The hypertrophic cardiomyopathy myosin mutation R453C alters ATP-binding and hydrolysis of human cardiac beta-myosin.

Journal article


Bloemink, M., Deacon, J., Langer, S., Vera, C., Combs, A., Leindwand, L. and Geeves, M. 2014. The hypertrophic cardiomyopathy myosin mutation R453C alters ATP-binding and hydrolysis of human cardiac beta-myosin. The Journal of Biological Chemistry. 289 (8), pp. 5158-5167. https://doi.org/10.1074/jbc.M113.511204
AuthorsBloemink, M., Deacon, J., Langer, S., Vera, C., Combs, A., Leindwand, L. and Geeves, M.
Abstract

The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis.

KeywordsActin Cardiac Muscle Cardiomyopathy Fluorescence Kinetics Myosin Homology Models Protein Structure-Function Sequence Alignment
Year2014
JournalThe Journal of Biological Chemistry
Journal citation289 (8), pp. 5158-5167
PublisherAmerican Society for Biochemistry and Molecular Biology
ISSN0021-9258
Digital Object Identifier (DOI)https://doi.org/10.1074/jbc.M113.511204
FunderWellcome Trust
NIH
Publication dates
Print21 Feb 2014
Publication process dates
Deposited31 Oct 2014
Output statusPublished
References

