‘Something in the way she moves’: The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI)

Journal article


Freedman, R., Desmond, J., Byrne, L., Heal, J., Howard, M., Sanghera, N., Walker, K., Wallis, A., Wells, S., Williamson, R. and Romer, R. 2017. ‘Something in the way she moves’: The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1865 (11 (A)), pp. 1383-1394. https://doi.org/10.1016/j.bbapap.2017.08.014
AuthorsFreedman, R., Desmond, J., Byrne, L., Heal, J., Howard, M., Sanghera, N., Walker, K., Wallis, A., Wells, S., Williamson, R. and Romer, R.
Abstract

Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion.

A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI.

Year2017
JournalBiochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Journal citation1865 (11 (A)), pp. 1383-1394
PublisherElsevier
ISSN0006-3002
Digital Object Identifier (DOI)https://doi.org/10.1016/j.bbapap.2017.08.014
FunderBBSRC (BB/DO1 787)
Wellcome Trust (093125/z/10Z)
EPSRC
Publication dates
Online24 Aug 2017
Publication process dates
Deposited30 Aug 2017
Accepted10 Aug 2017
Output statusPublished
References

R.F. Goldberger, C.J. Epstein, C.B. Anfinsen
Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver
J. Biol. Chem., 238 (1963), pp. 628–635

View Record in Scopus | Citing articles (259)
[2]
P. Venetianer, F.B. Straub
The enzymic reactivation of reduced ribonuclease
BBA, 67 (1963), pp. 166–168

Article | PDF (170 K) | View Record in Scopus | Citing articles (76)
[3]
H.C. Hawkins, R.B. Freedman
Randomly reoxidised soybean trypsin inhibitor and the possibility of conformational barriers to disulphide isomerization in proteins
FEBS Lett., 58 (1975), pp. 7–11

Article | PDF (401 K) | CrossRef | View Record in Scopus | Citing articles (6)
[4]
R.B. Freedman, H.C. Hawkins
Enzyme-catalyzed disulphide interchange and protein biosynthesis
Biochem. Soc. Trans., 5 (1977), pp. 348–357

CrossRef | View Record in Scopus | Citing articles (22)
[5]
R.B. Freedman
Native disulphide bond formation in protein biosynthesis: evidence for the role of protein disulphide isomerase
TIBS, 9 (1984), pp. 438–441

Article | PDF (502 K) | View Record in Scopus | Citing articles (183)
[6]
N.J. Bulleid, R.B. Freedman
Defective co-translational formation of disulphide bonds in protein disulphide isomerase-deficient microsomes
Nature, 335 (1988), pp. 649–651

CrossRef | View Record in Scopus | Citing articles (228)
[7]
R. Farquhar, N. Honey, S.J. Murant, P. Bossier, L. Schultz, D. Montgomery, R.W. Ellis, R.B. Freedman, M.F. Tuite
Protein disulphide isomerase is essential for viability in Saccharomyces cerevisiae
Gene, 108 (1991), pp. 81–89

Article | PDF (1102 K) | View Record in Scopus | Citing articles (92)
[8]
J.C. Edman, L. Ellis, R.W. Blacher, R.A. Roth, W.J. Rutter
Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin
Nature, 317 (1985), pp. 267–270

CrossRef | View Record in Scopus | Citing articles (437)
[9]
T. Pihlajaniemi, T. Helaakoski, K. Tasanen, R. Myllyla, M.-L. Huhtala, J. Koivu, K.I. Kivirikko
Molecular cloning of the β-subunit of prolyl-4-hydroxylase: this subunit and protein disulphide isomerase are products of the same gene
EMBO J., 6 (1987), pp. 643–649

View Record in Scopus | Citing articles (308)
[10]
N. Lambert, R.B. Freedman
Structural properties of homogeneous protein disulphide-isomerase from bovine liver purified by a rapid high-yielding procedure
Biochem. J., 213 (1983), pp. 225–234

CrossRef | View Record in Scopus | Citing articles (122)
[11]
K. Vuori, R. Myllyla, T. Pihlajaniemi, K.I. Kivirikko
Expression and site-directed mutagenesis of human protein disulfide isomerase in Escherichia coli
J. Biol. Chem., 267 (1992), pp. 7211–7214

