Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain

Journal article


Bloemink, M.J., Hsu, K.H., Geeves, M.A. and Bernstein, S.I. 2020. Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA120.014684
AuthorsBloemink, M.J., Hsu, K.H., Geeves, M.A. and Bernstein, S.I.
Abstract

We investigated the biochemical and biophysical properties of one of the four alternative exon-encoded regions within the Drosophila myosin catalytic domain. This region is encoded by alternative exons 3a and 3b and includes part of the N-terminal β–barrel. Chimeric myosin constructs (IFI-3a and EMB-3b) were generated by exchanging the exon 3-encoded areas between native slow embryonic body wall (EMB) and fast indirect flight muscle myosin isoforms (IFI). We found that this exchange alters the kinetic properties of the myosin S1 head. The ADP release rate (k-D) in the absence of actin is completely reversed for each chimera compared to the native isoforms. Steady-state data also suggest a reciprocal shift, with basal and actin-activated ATPase activity of IFI-3a showing reduced values compared to wild-type IFI, whereas for EMB-3b these values are increased compared to wild-type EMB. In the presence of actin, ADP affinity (KAD) is unchanged for IFI-3a, compared to IFI, but ADP-affinity for EMB-3b is increased, compared to EMB, and shifted towards IFI values. ATP-induced dissociation of acto-S1 (K1k+2) is reduced for both exon 3 chimeras. Homology modeling, combined with a recently reported crystal structure for Drosophila EMB, indicate that the exon 3 encoded region in the myosin head is part of the communication pathway between the nucleotide binding pocket (purine-binding loop) and the essential light chain, emphasizing an important role for this variable N-terminal domain in regulating acto-myosin cross-bridge kinetics, in particular with respect to the force-sensing properties of myosin isoforms.

KeywordsMuscle; Myosin; Kinetics; Actin; Fluorescence; Homology modeling; Sequence alignment; Protein structure-function; Force-sensing
Year2020
JournalThe Journal of Biological Chemistry
PublisherAmerican Society for Biochemistry and Molecular Biology
ISSN1083-351X
Digital Object Identifier (DOI)https://doi.org/10.1074/jbc.RA120.014684
Official URLhttps://doi.org/10.1074/JBC.RA120.014684
Related URLhttps://www.jbc.org/content/early/2020/08/19/jbc.RA120.014684.abstract
Publication dates
Online19 Aug 2020
Publication process dates
Accepted19 Aug 2020
Deposited26 Aug 2020
Accepted author manuscript
File Access Level
Open
Supplemental file
File Access Level
Open
Output statusPublished
References