1. Choong-Chin, L., and Dzau, V. J. (2004) Molecular genetics and genomics of heart failure. Nature Reviews Genetics5, 811-825
2. Marian, A. J., and Roberts, R. (1994) Molecular basis of hypertrophic and dilated cardiomyopathy. Texas Heart Institute Journal21, 6
3. Ramaraj, R. (2008) Hypertrophic cardiomyopathy: etiology, diagnosis, and treatment. Cardiology in review16, 172-180
4. Koester, M. C. (2001) A review of sudden cardiac death in young athletes and strategies for preparticipation cardiovascular screening. Journal of athletic training36, 197
5. Maron, B. J. (2002) Hypertrophic Cardiomyopathy. Circulation106, 2419-2421
6. Buvoli, M., Hamady, M., Leinwand, L. A., and Knight, R. (2008) Bioinformatics Assessment of beta-Myosin Mutations Reveals Myosin's High Sensitivity to Mutations. Trends in cardiovascular medicine18, 141-149
7. Redwood, C. S., Moolman-Smook, J. C., and Watkins, H. (1999) Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovascular research44, 20-36
8. Moore, J. R., Leinwand, L., and Warshaw, D. M. (2012) Understanding cardiomyopathy phenotypes based on the functional impact of mutations in the myosin motor. Circulation research111, 375-385
9. Lowey, S., Lesko, L. M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., Rincon, M., Gulick, J., and Robbins, J. (2008) Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an α-or β-myosin heavy chain backbone. Journal of Biological Chemistry283, 20579-20589
10. Lowey, S., Bretton, V., Gulick, J., Robbins, J., and Trybus, K. M. (2013) Transgenic Mouse α-and β-Cardiac Myosins Containing the R403Q Mutation Show Isoform-dependent Transient Kinetic Differences. Journal of Biological Chemistry288, 14780-14787
11. Fujita, H., Sugiura, S., Momomura, S.-i., Omata, M., Sugi, H., and Sutoh, K. (1997) Characterization of mutant myosins of Dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants. Molecular force level of mutant myosins may have a prognostic implication. Journal of Clinical Investigation99, 1010
12. Yamashita, H., Tyska, M. J., Warshaw, D. M., Lowey, S., and Trybus, K. M. (2000) Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Journal of Biological Chemistry275, 28045-28052
13. Wang, Q., Moncman, C. L., and Winkelmann, D. A. (2003) Mutations in the motor domain modulate myosin activity and myofibril organization. Journal of cell science116, 4227-4238
14. Srikakulam, R., and Winkelmann, D. A. (2004) Chaperone-mediated folding and assembly of myosin in striated muscle. Journal of cell science117, 641-652
15. Resnicow, D. I., Deacon, J. C., Warrick, H. M., Spudich, J. A., and Leinwand, L. A. (2010) Functional diversity among a family of human skeletal muscle myosin motors. Proceedings of the National Academy of Sciences107, 1053-1058
16. Deacon, J. C., Bloemink, M. J., Rezavandi, H., Geeves, M. A., and Leinwand, L. A. (2012) Erratum to: Identification of functional differences between recombinant human α and β cardiac myosin motors. Cellular and Molecular Life Sciences69, 4239-4255
17. Debold, E. P., Schmitt, J. P., Patlak, J. B., Beck, S. E., Moore, J. R., Seidman, J. G., Seidman, C., and Warshaw, D. M. (2007) Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse α-cardiac myosin in the laser trap assay. American Journal of Physiology-Heart and Circulatory Physiology293, H284-H291
18. Lakdawala, N. K., Dellefave, L., Redwood, C. S., Sparks, E., Cirino, A. L., Depalma, S., Colan, S. D., Funke, B., Zimmerman, R. S., and Robinson, P. (2010) Familial Dilated Cardiomyopathy Caused by an Alpha-Tropomyosin MutationThe Distinctive Natural History of Sarcomeric Dilated Cardiomyopathy. Journal of the American College of Cardiology55, 320-329
19. Watkins, H., Rosenzweig, A., Hwang, D.-S., Levi, T., McKenna, W., Seidman, C. E., and Seidman, J. G. (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. New England Journal of Medicine326, 1108-1114
20. Greber-Platzer, S., Marx, M., Fleischmann, C., Suppan, C., Dobner, M., and Wimmer, M. (2001) Beta-myosin heavy chain gene mutations and hypertrophic cardiomyopathy in Austrian children. Journal of Molecular and Cellular Cardiology33, 141-148
21. Ackerman, M. J., VanDriest, S. L., Ommen, S. R., Will, M. L., Nishimura, R. A., Tajik, A. J., and Gersh, B. J. (2002) Prevalence and age-dependence of malignant mutations in the beta-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathya comprehensive outpatient perspective. Journal of the American College of Cardiology39, 2042-2048
22. Zadro, C., Alemanno, M. S., Bellacchio, E., Ficarella, R., Donaudy, F., Melchionda, S., Zelante, L., Rabionet, R., Hilgert, N., and Estivill, X. (2009) Are MYO1C and MYO1F associated with hearing loss? Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease1792, 27-32
23. Adamek, N., Geeves, M. A., and Coluccio, L. M. (2011) Myo1c mutations associated with hearing loss cause defects in the interaction with nucleotide and actin. Cellular and Molecular Life Sciences68, 139-150
24. Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human β-cardiac myosin motor function. Proceedings of the National Academy of Sciences110, 12607-12612
25. Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin. Methods Enzymol85 Pt B, 164-181
26. Criddle, A. H., Geeves, M. A., and Jeffries, T. (1985) The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin. Biochem J232, 343-349
27. Bagshaw, C. R., Eccleston, J. F., Eckstein, F., Goody, R. S., Gutfreund, H., and Trentham, D. R. (1974) The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem J141, 351-364
28. Siemankowski, R. F., and White, H. D. (1984) Kinetics of the interaction between actin, ADP, and cardiac myosin-S1. J Biol Chem259, 5045-5053
29. Iorga, B., Adamek, N., and Geeves, M. A. (2007) The Slow Skeletal Muscle Isoform of Myosin Shows Kinetic Features Common to Smooth and Non-muscle MyosinsJ. Biol. Chem.282, 3559-3570
30. Bloemink, M. J., Adamek, N., Reggiani, C., and Geeves, M. A. (2007) Kinetic Analysis of the Slow Skeletal Myosin MHC-1 Isoform from Bovine Masseter Muscle. Journal of Molecular Biology373, 1184-1197
31. Kurzawa, S. E., and Geeves, M. A. (1996) A novel stopped-flow method for measuring the affinity of actin for myosin head fragments using μg quantities of protein. Journal of Muscle Research & Cell Motility17, 669-676
32. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucl. Acids Res.31, 3381-3385
33. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics22, 195-201
34. Millar, N. C., and Geeves, M. A. (1983) The limiting rate of the ATP-mediated dissociation of actin from rabbit skeletal muscle myosin subfragment 1. FEBS letters160, 141-148
35. Johnson, K. A., and Taylor, E. W. (1978) Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism. Biochemistry17, 3432-3442
36. Geeves, M. A., and Holmes, K. C. (2005) The molecular mechanism of muscle contraction. Advances in protein chemistry71, 161-194
37. Frazier, A., Judge, D. P., Schulman, S. P., Johnson, N., Holmes, K. W., and Murphy, A. M. (2008) Familial hypertrophic cardiomyopathy associated with cardiac β-myosin heavy chain and troponin I mutations. Pediatric cardiology29, 846-850
38. Preller M.,Holmes K. C. (2013) The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton 70, 651–660

Permalink -

https://repository.canterbury.ac.uk/item/8727w/the-hypertrophic-cardiomyopathy-myosin-mutation-r453c-alters-atp-binding-and-hydrolysis-of-human-cardiac-beta-myosin

  • 36
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as