View Record in Scopus | Citing articles (108)
[12]
G. Tian, S. Xiang, R. Noiva, W.J. Lennarz, H. Schindelin
The crystal structure of yeast protein disulfide isomerase suggests co-operativity between its active sites
Cell, 124 (2006), pp. 61–73

Article | PDF (1240 K) | View Record in Scopus | Citing articles (247)
[13]
G. Tian, F.-X. Kober, U. Lewandrowski, A. Sickmann, W.J. Lennarz, H. Schindelin
The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule
J. Biol. Chem., 283 (2008), pp. 33630–33640

CrossRef | View Record in Scopus | Citing articles (59)
[14]
C. Wang, W. Li, J. Ren, J. Fang, H. Ke, W. Gong, W. Feng, C.-C. Wang
Structural insights into the redox-regulated dynamic conformations of human protein disulfide isomerase
Antioxid. Redox Signal., 19 (2013), pp. 44–53

CrossRef | View Record in Scopus | Citing articles (27)
[15]
C. Appenzeller-Herzog, L. Ellgaard
The human PDI family; versatility packed into a single fold
BBA, 1783 (2008), pp. 535–548

Article | PDF (881 K) | View Record in Scopus | Citing articles (221)
[16]
G. Kozlov, P. Maattanen, D.Y. Thomas, K. Gehring
A structural overview of the PDI family of proteins
FEBS J., 277 (2010), pp. 3924–3936

CrossRef | View Record in Scopus | Citing articles (89)
[17]
N.J. Darby, J. Kemmink, T.E. Creighton
Identifying and characterizing a structural domain of protein disulphide isomerase
Biochemistry, 35 (1996), pp. 10517–10528

CrossRef | View Record in Scopus | Citing articles (77)
[18]
R.B. Freedman, P.J. Gane, H.C. Hawkins, R. Hlodan, S.H. McLaughlin, J.W.L. Parry
Experimental and theoretical analyses of the domain architecture of mammalian protein disulphide-isomerase
Biol. Chem., 379 (1998), pp. 321–328

View Record in Scopus | Citing articles (45)
[19]
J. Kemmink, N.J. Darby, K. Dijkstra, M. Nilges, T.E. Creighton
The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules
Curr. Biol., 7 (1997), pp. 239–245

Article | PDF (305 K) | View Record in Scopus | Citing articles (168)
[20]
A. Pirneskoski, P. Klappa, M. Lobell, R.A. Williamson, L. Byrne, H.I. Alanen, K.E.H. Salo, K.I. Kivirikko, R.B. Freedman, L.W. Ruddock
Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulphide isomerase
J. Biol. Chem., 279 (2004), pp. 10374–10381

CrossRef | View Record in Scopus | Citing articles (120)
[21]
N.J. Darby, T.E. Creighton
Functional properties of the individual thioredoxin-like domains of protein disulphide isomerase
Biochemistry, 34 (1995), pp. 11725–11735

CrossRef | View Record in Scopus | Citing articles (124)
[22]
P. Klappa, L.W. Ruddock, N.J. Darby, R.B. Freedman
The b′ domain provides the principal peptide-binding site of protein disulphide isomerase but all domains contribute to binding of misfolded proteins
EMBO J., 17 (1998), pp. 927–935

CrossRef | View Record in Scopus | Citing articles (243)
[23]
R.B. Freedman, P. Klappa, L.W. Ruddock
Protein disulphide isomerases exploit synergy between catalytic and specific ligand-binding domains
EMBO Rep., 3 (2002), pp. 146–150

[24]
L.J. Byrne, A. Sidhu, A.K. Wallis, L.W. Ruddock, R.B. Freedman, M.J. Howard, R.A. Williamson
Mapping of the ligand binding site on the b′ domain of human PDI; interaction with peptide ligands and the x-linker region
Biochem. J., 423 (2009), pp. 209–217

CrossRef
[25]
D. Givol, R.F. Goldberger, C.B. Anfinsen
Oxidation and disulfide interchange in the reactivation of reduced ribonuclease
J. Biol. Chem., 239 (1964), pp. PC3114–PC3116

[26]
R.B. Freedman, B.E. Brockway, N. Lambert
Protein disulphide-isomerase and the formation of native disulphide bonds
Biochem. Soc. Trans., 12 (1984), pp. 929–932

