Viability study on real-time monitoring of healthy omega-3 production in micro-algae

Research report


Hernandez, E. and Vaccaro, N.M. 2021. Viability study on real-time monitoring of healthy omega-3 production in micro-algae. UK BBSRC.
AuthorsHernandez, E. and Vaccaro, N.M.
TypeResearch report
Abstract

EPA and DHA. are essential fatty acids that humans need to live. Currently, they are usually obtained through fish oil, either from supplement or directly from oily fi sh. Unfortunately, fish farming is not sustainable and there is gathering interest in sourcing fatty acids from algae cells. The problem with algae growth comes from the varying lipid production per batch. Mid-production analysis is done on freeze dried samples after some time has passed, and fatty acid content cannot be measured until after the batch is complete. A real-time, on-line monitoring tool would greatly aid in algae production. Seven analytical techniques have been compared with Raman spectroscopy chosen as the most viable option to monitor omega-3 production in micro-algae.

KeywordsAlgae; Essential fatty acids; Omega-3; Microalgae; Sustainability; Water-food-energy nexus; Industrial biotechnology; Cleaner production
Year2021
PublisherBBSRC
Place of publicationUK
Page range11
File
File Access Level
Controlled
Publication process dates
Deposited11 Oct 2021
FunderBiotechnology and Biological Sciences Research Council (BBSRC)
References

1. Sa, M., Ferrer-Ledo, N., Wij els, R., Crespo, J., Barbosa, M. and Galinha, C., 2020. Monitoring of
eicosapentaenoic acid (EPA) production in the microalgae Nannochloropsis oceanica. Algal Research,
45, p.101766.
doi: 10.1016/j.algal.2019.101766
2. The Nutrition Source. 2021. Omega-3 Fatty Acids: An Essential Contribution. [online] Available at:
<https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/fat...
terol/types-of-fat/omega-3-fats/> [Accessed 10 August 2021].
3. Sumaila, R., Khan, A., Watson, R., Munro, G., Zeller, D., Baron, N. and Pauly, D., 2007. The world
trade organization and global sheries sustainability. Fisheries Research, 88(1-3), pp.1-4.
doi: 10.1016/j. shres.2007.08.017
4. R. J. Winwood (2015). Algal oils: Properties and processing for use in foods and supplements, in
Talbot, G., Specialty Oils and Fats in Food and Nutrition. Sawston: Woodhead publishing. pp.
159-172.
5. Wu, H., Volponi, J., Oliver, A., Parikh, A., Simmons, B. and Singh, S., 2011. In vivo lipidomics using
single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences, 108(9), pp.3809-
3814
doi: 10.1038/npre.2010.4428.1
6. Alfonso, B. and Al-Rubeai, M., 2011, Flow Cytometry in Moo-Young, M., Comprehensive Biotechnology.
3rd Ed. Elsevier, pp541-560
7. BOYD, A., GUNASEKERA, T., ATTFIELD, P., SIMIC, K., VINCENT, S. and VEAL, D., 2003. A

