Genome-wide identification of splicing quantitative trait loci (sQTLs) in diverse ecotypes of Arabidopsis thaliana

Journal article


Khokhar, W., Hassan, M., Reddy, A., Chaudhary, S., Jabre, I., Byrne, L. and Syed, N. 2019. Genome-wide identification of splicing quantitative trait loci (sQTLs) in diverse ecotypes of Arabidopsis thaliana. Frontiers in Plant Science. 10 (1160).
AuthorsKhokhar, W., Hassan, M., Reddy, A., Chaudhary, S., Jabre, I., Byrne, L. and Syed, N.
Abstract

Alternative splicing (AS) of pre-mRNAs contributes to transcriptome diversity and enables plants to generate different protein isoforms from a single gene and/or fine-tune gene expression during different development stages and environmental changes. Although AS is pervasive, the genetic basis for differential isoform usage in plants is still emerging. In this study, we performed genome-wide analysis in 666 geographically distributed diverse ecotypes of Arabidopsis thaliana to identify genomic regions [splicing quantitative trait loci (sQTLs)] that may regulate differential AS. These ecotypes belong to different microclimatic conditions and are part of the relict and non-relict populations. Although sQTLs were spread across the genome, we observed enrichment for trans-sQTL (trans-sQTLs hotspots) on chromosome one. Furthermore, we identified several sQTL (911) that co-localized with trait-linked single nucleotide polymorphisms (SNP) identified in the Arabidopsis genome-wide association studies (AraGWAS). Many sQTLs were enriched among circadian clock, flowering, and stress-responsive genes, suggesting a role for differential isoform usage in regulating these important processes in diverse ecotypes of Arabidopsis. In conclusion, the current study provides a deep insight into SNPs affecting isoform ratios/genes and facilitates a better mechanistic understanding of trait-associated SNPs in GWAS studies. To the best of our knowledge, this is the first report of sQTL analysis in a large set of Arabidopsis ecotypes and can be used as a reference to perform sQTL analysis in the Brassicaceae family. Since whole genome and transcriptome datasets are available for these diverse ecotypes, it could serve as a powerful resource for the biological interpretation of trait-associated loci, splice isoform ratios, and their phenotypic consequences to help produce more resilient and high yield crop varieties.

KeywordsSplicing quantitative trait loci (sQTL); Arabidopsis thaliana; alternative splicing; isoform usage; GWAS; adaptation
Year2019
JournalFrontiers in Plant Science
Journal citation10 (1160)
PublisherFrontiers Media
ISSN1664-462X
Digital Object Identifier (DOI)doi:10.3389/fpls.2019.01160
Related URLhttps://www.frontiersin.org/
Publication dates
Online03 Oct 2019
Publication process dates
Deposited10 Oct 2019
Accepted26 Aug 2019
Publisher's version
Permalink -

https://repository.canterbury.ac.uk/item/8911x/genome-wide-identification-of-splicing-quantitative-trait-loci-sqtls-in-diverse-ecotypes-of-arabidopsis-thaliana