CrossRef | View Record in Scopus | Citing articles (49)
[27]
A.R. Karala, A.K. Lappi, M. Saaranen, L.W. Ruddock
Efficient peroxide mediated oxidative refolding of a protein at physiological pH and implications for oxidative folding in the endoplasmic reticulum
Antioxid. Redox Signal., 11 (2009), pp. 963–970

CrossRef | View Record in Scopus | Citing articles (59)
[28]
M. Ruoppolo, R.B. Freedman, P. Pucci, G. Marino
The glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide-isomerase
Biochemistry, 35 (1996), pp. 13636–13646

CrossRef | View Record in Scopus | Citing articles (32)
[29]
X.M. He, D.C. Carter
Atomic structure and chemistry of human serum albumin
Nature, 358 (1992), pp. 209–215

CrossRef | View Record in Scopus | Citing articles (2023)
[30]
R.A. Roth, S.B. Pierce
In vivo cross-linking of protein disulfide isomerase to immunoglobulins
Biochemistry, 26 (1987), pp. 4179–4182

CrossRef | View Record in Scopus | Citing articles (82)
[31]
M. Molinari, A. Helenius
Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells
Nature, 402 (1999), pp. 90–93

View Record in Scopus | Citing articles (235)
[32]
Sakari Kellokumpu, M. Suokas, L. Risteli, R. Myllyla
Protein disulphide isomerase and newly synthesized procollagen chains form higher-order structures in the lumen of the endoplasmic reticulum
J. Biol. Chem., 272 (1997), pp. 2770–2777

CrossRef | View Record in Scopus | Citing articles (31)
[33]
B. Di Jeso, Y.-N. Park, L. Ulianich, A.S. Treglia, M.L. Urbanas, S. High, P. Arvan
Mixed disulphide folding intermediates between thyroglobulin and endoplasmic reticulum resident oxidases ERp57 and protein disulphide isomerase
Mol. Cell. Biol., 25 (2005), pp. 9793–9805

CrossRef | View Record in Scopus | Citing articles (45)
[34]
S. Wang, S. Park, V.K. Kodali, J. Han, T. Yip, Z. Chen, N.O. Davidson, R.J. Kaufman
Identification of protein disulfide isomerase 1 as a key isomerase for disulphide bond formation in apolipoprotein B100
Mol. Biol. Cell, 26 (2015), pp. 594–604

CrossRef | View Record in Scopus | Citing articles (6)
[35]
C.E. Jessop, R.H. Watkins, J.J. Simmons, M. Tasab, N.J. Bulleid
Protein disulphide family members show distinct substrate specificity: P5 is targeted to BiP client proteins
J. Cell Sci., 122 (2009), pp. 4287–4295

CrossRef | View Record in Scopus | Citing articles (100)
[36]
G.B. Pisoni, L.W. Ruddock, N. Bulleid, M. Molinari
Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides
Mol. Biol. Cell, 26 (2015), pp. 3390–3400

CrossRef | View Record in Scopus | Citing articles (4)
[37]
L.A. Rutkevich, M.F. Cohen-Doyle, U. Brockmeier, D.B. Williams
Functional relationship between protein disulfide isomerase family members during the oxidative folding of human secretory protteins
Mol. Biol. Cell, 21 (2010), pp. 3093–3105

CrossRef | View Record in Scopus | Citing articles (49)
[38]
C.J.A. Finnis, T. Payne, J. Hay, N. Dodsworth, D. Wilkinson, P. Morton, M.J. Saxton, D.J. Tooth, R.W. Evans, H. Goldenberg, B. Scheiber-Mojdekhar, N. Ternes, D. Sleep
High-level production of animal-free recombinant transferrin from S. cerevisiae
Microb. Cell Factories, 9 (2010), p. 87

CrossRef
[39]
A. Gaciarz, J. Veijola, Y. Uchida, M.J. Saaranen, C. Wang, S. Hörkko, L.W. Ruddock
Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli
Microb. Cell Factories, 15 (2016), p. 22

CrossRef
[40]
H. Safavi-Hemami, Q. Li, R.L. Jackson, A.S. Song, W. Boomsma, P.K. Bandyoppadhyay, C.W. Gruber, A.W. Purcell, M. Yandell, B.M. Olivera, L. Ellgaard
Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides
PNAS, 113 (2016), pp. 3222–3232

[41]
J. Riemer, N.J. Bulleid, J.M. Herrmann
Disulfide formation in the ER and mitochondria: two solutions to a common process
Science, 324 (2009), pp. 1284–1287