1. George, E. L., Ober, M. B., and Emerson, C. P. (1989) Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol. Cell. Biol. 9, 2957–74
2. Bernstein, S. I., and Milligan, R. A. (1997) Fine tuning a molecular motor: the location of alternative domains in the Drosophila myosin head. J. Mol. Biol. 271, 1–6
3. Wells, L., Edwards, K. A., and Bernstein, S. I. (1996) Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. 15, 4454–4459
4. Swank, D. D. M., Knowles, A. F. A., Suggs, J. A. J., Sarsoza, F., Lee, A., Maughan, D.W., and Bernstein, S. I. (2002) The myosin converter domain modulates muscle performance. Nat. Cell Biol. 4, 312–316
5. Miller, B. M., Nyitrai, M., Bernstein, S. I., and Geeves, M. A. (2003) Kinetic analysis of Drosophila muscle myosin isoforms suggests a novel mode of mechanochemical coupling. J. Biol. Chem. 278, 50293–300
6. Swank, D. M., Bartoo, M. L., Knowles, A. F., Iliffe, C., Bernstein, S. I., Molloy, J. E., and Sparrow, J. C. (2001) Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J. Biol. Chem. 276, 15117–15124
7. Swank, D. M., Knowles, A. F., Kronert, W. A., Suggs, J. A., Morrill, G. E., Nikkhoy, M., Manipon, G. G., and Bernstein, S. I. (2003) Variable N-terminal regions of muscle
myosin heavy chain modulate ATPase rate and actin sliding velocity. J. Biol. Chem. 278, 17475–82
8. Swank, D. M., Kronert, W. A., Bernstein, S. I., and Maughan, D. W. (2004) Alternative N-Terminal Regions of Drosophila Myosin Heavy Chain Tune Muscle Kinetics for Optimal Power Output. Biophys. J. 87, 1805–1814
9. Caldwell, J. T., Mermelstein, D. J., Walker, R. C., Bernstein, S. I., and Huxford, T. (2020) X-ray Crystallographic and Molecular Dynamic Analyses of Drosophila
melanogaster Embryonic Muscle Myosin Define Domains Responsible for IsoformSpecific Properties. J. Mol. Biol. 432, 427–447
10. Bloemink, M. J., Dambacher, C. M., Knowles, A. F., Melkani, G. C., Geeves, M. A., and Bernstein, S. I. (2009) Alternative exon 9-encoded relay domains affect more than
one communication pathway in the Drosophila myosin head. J. Mol. Biol. 389, 707–21
11. Webb, M. R., and Corrie, J. E. T. (2001) Fluorescent Coumarin-Labeled Nucleotides to Measure ADP Release from Actomyosin. J. Muscle Res. Cell Motil. 81, 1562–1569
12. Clark, R. J., Nyitrai, M., Webb, M. R., and Geeves, M. A. (2003) Probing nucleotide dissociation from myosin in vitro using microgram quantities of myosin. J. Muscle Res.Cell Motil. 24, 315–21
13. Miller, B. M., Bloemink, M. J., Nyitrai, M., Bernstein, S. I., and Geeves, M. A. (2007) A variable domain near the ATP-binding site in Drosophila muscle myosin is part of
the communication pathway between the nucleotide and actin-binding sites. J. Mol. Biol. 368, 1051–66
14. Vale, R. D., and Milligan, R. A. (2000) The way things move: looking under the hood of molecular motor proteins. Science (80-. ). 288, 88–95
15. Lowey, S., Saraswat, L. D., Liu, H., Volkmann, N., and Hanein, D. (2007) Evidence for an Interaction between the SH3 Domain and the N-terminal Extension of the Essential Light Chain in Class II Myosins. J. Mol. Biol. 371, 902–913
16. Falkenthal, S., Parker, V. P., Mattox, W. W., and Davidson, N. (1984) Drosophila melanogaster has only one myosin alkali light-chain gene which encodes a protein with
considerable amino acid sequence homology to chicken myosin alkali light chains. Mol. Cell. Biol. 4, 956 LP – 965
17. Siemankowski, R. F., Wiseman, M. O., and White, H. D. (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc. Natl. Acad. Sci. 82, 658 LP – 662
18. Nyitrai, M., Rossi, R., Adamek, N., Pellegrino, M. A., Bottinelli, R., and Geeves, M.A. (2006) What Limits the Velocity of Fast-skeletal Muscle Contraction in Mammals?
J. Mol. Biol. 355, 432–442
19. Walklate, J., Ujfalusi, Z., and Geeves, M. A. (2016) Myosin isoforms and the mechanochemical cross-bridge cycle. J. Exp. Biol. 219, 168 LP – 174
20. Swank, D. M., Vishnudas, V. K., and Maughan, D. W. (2006) An exceptionally fast actomyosin reaction powers insect flight muscle. Proc. Natl. Acad. Sci. U. S. A. 103,
17543–7
21. Yang, C., Kaplan, C. N., Thatcher, M. L., and Swank, D. M. (2010) The influence of myosin converter and relay domains on cross-bridge kinetics of Drosophila indirect flight muscle. Biophys. J. 99, 1546–55
22. Eldred, C. C., Naber, N., Pate, E., Cooke, R., and Swank, D. M. (2013) Conformational changes at the nucleotide site in the presence of bound ADP do not set the velocity of
fast Drosophila myosins. J. Muscle Res. Cell Motil. 34, 35–42
23. Schmid, S., and Hugel, T. (2020) Controlling protein function by fine-tuning conformational flexibility. Elife. 9, e57180
24. Colegrave, M., and Peckham, M. (2014) Structural Implications of β‐Cardiac Myosin Heavy Chain Mutations in Human Disease. Anat. Rec. 297, 1670–1680
25. Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., Rayment, I., Sellers, J. R., Fananapazir, L., and Epstein, N. D. (1996) Mutations in
either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 13, 63–69
26. Robert-Paganin, J., Auguin, D., and Houdusse, A. (2018) Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition. Nat. Commun. 9, 4019
27. Greenberg, M. J., Lin, T., Shuman, H., and Ostap, E. M. (2015) Mechanochemical tuning of myosin-I by the N-terminal region. Proc. Natl. Acad. Sci. 112, E3337 LPE3344
28. Shuman, H., Greenberg, M. J., Zwolak, A., Lin, T., Sindelar, C. V, Dominguez, R., and Ostap, E. M. (2014) A vertebrate myosin-I structure reveals unique insights into
myosin mechanochemical tuning. Proc. Natl. Acad. Sci. 111, 2116–2121
29. Winkelmann, D. A., Forgacs, E., Miller, M. T., and Stock, A. M. (2015) Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity.
Nat. Commun. 6, 7974
30. Planelles-Herrero, V. J., Hartman, J. J., Robert-Paganin, J., Malik, F. I., and Houdusse, A. (2017) Mechanistic and structural basis for activation of cardiac myosin force
production by omecamtiv mecarbil. Nat. Commun. 8, 190
31. Nanasi, P., Komaromi, I., and Almassy*, M. G. and J. (2018) Omecamtiv Mecarbil: A Myosin Motor Activator Agent with Promising Clinical Performance and New in vitro
Results. Curr. Med. Chem. 25, 1720–1728
32. Silva, R., Sparrow, J. C., and Geeves, M. A. (2003) Isolation and kinetic characterisation of myosin and myosin S1 from the Drosophila indirect flight muscles. J. Muscle Res. Cell Motil. 24, 489–98
33. Weiss, S., Chizhov, I., and Geeves, M. A. (2000) A flash photolysis fluorescence/light scattering apparatus for use with sub microgram quantities of muscle proteins. J.
Muscle Res. Cell Motil. 21, 423–32
34. Pardee, J. D., and Aspudich, J. B. T.-M. in E. (1982) [18] Purification of muscle actin.in Structural and Contractile Proteins Part B: The Contractile Apparatus and the Cytoskeleton, pp. 164–181, Academic Press, 85, 164–181
35. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., and Schwede, T. (2014) SWISSMODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258
36. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 22, 195–201
37. Schwede, T. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385

