ms/img AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

S ∗C 14.63 36.2 56.1 38.8 16.0 39.7 51.5 28.8 46.4 50.8 28.4 56.5 66.8
S ∗ log2(1 + C) 14.89 36.2 56.3 38.9 16.1 39.7 51.5 28.9 46.5 51.1 28.7 56.9 67.0

S ∗ log3(1 + 2C) 14.95 36.2 56.3 38.9 16.1 39.7 51.5 28.9 46.6 51.3 29.0 57.2 67.2
S ∗ log4(1 + 3C) 15.06 36.1 56.3 38.9 16.1 39.7 51.4 28.9 46.6 51.4 29.1 57.2 67.2

S ∗C0.6 15.29 36.1 56.3 38.9 17.0 39.7 51.4 28.9 46.9 52.2 30.6 58.3 67.7
S ∗C0.5 16.43 36.1 56.3 38.8 16.9 39.6 51.2 28.9 46.9 52.2 30.7 58.4 68.1
S ∗C0.4 18.09 35.9 56.2 38.7 16.8 39.5 50.9 28.9 46.9 52.2 30.7 58.4 68.1

Figure 6: Qualitative examples for different Lite Transformer Heads.

Table 9: Detection results on MS COCO 2017 test-dev set for real-
time detectors

Method Size FPS AP AP50 AP75 APS APM APL

SSD [3] 300 43 25.1 43.1 25.8 6.6 25.9 41.4
RefineDet [36] 320 39 29.4 49.2 31.3 10.0 32.0 44.4
YOLOv3 [4] 416 35 31.0 55.3 32.3 15.2 33.2 42.8

EFGRNet [42] 320 48 33.2 53.4 35.4 13.4 37.1 47.9
M2Det [43] 320 33 33.5 52.4 35.6 14.4 37.6 47.6
HSD [44] 320 40 33.5 53.2 36.1 15.0 35.0 47.8

DAFS [45] 512 35 33.8 52.9 36.9 14.6 37.0 47.7
EfficientDet [46] 512 63 33.8 52.2 35.8 12.0 38.3 51.2

LRF [47] 300 53 34.3 54.1 36.6 13.2 38.2 50.7
RFBNet-E [48] 512 30 34.4 55.7 36.4 17.6 37.0 47.6

TOLO 320 60 36.6 57.0 39.7 16.2 39.2 50.3

clearly and increase successful detection. Therefore,
Table 9 shows the results on MS COCO test-dev set.
We can see from Table 9 that TOLO with small input
size (i.e. 320×320) can produce 36.6% AP with high
inferring speed, which also outperforms state-of-the-art
real-time detectors even their input size is much larger
and keeps high inferring speed.

To better understand the response of each head in
TOLO for an input image, we visualize some qualita-
tive results. The detection results and the correspond-
ing heatmaps are shown in Fig. 6. The first column
is the input images with detection boxes and the rest
of the columns from left to right indicate the heatmaps
from the large, middle, and small detection heads, re-
spectively. It can be apparently observed that each head
has its interesting fields. Specifically, for the large ob-
ject detection head, its interesting regions are focused
on relatively large objects. However, for the small ob-
ject detection head, the strong responses are mainly dis-
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Figure 7: Qualitative examples by adopting linear combination method (top) and the proposed non-linear combination method (bottom).

tributed in the regions of relatively small objects.

4.3. Experiments on Non-linear Combination

In this part, we firstly compare various non-linear
combination methods on the MS COCO val-2017
dataset and then validate the effectiveness of our se-
lected method on PASCAL VOC 2007 and 2012
datasets. Finally, some qualitative results are visualized
to further prove the effectiveness. The comparisons of
detection results among different combination functions
are shown in Table 8.

According to the experimental results, we observe
that S ∗ log3(1 + 2C) can get better detection perfor-
mance than the linear combination method and a good
tradeoff between the detection performance and the in-
ferring speed compared with other non-linear combina-
tion methods without increasing model parameters and
training process. Moreover, there is slightly dropped
performance appeared in some methods such as S ∗C0.4,
which we suggest the true negative predicted boxes also
get too large improvement.

We further conduct the experiments on PASCAL
VOC 2007 and 2012 datasets. The detection results of
the reimplemented YOLOv3 and TOLO are shown in
Table 10. It can be also noticed that our combination
method can boost the detection performance for both
detectors, which indicates the effectiveness of our non-
linear combination method..

We then illustrate some detection results on Fig. 7.
It can be apparently observed that the predicted boxes
with high results can not get great improvement but the
potential correct predicted boxes with low results can be
elevated greatly.

Table 10: Comparisons between YOLOv3 and TOLO with/without
the proposed non-linear combination method on PASCAL VOC
datasets

Model Params (M) mAP@50
VOC 2007VOC 2012

YOLOv3 without NC 61.63 82.3 78.4
YOLOv3 with NC 61.63 82.5 78.6
TOLO without NC 56.79 83.2 79.3

TOLO with NC 56.79 83.4 79.5*

NC means non-linear combination
∗ http://host.robots.ox.ac.uk:8080/anonymous/I1QETG.html

5. Conclusion and future work

In this paper, we proposed a new real-time object de-
tector called TOLO, which is composed of CNN back-
bone, FFN, and LTHs. The CNN backbone transfers
the inductive biases to different LTHs. Then, the FFN
plays a role in the transition and provides the detection
heads with abundant features owned high-resolution
and high-semantic properties. Finally, LTHs efficiently
build multiple long-distance dependencies among local
features and detect complex objects with less memory
overhead. Besides, in the inferring stage, the proposed
non-local combination method can further elevate the
detection performance of capturing objects. We carry
out experiments on the PASCAL VOC 2007, the PAS-
CAL VOC 2012, and the MS COCO 2017 datasets and
achieve 83.2% mAP@50, 79.3% mAP@50, and 36.6%
AP, respectively, which are better than YOLOv3 with
larger model parameters and other state-of-the-art real-
time detectors. Moreover, our experimental results have
also demonstrated the proposed non-linear combination
method can further elevate the detection performance
on different datasets.In the future, TOLO will achieve
higher detection performance by extending to the de-
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sign of backbone and higher efficiency by adjusting the
way of building long-distance dependencies in LT.
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