CrossRef | View Record in Scopus | Citing articles (149)
[42]
C.S. Sevier, C.A. Kaiser
Ero1 and redox homeostasis in the endoplasmic reticulum
BBA, 1783 (2008), pp. 549–556

Article | PDF (482 K) | View Record in Scopus | Citing articles (147)
[43]
N.J. Bulleid, L. Ellgaard
Multiple ways to make disulfides
TIBS, 36 (2011), pp. 485–492

Article | PDF (326 K) | View Record in Scopus | Citing articles (114)
[44]
T. Kakihana, K. Nagata, R. Sitia
Peroxides and peroxidases in the endoplasmic reticulum: integrating redox homeostasis and oxidative folding
Antioxid. Redox Signal., 16 (2012), pp. 763–771

CrossRef | View Record in Scopus | Citing articles (33)
[45]
V.D. Nguyen, M.J. Saaranen, A.R. Karala, A.K. Lappi, L. Wang, I.B. Raykhel, H.I. Alanen, K.E. Salo, C.C. Wang, L.W. Ruddock
Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulphide bond formation
J. Mol. Biol., 406 (2011), pp. 503–515

Article | PDF (764 K) | View Record in Scopus | Citing articles (105)
[46]
T. Ramming, H.G. Hansen, K. Nagata, L. Ellgaard, C. Appenzeller-Herzog
Gpx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum
Free Radic. Biol. Med., 70 (2014), pp. 106–116

Article | PDF (988 K) | View Record in Scopus | Citing articles (33)
[47]
L. Wang, L. Zhang, Y. Niu, R. Sitia, C.-C. Wang
Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1alpha to promote oxidative protein folding
Antioxid. Redox Signal., 20 (2014), pp. 545–556

CrossRef | View Record in Scopus | Citing articles (42)
[48]
S. Masui, S. Vavassori, C. Fagioli, R. Sitia, K. Inaba
Molecular bases of cyclic and specific disulfide interchange between human Ero1α protein and protein disulphide-isomerase (PDI)
J. Biol. Chem., 286 (2011), pp. 16261–16271

CrossRef | View Record in Scopus | Citing articles (34)
[49]
T. Ramming, M. Okumura, S. Kanemura, S. Baday, J. Birk, S. Moes, M. Spiess, P. Jenö, S. Bernèche, K. Inaba, C. Appenzeller-Herzog
A PDI-catalyzed thiol-disulfide switch regulates the production of hydrogen peroxide by human Ero1
Free Radic. Biol. Med., 83 (2015), pp. 361–372

Article | PDF (1927 K) | View Record in Scopus | Citing articles (13)
[50]
K.I. Kivirikko, T. Pihlajaniemi
Collagen hydroxylases and the protein disulphide isomerase subunit of prolyl-4-hydroxylases
Adv. Enzymol., 72 (1998), pp. 325–398

View Record in Scopus | Citing articles (238)
[51]
M.M. Hussain, J. Shi, P. Dreizen
Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly
J. Lipid Res., 44 (2003), pp. 22–32

CrossRef | View Record in Scopus | Citing articles (332)
[52]
H. Cai, C.-C. Wang, C.-L. Tsou
Chaperone-like activity of protein disulphide isomerase in the refolding of a protein with no disulphide bonds
J. Biol. Chem., 269 (1994), pp. 24550–24552

View Record in Scopus | Citing articles (219)
[53]
S.H. McLaughlin, N.J. Bulleid
Thiol-dependent interaction of protein disulphide isomerase with a type X collagen during intra-cellular folding and assembly
Biochem. J., 331 (1998), pp. 793–800

CrossRef | View Record in Scopus | Citing articles (35)
[54]
E.R. Perri, C.J. Thomas, S. Parakh, D.M. Spencer, J.D. Atkin
The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration
Front. Cell Dev. Biol., 3 (2016) (article80)

[55]
A. Solovyov, H.F. Gilbert
Zinc-dependent dimerization of the folding catalyst protein disulfide isomerase
Protein Sci., 13 (2004), pp. 1902–1907

CrossRef | View Record in Scopus | Citing articles (41)
[56]
A.K. Wallis, A. Sidhu, L.J. Byrne, M.J. Howard, L.W. Ruddock, R.A. Williamson, R.B. Freedman
The ligand-binding b′ domain of protein disulfide-isomerase mediates homodimerization
Protein Sci., 18 (2009), pp. 2569–2577