Permalink -

https://repository.canterbury.ac.uk/item/8w085/alternative-n-terminal-regions-of-drosophila-myosin-heavy-chain-ii-regulate-communication-of-the-purine-binding-loop-with-the-essential-light-chain

Download files

Accepted author manuscript

Supplemental file
  • 5
    total views
  • 5
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

The most prevalent Freeman-Sheldon Syndrome mutations in the embryonic myosin motor share functional defects
Walklate, J., Vera, C., Bloemink, M., Geeves, M. and Leinwand, L. 2016. The most prevalent Freeman-Sheldon Syndrome mutations in the embryonic myosin motor share functional defects. The Journal of Biological Chemistry. 291, pp. 10318-10331. https://doi.org/10.1074/jbc.M115.707489
The relay-converter interface influences hydrolysis of ATP by skeletal muscle myosin II
Bloemink, M., Melkani, G., Bernstein, S. and Geeves, M. 2015. The relay-converter interface influences hydrolysis of ATP by skeletal muscle myosin II. The Journal of Biological Chemistry.
Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle
Bloemink, M., Adamek, N., Reggiani, C. and Geeves, M. 2007. Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle. Journal of Molecular Biology. 373 (5), pp. 1184-1197. https://doi.org/10.1016/j.jmb.2007.08.050
Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin
Albet-Torres, N., Bloemink, M., Barman, T., Candau, R., Frolander, K., Geeves, M., Golker, K., Herrmann, C., Lionne, C., Piperio, C., Schmitz, S., Veigel, C. and Mansson, A. 2009. Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin. The Journal of Biological Chemistry. 284 (34), pp. 22926-22937. https://doi.org/10.1074/jbc.M109.019232
Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor
Bloemink, M. and Geeves, M. 2011. Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Seminars in Cell and Developmental Biology. 22 (9), pp. 961-967. https://doi.org/10.1016/j.semcdb.2011.09.015
Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities
Bloemink, M., Melkani, G., Dambacher, C., Bernstein, S. and Geeves, M. 2011. Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities. The Journal of Biological Chemistry. 286 (32), pp. 28435-28443. https://doi.org/10.1074/jbc.M111.258228
The superfast human extraocular myosin is kinetically distinct from the fast skeletal IIa, IIb and Hd isoforms
Bloemink, M., Deacon, J., Resnicow, D., Leinwand, L. and Geeves, M. 2013. The superfast human extraocular myosin is kinetically distinct from the fast skeletal IIa, IIb and Hd isoforms. The Journal of Biological Chemistry. 288 (38), pp. 27469-27479. https://doi.org/10.1074/jbc.M113.488130
Identification of functional differences between recombinant human α and β cardiac myosin motors
Bloemink, M., Deacon, J., Rezavandi, H., Leinwand, L. and Geeves, M. 2012. Identification of functional differences between recombinant human α and β cardiac myosin motors. Cellular and Molecular Life Sciences (CMLS). 69 (24), pp. 4239-4255. https://doi.org/10.1007/s00018-012-0927-3