ow-cytometric method for determination of yeast viability and cell number in a brewery. FEMS
Yeast Research, 3(1), pp.11-16.
doi: 10.1016/s1567-1356(02)00125-3
8. Rutten, T., Sandee, B. and Hofman, A., 2005. Phytoplankton monitoring by high performance
ow
cytometry: A successful approach?. Cytometry Part A, 64A(1), pp.16-26.
doi: 10.1002/cyto.a.20106
9. Biocompare. 2013. Cell Analysis at the Bench: Benchtop Flow Cytometers. [online] Available at:
<https://www.biocompare.com/editorial-articles/146008-cell-analysis-a...
benchtop-flow-cytometers/> [Accessed 23 August 2021].
7
10. Santagapita, P., Rosa, S., Mazzobre, M., Cueto, M., de Pilar Buera, M. and Galvagno, M., 2013. Differential
scanning calorimetry evaluation of oxidation stability of docosahexaenoic acid in microalgae
cells and their extracts. International Journal of Food Science & Technology, 48(8), pp.1729-1735.
doi: 10.1111/ijfs.12144
11. Smith, B., 2011. Fundamentals of Fourier transform infrared spectroscopy. Boca Raton, FL: CRC
Press, pp.1-17.
12. Capuano, E. and van Ruth, S., 2016. Infrared Spectroscopy: Applications. Encyclopedia of Food
and Health, pp.424-431.
doi: 10.1016/B978-0-12-384947-2.00644-9
13. Patil, M., 2020. Di erence between IR and FTIR. [online] Chrominfo.blogspot.com. Available at:
<https://chrominfo.blogspot.com/2019/02/difference-between-ir-and-fti...
[Accessed 10 August 2021].
14. Chemistry LibreTexts. 2020. How an FTIR Spectrometer Operates. [online] Available at: <https:
//chem.libretexts.org/@go/page/1844> [Accessed 20 August 2021]
15. Wagner, H., Dunker, S., Liu, Z. and Wilhelm, C., 2013. Subcommunity FTIR-spectroscopy to
determine physiological cell states. Current Opinion in Biotechnology, 24(1), pp.88-94.
doi: 10.1016/j.copbio.2012.09.008
16. Chan, K. and Kazarian, S., 2006. Detection of trace materials with Fourier transform infrared
spectroscopy using a multi-channel detector. The Analyst, 131(1), pp.126-131.
doi: 10.1039/b511243e
17. Wang, L., Zeng, S., Chen, T. and Qu, H., 2014. Direct analysis in real time mass spectrometry, a
process analytical technology tool for real-time process monitoring in botanical drug manufacturing.
Journal of Pharmaceutical and Biomedical Analysis, 91, pp.202-209.
doi: 10.1016/j.jpba.2013.12.034
18. Gui, Y., Lu, Y., Li, S., Zhang, M., Duan, X., Liu, C., Jia, J. and Liu, G., 2020. Direct analysis in
real time-mass spectrometry for rapid quanti cation of ve anti-arrhythmic drugs in human serum:
application to therapeutic drug monitoring. Scienti c Reports, 10(1).
doi: 10.1038/s41598-020-72490-w
19. Zaitsu, K., Hayashi, Y., Murata, T., Yokota, K., Ohara, T., Kusano, M., Tsuchihashi, H., Ishikawa,
T., Ishii, A., Ogata, K. and Tanihata, H., 2018. In Vivo Real-Time Monitoring System Using Probe
Electrospray Ionization/Tandem Mass Spectrometry for Metabolites in Mouse Brain. Analytical
Chemistry, 90(7), pp.4695-4701.
doi: 10.1021/acs.analchem.7b05291
20. Kumar, R., Bansal, V., Patel, M.B. and Sarpal, A.S. 2014. Compositional Analysis of Algal Biomass
in a Nuclear Magnetic Resonance (NMR) Tube. Algal Biomass Utilization. 5(3). pp 36-45.
21. Sarpal, A., Teixeira, C., Silva, P., da Costa Monteiro, T., da Silva, J., da Cunha, V. and Daroda,
R., 2015. NMR techniques for determination of lipid content in microalgal biomass and their use in
monitoring the cultivation with biodiesel potential. Applied Microbiology and Biotechnology, 100(5),
pp.2471-2485.
doi: 10.1007/s00253-015-7140-x
22. Reisch, M., 2015. NMR Instrument Price Hikes Spook Users. [online] Chemical and Engineering
News. Available at: <https://cen.acs.org/articles/93/i26/NMR-Instrument-Price-Hikes-S
pook.html> [Accessed 24 August 2021].
23. Senesi, N. and D'Orazio, V., 2005. FLUORESCENCE SPECTROSCOPY. Encyclopedia of Soils in
the Environment, pp.35-52.
doi: 10.1016/b0-12-348530-4/00211-3
8
24. Galinha, C., Portugal, C., Carvalho, G., Guglielmi, G., Chiarani, D., Andreottola, G., Oliveira,
R., Reis, M. and Crespo, J., 2009. Monitoring of Membrane Bioreactors for Wastewater Treatment
Using 2D-Fluorescence Spectroscopy. Proceedings of the Water Environment Federation, 2009(10),
pp.5629-5632.
doi: 10.2175/193864709793952873
25. Sa, M., Bertinetto, C., Ferrer-Ledo, N., Jansen, J., Wij els, R., Crespo, J., Barbosa, M. and Galinha,
C., 2020. Fluorescence spectroscopy and chemometrics for simultaneous monitoring of cell concentration,
chlorophyll and fatty acids in Nannochloropsis oceanica. Scienti c Reports, 10(1).
doi: 10.1038/s41598-020-64628-7
26. Jayasooriya, U. A. and Jenkins, R.D., 2002. Introduction to Raman Spectroscopy in Andrews, D. and
Demidov, A.,. An introduction to laser spectroscopy. 2nd ed. Boston, MA: Springer US, pp.77-104.
27. Bumbrah, G. and Sharma, R., 2016. Raman spectroscopy { Basic principle, instrumentation and
selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences,
6(3), pp.209-215.
doi: 10.1016/j.ejfs.2015.06.001
28. Maquelin, K., Kirschner, C., Choo-Smith, L., van den Braak, N., Endtz, H., Naumann, D. and
Puppels, G., 2002. Identi cation of medically relevant microorganisms by vibrational spectroscopy.
Journal of Microbiological Methods, 51(3), pp.255-271.
doi: 10.1016/S0167-7012(02)00127-6