CrossRef | View Record in Scopus | Citing articles (11)
[57]
L. Peng, M.I. Rasmussen, A. Chailyan, G. Houen, P. Højrup
Probing the structure of human protein disulphide isomerase by chemical cross-linking combined with mass spectrometry
J. Proteome, 108 (2014), pp. 1–16

Article | PDF (1555 K) | View Record in Scopus | Citing articles (7)
[58]
M. Yagi-Utsumi, T. Satoh, K. Kato
Structural basis of redox-dependent substrate binding of protein disulphide isomerase
Sci Rep, 5 (2015), p. 13909 https://doi.org/10.1038/srep13909

CrossRef
[59]
H.C. Hawkins, M. de Nardi, R.B. Freedman
Redox properties and cross-linking of the dithiol/disulphide active sites of mammalian protein disulphide-isomerase
Biochem. J., 275 (1991), pp. 341–348

CrossRef | View Record in Scopus | Citing articles (77)
[60]
K. Araki, K. Nagata
Functional in vitro analysis of the ERO1 protein and protein-disulfide isomerase pathway
J. Biol. Chem., 286 (2011), pp. 32705–32712

CrossRef | View Record in Scopus | Citing articles (31)
[61]
V.D. Nguyen, K. Wallis, M.J. Howard, A.M. Haapalainen, K.E.H. Salo, M.J. Saaranen, A. Sidhu, R.K. Wierenga, R.B. Freedman, L.W. Ruddock, R.A. Williamson
Alternative conformations of the x region of human protein disulphide-isomerase modulate exposure of the substrate-binding b′ domain
J. Mol. Biol., 383 (2008), pp. 1144–1155

[62]
C. Wang, S. Chen, X. Wang, L. Wang, A.K. Wallis, R.B. Freedman, C.-C. Wang
Plasticity of human protein disulfide isomerase: evidence for mobility around the x-linker region and its functional significance
J. Biol. Chem., 285 (2010), pp. 26788–26797

[63]
N.A. Farrow, O. Zhang, A. Szabo, D.A. Torchia, L.E. Kay
Spectral density function mapping using 15N relaxation data exclusively
J. Biomol. NMR, 6 (1995), pp. 153–162

[64]
A.M. Mandel, M. Akke, A.G. Palmer
Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme
J. Mol. Biol., 246 (1995), pp. 144–163

[65]
A.G. Palmer, M. Rance, P.E. Wright
Intramolecular motions of a zinc finger DNA-binding domain from xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy
J. Am. Chem. Soc., 113 (1991), pp. 4371–4380

[66]
K. Walker
Molecular Characterisation of PDIp – The Pancreas-specific Isoform of PDI
(PhD thesis) University of Warwick, UK (2013)

[67]
R.H. Bekendam, P.K. Bendapudi, L. Lin, P.P. Nag, J. Pu, D.R. Kennedy, A. Feldenzer, J. Chiu, K.M. Cook, B. Furie, M.D. Huang, P.J. Hogg, R. Flaumenhaft
A substrate-driven allosteric switch that enhances PDI catalytic activity
Nat. Commun. (2016) https://doi.org/10.1038/ncomms12579

[68]
O. Serve, Y. Kamiya, A. Maeno, M. Nakano, C. Murakami, H. Sasakawa, Y. Yamaguchi, T. Harada, E. Kurimoto, M. Yagi-Utsumi, T. Iguchi, K. Inaba, J. Kikuchi, O. Asami, T. Kajino, T. Oka, M. Nakasako, K. Kato
Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface
J. Mol. Biol., 396 (2009), pp. 361–374

[69]
M. Nakasako, A. Mueno, E. Kurimoto, T. Harada, Y. Yamaguchi, T. Oka, Y. Takayama, A. Iwata, K. Kato
Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus
Biochemistry, 49 (2010), pp. 6953–6962

[70]
K. Inagaki, T. Satoh, S.G. Itoh, H. Okumura, K. Kato
Redox-dependent conformational transition of catalytic domain of protein disulfide isomerase indicated by crystal structure-based molecular dynamics simulation
Chem. Phys. Lett., 618 (2015), pp. 203–207