Download files

Publisher's version
  • 6
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Perspective on alternative splicing and proteome complexity in plants
Chaudhary, S., Jabre, I., Reddy, A., Staiger, D. and Syed, N. 2019. Perspective on alternative splicing and proteome complexity in plants. Trends in Plant Science. 24 (6), pp. 496-506.
Genetic diversity and structure of northern populations of the declining coastal plant Eryngium maritimum
Ievina, B., Rostoks, N., Syed, N., Flavell, A. and Ievinsh, G. 2019. Genetic diversity and structure of northern populations of the declining coastal plant Eryngium maritimum. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.. 0 (0).
Does co-transcriptional regulation of alternative splicing mediate plant stress responses?
Jabre, I., Reddy, A., Kalyna, M., Chaudhary, S., Khokhar, W., Byrne, L., Wilson, C. and Syed, N. 2019. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Research. 47 (6), pp. 2716-2726.
Alternative splicing and protein diversity: plants versus animals
Chaudhry, S., Khokhar, W., Jabre, I., Reddy, A., Byrne, L., Wilson, C. and Syed, N. 2019. Alternative splicing and protein diversity: plants versus animals. Frontiers in Plant Science. 10 (708).
Integrating research and knowledge exchange in the Science Undergraduate Curriculum: embedding employability through research-involved teaching
Harvey, C., Bertolo-Pardo, E. and Byrne, L. 2017. Integrating research and knowledge exchange in the Science Undergraduate Curriculum: embedding employability through research-involved teaching. in: Renes, S. (ed.) Global Voices in Higher Education In-Tech. pp. 111-128
Alternative splicing and protein diversity: plants versus animals
Chaudhary, S., Khokhar, W., Jabre, I., Reddy A.S.N., Byrne, L., Wilson, C.M. and Syed, N. 2019. Alternative splicing and protein diversity: plants versus animals. Frontiers in Plant Science. 10 (708).
‘Something in the way she moves’: The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI)
Freedman, R., Desmond, J., Byrne, L., Heal, J., Howard, M., Sanghera, N., Walker, K., Wallis, A., Wells, S., Williamson, R. and Romer, R. 2017. ‘Something in the way she moves’: The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1865 (11 (A)), pp. 1383-1394.
A comparative study between molecular and agro-morphological methods for describing genetic relationships in Tunisian faba bean populations
Syed, N. 2016. A comparative study between molecular and agro-morphological methods for describing genetic relationships in Tunisian faba bean populations. Journal of New Sciences: Agri & Biotech. 27 (8), pp. 1513-1518.
Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting
Prince, S., Joshi, T., Mutava, R., Syed, N., Joao Vitor, M., Patil, G., Song, L., Wang, J., Lin, L., Chen, W., Shannon, J., Valliyodan, B., Xu, D. and Nguyen, H. 2015. Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Science. 240, pp. 65-78.
Winter Aconite (Eranthis hyemalis) Lectin as a cytotoxic effector in the lifecycle of Caenorhabditis elegans
McConnell, M., Lisgarten, D., Byrne, L., Harvey, S. and Bertolo-Pardo, E. 2015. Winter Aconite (Eranthis hyemalis) Lectin as a cytotoxic effector in the lifecycle of Caenorhabditis elegans. PeerJ.
Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride
Byrne, L., Cox, B., Coleman, D., Ridout, M., Morgan, B. and Tuiteq, M. 2007. Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 104 (28), pp. 11688-11693.
Genome-Tagged Amplification (GTA): a PCR-based method to prepare sample-tagged amplicons from hundreds of individuals for next generation sequencing
Ho, T., Cardle, L., Xu, X., Bayer, M., Prince, K., Mutava, R., Marshall, D. and Syed, N. 2014. Genome-Tagged Amplification (GTA): a PCR-based method to prepare sample-tagged amplicons from hundreds of individuals for next generation sequencing. Molecular Breeding. 34 (3), pp. 977-988.
Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean
Syed, N., Prince, S., Mutava, R., Patil, G., Li, S., Chen, W., Babu, V., Joshi, T., Khan, S. and Nguyen, H. 2015. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean. Journal of Experimental Botany.
Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress
Mutava, R., Prince, S., Syed, N., Song, L., Valliyodan, B., Chen, W. and Nguyen, H. 2015. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant physiology and biochemistry : PPB / Société française de physiologie végétale. 86, pp. 109-20.
Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions
Syed, N. and Flavell, A. 2007. Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nature Protocols. 1 (6), pp. 2746-2752.
Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers
Sanz, A., Gonzalez, S., Syed, N., Suso, M., Saldaña, C. and Flavell, A. 2007. Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Molecular Genetics and Genomics. 278 (4), pp. 433-441.
Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis
Kalyna, M., Simpson, C., Syed, N., Lewandowska, D., Marquez, Y., Kusenda, B., Marshall, J., Fuller, J., Cardle, L., McNicol, J., Dinh, H., Barta, A. and Brown, J. 2012. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Research. 40 (6), pp. 2454-2469.
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes
James, A., Syed, N., Bordage, S., Marshall, J., Nimmo, G., Jenkins, G., Herzyk, P., Brown, J. and Nimmo, H. 2012. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell. 24 (3), pp. 961-981.
Alternative splicing in plants – coming of age
Syed, N., Kalyna, M., Marquez, Y., Barta, A. and Brown, J. 2012. Alternative splicing in plants – coming of age. Trends in Plant Science. 17 (10), pp. 616-623.
Thermoplasticity in the plant circadian clock: how plants tell the time-perature