29. Harz, M., Rosch, P., Peschke, K., Ronneberger, O., Burkhardt, H. and Popp, J., 2005. Micro-Raman
spectroscopic identi cation of bacterial cells of the genus Staphylococcus and dependence on their
cultivation conditions. The Analyst, 130(11), p.1543.
doi: 10.1039/b507715j
30. Samek, O., Al-Marashi, J. and Telle, H., 2010. The potential of Raman spectroscopy for the identi -
cation of bio lm formation by Staphylococcus epidermidis. Laser Physics Letters, 7(5), pp.378-383.
doi: 10.1002/lapl.200910154
31. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., and Valev, V. K., 2019. Raman Techniques:
Fundamentals and Frontiers. Nanoscale research letters, 14(1), 231.
doi:.10.1186/s11671-019-3039-2
32. Lukin, S., Uzarevic, K. and Halasz, I., 2021. Raman spectroscopy for real-time and in situ monitoring
of mechanochemical milling reactions. Nature Protocols, 16(7), pp.3492-3521.
doi: 10.1038/s41596-021-00545-x
33. Nitika, N., Chhabra, H. and Rathore, A., 2021. Raman spectroscopy for in situ, real time monitoring
of protein aggregation in lyophilized biotherapeutic products. International Journal of Biological
Macromolecules, 179, pp.309-313.
doi: 10.1016/j.ijbiomac.2021.02.214.
34. Samek, O., Jonas, A., Pilat, Z., Zemanek, P., Nedbal, L., Triska, J., Kotas, P. and Trtlek, M., 2010.
Raman Spectroscopy for the characterization of algal cells. Proceedings of SPIE, 7746.
doi: 10.1117/12.882196
35. Meksiarun, P., Spegazzini, N., Matsui, H., Nakajima, K., Matsuda, Y. and Sato, H., 2015. In Vivo
Study of Lipid Accumulation in the Microalgae Marine Diatom Thalassiosira pseudonana Using
Raman Spectroscopy. Applied Spectroscopy, 69(1), pp.45-51.
doi: 10.1366/14-07598
36. Huang, Y., Beal, C., Cai, W., Ruo , R. and Terentjev, E., 2009. Micro-Raman spectroscopy of algae:
Composition analysis and
uorescence background behavior. Biotechnology and Bioengineering,
105(5), pp.889-898.
doi: 10.1002/bit.22617
9
37. Fried, S., Mackie, B. and Nothwehr, E., 2003. Nitrate and phosphate levels positively a ect the
growth of algae species found in Perry Pond. Tillers. 4, pp.21-24.
38. Yang, L., Chen, J., Qin, S., Zeng, M., Jiang, Y., Hu, L., Xiao, P., Hao, W., Hu, Z., Lei, A. and Wang,
J., 2018. Growth and lipid accumulation by di erent nutrients in the microalga Chlamydomonas
reinhardtii. Biotechnology for Biofuels, 11(1).
doi: 10.1186/s13068-018-1041-z
39. Xin, L., Hong-ying, H., Ke, G. and Ying-xue, S., 2010. E ects of di erent nitrogen and phosphorus
concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga
Scenedesmus sp. Bioresource Technology, 101(14), pp.5494-5500.
doi: 10.1016/j.biortech.2010.02.016
40. Mabrouk, K., Kau mann, T. and Fontana, M., 2013. Abilities of Raman sensor to probe pollutants
in water. Journal of Physics: Conference Series, 450, p.012014.
doi: 10.1088/1742-6596/450/1/012014
41. Sanchez, L., Ermolenkov, A., Biswas, S., Septiningsih, E. and Kurouski, D., 2020. Raman Spectroscopy
Enables Non-invasive and Con rmatory Diagnostics of Salinity Stresses, Nitrogen, Phosphorus,
and Potassium De ciencies in Rice. Frontiers in Plant Science, 11.
doi: 10.3389/fpls.2020.573321
42. Pilat, Z., Bernatova, S., Jezek, J., Sery, M., Samek, O., Zemanek, P., Nedbal, L. and Trtlek, M.,
2011. Raman microspectroscopy of algal lipid bodies: -carotene quanti cation. Journal of Applied
Phycology, 24(3), pp.541-546.
doi: 10.1007/s10811-011-9754-4
43. Samek, O., Jonas, A., Pilat, Z., Zemanek, P., Nedbal, L., Trska, J., Kotas, P. and Trtlek, M., 2010.
Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo.
Sensors, 10(9), pp.8635-8651.
doi: 10.3390/s100908635
44. Heraud, P., Wood, B., Beardall, J. and McNaughton, D., 2006. E ects of pre-processing of Raman
spectra on in vivo classi cation of nutrient status of microalgal cells. Journal of Chemometrics,
20(5), pp.193-197.
doi: 10.1002/cem.990
45. Heraud, P., Beardall, J., McNaughton, D. and Wood, B., 2007. In vivo prediction of the nutrient
status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiology Letters,
275(1), pp.24-30.
doi: 10.1111/j.1574-6968.2007.00861.x
46. Stellarnet.us. 2021. Raman Spectrometers, Lasers, and Probes. [online] Available at: <https:
//www.stellarnet.us/systems/raman-spectrometers-lasers-and-probes/?gclid=EAIaIQobC
hMI-s3z8oe48gIVVe3tCh0rDwmBEAAYAyAAEgKVYfD BwE> [Accessed 10 August 2021].
47. Wasatch Photonics. 2021. Compact & OEM Raman spectrometers and systems. [online] Available
at: <https://wasatchphotonics.com/product-category/spectrometers/raman>... [Accessed 18
August 2021].
48. Cbrnetechindex.com. 2021. Raman Spectroscopy (Raman). [online] Available at: <https://www.
cbrnetechindex.com/Explosives-Detection/Technology-ED/Molecular-Spectroscopy-ED-T/
Raman-ED-MS?f=Unit%20Cost%3A%2410%2C000%20-%20%2420%2C000> [Accessed 10 August 2021].
49. Emmanuel, N., Nair, R., Abraham, B. and Yoosaf, K., 2021. Fabricating a Low-Cost Raman
Spectrometer to Introduce Students to Spectroscopy Basics and Applied Instrument Design. Journal
of Chemical Education, 98(6), pp.2109-2116.
doi: 10.1021/acs.jchemed.0c01028
10
50. Buzgar N., Apopei A. I., and Buzatu A. (2009) { Romanian Database of Raman Spectroscopy.
[online] Available at: <http://rdrs.ro> [Accessed 3 August 2021]
11