[71]
A.G. Irvine, A.K. Wallis, N. Sanghera, M.L. Rowe, L.W. Ruddock, M.J. Howard, R.A. Williamson, C.A. Blindauer, R.B. Freedman
Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway
PLoS One, 9 (2014), Article e82511

[72]
K. Henzler-Wildman, D. Kern
Dynamic personalities of proteins
Nature, 450 (2007), pp. 964–972

[73]
J.E. Jimenez-Roldan, R.B. Freedman, R.A. Römer, S.A. Wells
Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses
Phys. Biol., 9 (2012), Article 016008

[74]
R.A. Römer, S.A. Wells, J.E. Jimenez-Roldan, M. Bharracharyya, S. Vishweshwarra, R.B. Freedman
The flexibility and dynamics of protein disulfide isomerase
Proteins, 84 (2016), pp. 1776–1785

[75]
J.L. Desmond, R.A. Römer, R.B. Freedman, J.L. Heal, S.A. Wells
Dataset for “‘Something in the way she moves’: the functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI)”
http://wrap.warwick.ac.uk/cgi/users/home?screen=EPrint::View&eprintid=86372 (2017)

[76]
J.M. Thornton
Disulphide bonds in globular proteins
J. Mol. Biol., 151 (1981), pp. 261–287

[77]
S. Yang, X. Wang, L. Cui, X. Ding, L. Niu, F. Yang, C. Wang, C.-C. Wang, J. Lou
Compact conformations of human protein disulfide isomerase
PLoS One, 9 (2014), Article e103472

[78]
N.T. Amin, A.K. Wallis, S.A. Wells, M.L. Rowe, R.A. Williamson, M.J. Howard, R.B. Freedman
High resolution NMR studies of structure and dynamics of human ERp27 indicate extensive interdomain flexibility
Biochem. J., 450 (2013), pp. 321–332

[79]
I.R. Kleckner, M.P. Foster
An introduction to NMR-based methods for measuring protein dynamics
Biochim. Biophys. Acta, 1814 (2011), pp. 942–968

[80]
A.K. Mittermaier, L.E. Kay
Observing biological dynamics at atomic resolution using NMR
Trends Biochem. Sci., 34 (2009), pp. 601–611

[81]
J. Hohlbein, T.D. Craggs, T. Cordes
Alternating laser excitation: single-molecule FRET and beyond
Chem. Soc. Rev., 43 (2014), pp. 1156–1171

[82]
S. Wang, R. Vafabakhsh, W.F. Borschel, T. Ha, C.G. Nichols
Structural dynamics of potassium-channel gating revealed by single-molecule FRET
Nat. Struct. Mol. Biol., 23 (2016), pp. 31–36

Permalink -

https://repository.canterbury.ac.uk/item/884zw/-something-in-the-way-she-moves-the-functional-significance-of-flexibility-in-the-multiple-roles-of-protein-disulfide-isomerase-pdi

