The relay-converter interface influences hydrolysis of ATP by skeletal muscle myosin II

Journal article


Bloemink, M., Melkani, G., Bernstein, S. and Geeves, M. 2015. The relay-converter interface influences hydrolysis of ATP by skeletal muscle myosin II. The Journal of Biological Chemistry.
AuthorsBloemink, M., Melkani, G., Bernstein, S. and Geeves, M.
Abstract

The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1 we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase towards wild-type values. The S1-R759E construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke and involving a change in conformation at the relay/converter domain interface. Significantly the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modelling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine tuning myosin kinetics, in particular ATP binding and hydrolysis.

KeywordsActin; fluorescence; homology modeling; kinetics; muscle; myosin; protein structure-function; sequence alignment
Year2015
JournalThe Journal of Biological Chemistry
PublisherAmerican Society for Biochemistry and Molecular Biology
ISSN0021-9258
FunderWellcome Trust
NIH
Publication dates
Print19 Nov 2015
Publication process dates
Deposited13 Jan 2016
Accepted19 Nov 2015
Accepted author manuscript
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/879y8/the-relay-converter-interface-influences-hydrolysis-of-atp-by-skeletal-muscle-myosin-ii

Download files


Accepted author manuscript
  • 53
    total views
  • 42
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Moderate dietary restriction delays the onset of age-associated sarcopenia in Caenorhabditis elegans due to reduced myosin UNC-54 degradation
Tumbapo, Sobha, Strudwick, Adam, Stastna, Jana J., Harvey, Simon C. and Bloemink, Marieke J. 2024. Moderate dietary restriction delays the onset of age-associated sarcopenia in Caenorhabditis elegans due to reduced myosin UNC-54 degradation. Mechanisms of Ageing and Development. 217, p. 111900. https://doi.org/10.1016/j.mad.2023.111900
Effect of caloric restriction and omega-3 EPA supplementation on sarcopenia in C. elegans
Tumbapo, S., Strudwick, A., Stastna, J., Harvey, S. and Bloemink, M. 2022. Effect of caloric restriction and omega-3 EPA supplementation on sarcopenia in C. elegans.
Marine microplastics: an assessment of the North Kent coastline
Bloemink, M., Farrell-Silk, K and Cussen, E. 2021. Marine microplastics: an assessment of the North Kent coastline.
Dietary intervention delays the onset of Sarcopenia in Caenorhabditis elegans
Tumbapo, S., Strudwick, A., Stastna, J., Harvey, S. and Bloemink, M. 2021. Dietary intervention delays the onset of Sarcopenia in Caenorhabditis elegans.
Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain
Bloemink, M.J., Hsu, K.H., Geeves, M.A. and Bernstein, S.I. 2020. Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA120.014684
The most prevalent Freeman-Sheldon Syndrome mutations in the embryonic myosin motor share functional defects
Walklate, J., Vera, C., Bloemink, M., Geeves, M. and Leinwand, L. 2016. The most prevalent Freeman-Sheldon Syndrome mutations in the embryonic myosin motor share functional defects. The Journal of Biological Chemistry. 291, pp. 10318-10331. https://doi.org/10.1074/jbc.M115.707489
Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle
Bloemink, M., Adamek, N., Reggiani, C. and Geeves, M. 2007. Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle. Journal of Molecular Biology. 373 (5), pp. 1184-1197. https://doi.org/10.1016/j.jmb.2007.08.050
Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin
Albet-Torres, N., Bloemink, M., Barman, T., Candau, R., Frolander, K., Geeves, M., Golker, K., Herrmann, C., Lionne, C., Piperio, C., Schmitz, S., Veigel, C. and Mansson, A. 2009. Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin. The Journal of Biological Chemistry. 284 (34), pp. 22926-22937. https://doi.org/10.1074/jbc.M109.019232
Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor
Bloemink, M. and Geeves, M. 2011. Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Seminars in Cell and Developmental Biology. 22 (9), pp. 961-967. https://doi.org/10.1016/j.semcdb.2011.09.015
Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities
Bloemink, M., Melkani, G., Dambacher, C., Bernstein, S. and Geeves, M. 2011. Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities. The Journal of Biological Chemistry. 286 (32), pp. 28435-28443. https://doi.org/10.1074/jbc.M111.258228
The superfast human extraocular myosin is kinetically distinct from the fast skeletal IIa, IIb and Hd isoforms
Bloemink, M., Deacon, J., Resnicow, D., Leinwand, L. and Geeves, M. 2013. The superfast human extraocular myosin is kinetically distinct from the fast skeletal IIa, IIb and Hd isoforms. The Journal of Biological Chemistry. 288 (38), pp. 27469-27479. https://doi.org/10.1074/jbc.M113.488130
Identification of functional differences between recombinant human α and β cardiac myosin motors
Bloemink, M., Deacon, J., Rezavandi, H., Leinwand, L. and Geeves, M. 2012. Identification of functional differences between recombinant human α and β cardiac myosin motors. Cellular and Molecular Life Sciences (CMLS). 69 (24), pp. 4239-4255. https://doi.org/10.1007/s00018-012-0927-3