Permalink -

https://repository.canterbury.ac.uk/item/8z2xv/viability-study-on-real-time-monitoring-of-healthy-omega-3-production-in-micro-algae

  • 28
    total views
  • 2
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Real-time monitoring of healthy omega-3 production in micro-algae: A viability study
Hernandez, E. and Vaccaro, N.M. 2021. Real-time monitoring of healthy omega-3 production in micro-algae: A viability study.
Performance evaluation of a small scale digester for achieving decentralised
Gonzalez, R., Hernandez, E., Gomez, X., Smith, R., Gonzales Arias, J., Elias Martínez, J. and Blanco, D. 2020. Performance evaluation of a small scale digester for achieving decentralised. Waste Management. 118, pp. 99-109. https://doi.org/10.1016/j.wasman.2020.08.020
Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation
Botella, Carolina, Hernandez, J.E. and Webb, Colin 2019. Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation. Food and Bioproducts Processing. 114, pp. 144-153. https://doi.org/10.1016/j.fbp.2018.12.002
Toxicity and biodegradability of caffeic acid in anaerobic digesting sludge
Hernandez, E. and Edyvean, R.G.J. 2018. Toxicity and biodegradability of caffeic acid in anaerobic digesting sludge. Water SA. 44 (1). https://doi.org/10.4314/wsa.v44i1.04
Conceptualization, modelling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration
Martinez-Hernandez, E. and Hernandez, E. 2018. Conceptualization, modelling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration. Journal of Cleaner Production. 185, pp. 707-722. https://doi.org/10.1016/j.jclepro.2018.02.297
New DNA sequences from bacteria converting phenol into acetate under strict anaerobic conditions
Hernandez, E. and Edyvean, R. 2016. New DNA sequences from bacteria converting phenol into acetate under strict anaerobic conditions. Journal of Medical and Bioengineering. 5 (1), pp. 1-10. https://doi.org/10.12720/jomb.5.1.1-10
A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products
Hernandez, E., Colin, W. and Trzcinski, A. 2012. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products. Bioresource Technology. 116, pp. 295-301. https://doi.org/10.1016/j.biortech.2012.03.078