  • 74
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Investigating the effect of mesoporous silica nanoparticles as a drug delivery system for Withaferin A in the treatment of Lung Cancer
Holder, J., Wilson, C., Bertolo-Pardo, E., Byrne, L., Lodeiro, C., Oliveira, E. and Trim, C. 2024. Investigating the effect of mesoporous silica nanoparticles as a drug delivery system for Withaferin A in the treatment of Lung Cancer.
Investigating the effect of silica nanoparticles as a drug delivery system for Doxorubicin in the treatment of lung cancer
Holder, J., Wilson, C., Bertolo-Pardo, E., Byrne, L., Oliveira, E., Lodeiro, C. and Trim, C. 2024. Investigating the effect of silica nanoparticles as a drug delivery system for Doxorubicin in the treatment of lung cancer.
AI is a viable alternative to high throughput screening: a 318-target study
Wilson, C.M., Byrne, L., Al-Yozbaki, M. and The Atomwise AIMS Program 2024. AI is a viable alternative to high throughput screening: a 318-target study. Scientific Reports. https://doi.org/10.1038/s41598-024-54655-z
The use of nanoparticles for targeted drug delivery in non-small cell lung cancer.
Holder, Jessica E, Ferguson, Christopher, Oliveira, Elisabete, Lodeiro, Carlos, Trim, Carol M, Byrne, Lee J, Bertolo, Emilia and Wilson, Cornelia M 2023. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Frontiers in Oncology. 13, p. 1154318. https://doi.org/10.3389/fonc.2023.1154318
Extracellular vesicles, stem cells and the role of miRNAs in neurodegeneration
Belkozhayev, Ayaz M., Al-Yozbaki, Minnatallah, George, Alex, Ye Niyazova, Raigul, Sharipov, Kamalidin O., Byrne, Lee J. and Wilson, Cornelia M. 2021. Extracellular vesicles, stem cells and the role of miRNAs in neurodegeneration. Current Neuropharmacology. 20 (8), pp. 1450-1478. https://doi.org/10.2174/1570159x19666210817150141
Utilisation of compounds from venoms in drug discovery
Trim, Carol M, Byrne, Lee J and Trim, Steven A 2021. Utilisation of compounds from venoms in drug discovery. Progress in Medicinal Chemistry. 60, pp. 1-66. https://doi.org/S0079-6468(21)00001-1
Does co-transcriptional regulation of alternative splicing mediate plant stress responses?
Jabre, I., Reddy, A., Kalyna, M., Chaudhary, S., Khokhar, W., Byrne, L., Wilson, C. and Syed, N. 2019. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucleic Acids Research. 47 (6), pp. 2716-2726. https://doi.org/10.1093/nar/gkz121
Alternative splicing and protein diversity: plants versus animals
Chaudhry, S., Khokhar, W., Jabre, I., Reddy, A., Byrne, L., Wilson, C. and Syed, N. 2019. Alternative splicing and protein diversity: plants versus animals. Frontiers in Plant Science. 10 (708). https://doi.org/10.3389/fpls.2019.00708
Integrating research and knowledge exchange in the Science Undergraduate Curriculum: embedding employability through research-involved teaching
Harvey, C., Bertolo-Pardo, E. and Byrne, L. 2017. Integrating research and knowledge exchange in the Science Undergraduate Curriculum: embedding employability through research-involved teaching. in: Renes, S. (ed.) Global Voices in Higher Education In-Tech. pp. 111-128
Genome-wide identification of splicing quantitative trait loci (sQTLs) in diverse ecotypes of Arabidopsis thaliana
Khokhar, W., Hassan, M., Reddy, A., Chaudhary, S., Jabre, I., Byrne, L. and Syed, N. 2019. Genome-wide identification of splicing quantitative trait loci (sQTLs) in diverse ecotypes of Arabidopsis thaliana. Frontiers in Plant Science. 10 (1160). https://doi.org/10.3389/fpls.2019.01160
Winter Aconite (Eranthis hyemalis) Lectin as a cytotoxic effector in the lifecycle of Caenorhabditis elegans
McConnell, M., Lisgarten, D., Byrne, L., Harvey, S. and Bertolo-Pardo, E. 2015. Winter Aconite (Eranthis hyemalis) Lectin as a cytotoxic effector in the lifecycle of Caenorhabditis elegans. PeerJ. https://doi.org/10.7717/peerj.1206
Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride
Byrne, L., Cox, B., Coleman, D., Ridout, M., Morgan, B. and Tuiteq, M. 2007. Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 104 (28), pp. 11688-11693. https://doi.org/10.1073/pnas.0701392104
The number and transmission of [PSI+] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae
Byrne, L., Cole, D., Cox, B., Ridout, M., Morgan, B. and Tuite, M. 2009. The number and transmission of [PSI+] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae. PLoS ONE. 4 (3), p. e4670. https://doi.org/10.1371/journal.pone.0004670
Mapping of the ligand-binding site on the b′ domain of human PDI: interaction with peptide ligands and the x-linker region
Byrne, L., Sidhu, A., Wallis, A., Ruddock, L., Freedman, R., Howard, M. and Williamson, R. 2009. Mapping of the ligand-binding site on the b′ domain of human PDI: interaction with peptide ligands and the x-linker region. Biochemical Journal. 423 (2), pp. 209-217. https://doi.org/10.1042/BJ20090565
The ligand-binding b' domain of human protein disulphide-isomerase mediates homodimerization
Wallis, A., Sidhu, A., Byrne, L., Howard, M., Ruddock, L., Williamson, R. and Freedman, R. 2009. The ligand-binding b' domain of human protein disulphide-isomerase mediates homodimerization. Protein Science. 18 (12), pp. 2569-2577. https://doi.org/10.1002/pro.270