References | 1. George, E. L., Ober, M. B., and Emerson, C. P. (1989) Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol. Cell. Biol. 9, 2957–74 2. Bernstein, S. I., and Milligan, R. A. (1997) Fine tuning a molecular motor: the location of alternative domains in the Drosophila myosin head. J. Mol. Biol. 271, 1–6 3. Wells, L., Edwards, K. A., and Bernstein, S. I. (1996) Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. 15, 4454–4459 4. Swank, D. D. M., Knowles, A. F. A., Suggs, J. A. J., Sarsoza, F., Lee, A., Maughan, D.W., and Bernstein, S. I. (2002) The myosin converter domain modulates muscle performance. Nat. Cell Biol. 4, 312–316 5. Miller, B. M., Nyitrai, M., Bernstein, S. I., and Geeves, M. A. (2003) Kinetic analysis of Drosophila muscle myosin isoforms suggests a novel mode of mechanochemical coupling. J. Biol. Chem. 278, 50293–300 6. Swank, D. M., Bartoo, M. L., Knowles, A. F., Iliffe, C., Bernstein, S. I., Molloy, J. E., and Sparrow, J. C. (2001) Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J. Biol. Chem. 276, 15117–15124 7. Swank, D. M., Knowles, A. F., Kronert, W. A., Suggs, J. A., Morrill, G. E., Nikkhoy, M., Manipon, G. G., and Bernstein, S. I. (2003) Variable N-terminal regions of muscle myosin heavy chain modulate ATPase rate and actin sliding velocity. J. Biol. Chem. 278, 17475–82 8. Swank, D. M., Kronert, W. A., Bernstein, S. I., and Maughan, D. W. (2004) Alternative N-Terminal Regions of Drosophila Myosin Heavy Chain Tune Muscle Kinetics for Optimal Power Output. Biophys. J. 87, 1805–1814 9. Caldwell, J. T., Mermelstein, D. J., Walker, R. C., Bernstein, S. I., and Huxford, T. (2020) X-ray Crystallographic and Molecular Dynamic Analyses of Drosophila melanogaster Embryonic Muscle Myosin Define Domains Responsible for IsoformSpecific Properties. J. Mol. Biol. 432, 427–447 10. Bloemink, M. J., Dambacher, C. M., Knowles, A. F., Melkani, G. C., Geeves, M. A., and Bernstein, S. I. (2009) Alternative exon 9-encoded relay domains affect more than one communication pathway in the Drosophila myosin head. J. Mol. Biol. 389, 707–21 11. Webb, M. R., and Corrie, J. E. T. (2001) Fluorescent Coumarin-Labeled Nucleotides to Measure ADP Release from Actomyosin. J. Muscle Res. Cell Motil. 81, 1562–1569 12. Clark, R. J., Nyitrai, M., Webb, M. R., and Geeves, M. A. (2003) Probing nucleotide dissociation from myosin in vitro using microgram quantities of myosin. J. Muscle Res.Cell Motil. 24, 315–21 13. Miller, B. M., Bloemink, M. J., Nyitrai, M., Bernstein, S. I., and Geeves, M. A. (2007) A variable domain near the ATP-binding site in Drosophila muscle myosin is part of the communication pathway between the nucleotide and actin-binding sites. J. Mol. Biol. 368, 1051–66 14. Vale, R. D., and Milligan, R. A. (2000) The way things move: looking under the hood of molecular motor proteins. Science (80-. ). 288, 88–95 15. Lowey, S., Saraswat, L. D., Liu, H., Volkmann, N., and Hanein, D. (2007) Evidence for an Interaction between the SH3 Domain and the N-terminal Extension of the Essential Light Chain in Class II Myosins. J. Mol. Biol. 371, 902–913 16. Falkenthal, S., Parker, V. P., Mattox, W. W., and Davidson, N. (1984) Drosophila melanogaster has only one myosin alkali light-chain gene which encodes a protein with considerable amino acid sequence homology to chicken myosin alkali light chains. Mol. Cell. Biol. 4, 956 LP – 965 17. Siemankowski, R. F., Wiseman, M. O., and White, H. D. (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc. Natl. Acad. Sci. 