James, A., Syed, N., Brown, J. and Nimmo, H. 2012. Thermoplasticity in the plant circadian clock: how plants tell the time-perature. Plant Signaling & Behavior. 7 (10), pp. 1219-1223.
Inbred lines as testers for combining ability in cotton
Syed, W., Mehdi, S. and Syed, N. 1994. Inbred lines as testers for combining ability in cotton. Pakistan Journal of Scientific Research. 46, pp. 93-95.
Genetic study of lint percentage and staple length in cotton
Syed, W., Mehdi, S. and Syed, N. 1994. Genetic study of lint percentage and staple length in cotton. Pakistan Journal of Science. 46 (3-4), pp. 123-124.
Phenotypic recurrent selection for earliness in a random mated population of sunflower (Helianthus annuus L.)
Syed, N., Mehdi, S. and Syed, N. 1995. Phenotypic recurrent selection for earliness in a random mated population of sunflower (Helianthus annuus L.). Pakistan Journal of Scientific Research. 47 (3-4), pp. 62-65.
Two cycles of phenotypic recurrent selection for earliness in a random mated population of sunflower (Helianthus annuus L.)
Syed, N., Mehdi, S., Khan, I. and Syed, N. 1995. Two cycles of phenotypic recurrent selection for earliness in a random mated population of sunflower (Helianthus annuus L.). Science International (Lahore). 7, pp. 201-202.
Association of agronomic and economic characters of cotton
Syed, W., Mehdi, S. and Syed, N. 1995. Association of agronomic and economic characters of cotton. Pakistan Journal of Scientific Research. 47, pp. 46-49.
Fast and reliable genotype validation using microsatellite markers in Arabidopsis thaliana
Virk, P., Pooni, H., Syed, N. and Kearsey, M. 1999. Fast and reliable genotype validation using microsatellite markers in Arabidopsis thaliana. Theoretical and Applied Genetics. 98 (3-4), pp. 462-464.
Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters
Hart, G., Schertz, K., Peng, Y. and Syed, N. 2001. Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theoretical and Applied Genetics. 103 (8), pp. 1232-1242.
Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L.
Kiær, L., Felber, F., Flavell, A., Guadagnuolo, R., Guiatti, D., Hauser, T., Olivieri, A., Scotti, I., Syed, N., Vischi, M., Wiel, C. and Jørgensen, R. 2009. Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L. Genetic Resources and Crop Evolution. 56 (3), pp. 405-419.
Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance
Vida, G., Gál, M., Uhrin, A., Veisz, O., Syed, N., Flavell, A., Wang, Z. and Bedő, Z. 2009. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica. 170 (1-2), pp. 67-76.
Development of retrotransposon-based SSAP molecular marker system for study of genetic diversity in sea holly (Eryngium maritimum L.)
Levina, B., Syed, N., Flavell, A., Ievinsh, G. and Rostoks, N. 2010. Development of retrotransposon-based SSAP molecular marker system for study of genetic diversity in sea holly (Eryngium maritimum L.). Plant Genetic Resources. 8 (3), pp. 258-266.
A hAT superfamily transposase recruited by the cereal grass genome
Muehlbauer, G., Bhau, B., Syed, N., Heinen, S., Cho, S., Marshall, D., Pateyron, S., Buisine, N., Chalhoub, B. and Flavell, A. 2006. A hAT superfamily transposase recruited by the cereal grass genome. Molecular Genetics and Genomics. 275 (6), pp. 553-563.
Genetics of quantitative traits in Arabidopsis thaliana
Kearsey, M., Pooni, H. and Syed, N. 2003. Genetics of quantitative traits in Arabidopsis thaliana. Heredity. 91 (5), pp. 456-464.
Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)
Mei, M., Syed, N., Gao, W., Thaxton, P., Smith, C., Stelly, D. and Chen, Z. 2004. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics. 108 (2), pp. 280-291.
Optimising the construction of a substitution library in Arabidopsis thaliana using computer simulations
Syed, N., Pooni, H., Mei, M., Chen, Z. and Kearsey, M. 2004. Optimising the construction of a substitution library in Arabidopsis thaliana using computer simulations. Molecular Breeding. 13 (1), pp. 59-68.
Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana
Syed, N. and Chen, Z. 2005. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity. 94 (3), pp. 295-304.
Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.)
Syed, N., Sureshsundar, S., Wilkinson, M., Bhau, B., Cavalcanti, J. and Flavell, A. 2005. Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theoretical and Applied Genetics. 110 (7), pp. 1195-1202.
A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers
Syed, N., Sørensen, A., Antonise, R., Wiel, C., Linden, C., van 't Westende, W., Hooftman, D., Nijs, H. and Flavell, A. 2006. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theoretical and Applied Genetics. 112 (3), pp. 517-527.
The number and transmission of [PSI+] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae
Byrne, L., Cole, D., Cox, B., Ridout, M., Morgan, B. and Tuite, M. 2009. The number and transmission of [PSI+] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae. PLoS ONE. 4 (3), p. e4670.
Mapping of the ligand-binding site on the b′ domain of human PDI: interaction with peptide ligands and the x-linker region
Byrne, L., Sidhu, A., Wallis, A., Ruddock, L., Freedman, R., Howard, M. and Williamson, R. 2009. Mapping of the ligand-binding site on the b′ domain of human PDI: interaction with peptide ligands and the x-linker region. Biochemical Journal. 423 (2), pp. 209-217.
The ligand-binding b' domain of human protein disulphide-isomerase mediates homodimerization
Wallis, A., Sidhu, A., Byrne, L., Howard, M., Ruddock, L., Williamson, R. and Freedman, R. 2009. The ligand-binding b' domain of human protein disulphide-isomerase mediates homodimerization. Protein Science. 18 (12), pp. 2569-2577.