82, 658 LP – 662 18. Nyitrai, M., Rossi, R., Adamek, N., Pellegrino, M. A., Bottinelli, R., and Geeves, M.A. (2006) What Limits the Velocity of Fast-skeletal Muscle Contraction in Mammals? J. Mol. Biol. 355, 432–442 19. Walklate, J., Ujfalusi, Z., and Geeves, M. A. (2016) Myosin isoforms and the mechanochemical cross-bridge cycle. J. Exp. Biol. 219, 168 LP – 174 20. Swank, D. M., Vishnudas, V. K., and Maughan, D. W. (2006) An exceptionally fast actomyosin reaction powers insect flight muscle. Proc. Natl. Acad. Sci. U. S. A. 103, 17543–7 21. Yang, C., Kaplan, C. N., Thatcher, M. L., and Swank, D. M. (2010) The influence of myosin converter and relay domains on cross-bridge kinetics of Drosophila indirect flight muscle. Biophys. J. 99, 1546–55 22. Eldred, C. C., Naber, N., Pate, E., Cooke, R., and Swank, D. M. (2013) Conformational changes at the nucleotide site in the presence of bound ADP do not set the velocity of fast Drosophila myosins. J. Muscle Res. Cell Motil. 34, 35–42 23. Schmid, S., and Hugel, T. (2020) Controlling protein function by fine-tuning conformational flexibility. Elife. 9, e57180 24. Colegrave, M., and Peckham, M. (2014) Structural Implications of β‐Cardiac Myosin Heavy Chain Mutations in Human Disease. Anat. Rec. 297, 1670–1680 25. Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., Rayment, I., Sellers, J. R., Fananapazir, L., and Epstein, N. D. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 13, 63–69 26. Robert-Paganin, J., Auguin, D., and Houdusse, A. (2018) Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition. Nat. Commun. 9, 4019 27. Greenberg, M. J., Lin, T., Shuman, H., and Ostap, E. M. (2015) Mechanochemical tuning of myosin-I by the N-terminal region. Proc. Natl. Acad. Sci. 112, E3337 LPE3344 28. Shuman, H., Greenberg, M. J., Zwolak, A., Lin, T., Sindelar, C. V, Dominguez, R., and Ostap, E. M. (2014) A vertebrate myosin-I structure reveals unique insights into myosin mechanochemical tuning. Proc. Natl. Acad. Sci. 111, 2116–2121 29. Winkelmann, D. A., Forgacs, E., Miller, M. T., and Stock, A. M. (2015) Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nat. Commun. 6, 7974 30. Planelles-Herrero, V. J., Hartman, J. J., Robert-Paganin, J., Malik, F. I., and Houdusse, A. (2017) Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 8, 190 31. Nanasi, P., Komaromi, I., and Almassy*, M. G. and J. (2018) Omecamtiv Mecarbil: A Myosin Motor Activator Agent with Promising Clinical Performance and New in vitro Results. Curr. Med. Chem. 25, 1720–1728 32. Silva, R., Sparrow, J. C., and Geeves, M. A. (2003) Isolation and kinetic characterisation of myosin and myosin S1 from the Drosophila indirect flight muscles. J. Muscle Res. Cell Motil. 24, 489–98 33. Weiss, S., Chizhov, I., and Geeves, M. A. (2000) A flash photolysis fluorescence/light scattering apparatus for use with sub microgram quantities of muscle proteins. J. Muscle Res. Cell Motil. 21, 423–32 34. Pardee, J. D., and Aspudich, J. B. T.-M. in E. (1982) [18] Purification of muscle actin.in Structural and Contractile Proteins Part B: The Contractile Apparatus and the Cytoskeleton, pp. 164–181, Academic Press, 85, 164–181 35. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., and Schwede, T. (2014) SWISSMODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 36. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 22, 195–201 37. Schwede, T. (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 |
---|