New challenger for sustainable ethanol production in industrial biorefineries

Conference poster


Hernandez, E., Espinosa-Solares, T., Cortés-Trejo, I., Téllez-Jurado and A. and Ramírez-Arpide, F.R. 2023. New challenger for sustainable ethanol production in industrial biorefineries.
AuthorsHernandez, E., Espinosa-Solares, T., Cortés-Trejo, I., Téllez-Jurado and A. and Ramírez-Arpide, F.R.
TypeConference poster
Description

Nations urgently need to tackle climate change in harmony with a circular economy to accomplish Sustainable Development Goals. Using sustainable biomass for sustainable industrial ethanol production seems attractive. Recently, the outstanding features of the arid plants nopales, aka prickly pear cactus, became headlines. Nopales outcompete algae and other biomasses in many aspects. Nopales are resilient, and climate change sparked their advancing invasion across European countries and other places. A sustainable biorefinery for ethanol production from nopales could holistically support promising outlooks on energy transition, water positive activities and food security near cities. However, the environmental impact and energy efficiency of this novel biorefinery for renewable energy under realistic scenarios is unknown. Traditional chemical pretreatments are polluters that can improve through environmental assessment and bio/chemical process design. We conducted experiments and assessments of scenarios for cleaner ethanol production from nopales in a biorefinery. Four scenarios considered two fertilisers, two pretreatments and two operational modes. We conducted life cycle assessment, energy balances and energy efficiency calculations. The most polluting scenario uses fossil fertilisers, acid hydrolysis and neutralization of nopal nutrients, and it resulted in approximately four times the global warming potential of the best scenario. Organic fertilisers and the use and reuse of ionic liquids with acetone for washing was the most ecofriendly scenario. We propose a cleaner design showing the lowest impacts in all categories, including Global Warming, Acidification and Eutrophication Potentials and more. Besides, the design used the lowest amount of energy per unit of energy as ethanol fuel. It also has the best energy efficiency since it converted three-fold the amount of spent energy, in the worst scenario, into net energy as ethanol fuel. Sustainable biorefineries and sustainable biomasses are opportunities in the circular economy while pursuing climate risk mitigation, carbon neutrality and green energy for sustainable development.

KeywordsEthanol production; Nopal cladodes; Circular economy; Lfe cycle assessment; Design; Biorefinery; Fermentation
Year2023
Conference7th Green & Sustainable Chemistry Conference
Related URLhttps://www.rsc.org/events/detail/75368/7th-green-and-sustainable-chemistry-conference
Publication process dates
Deposited17 Apr 2024
Permalink -

https://repository.canterbury.ac.uk/item/979vx/new-challenger-for-sustainable-ethanol-production-in-industrial-biorefineries

  • 4
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Graphene-based nanomaterials and their application in bioreactors
Hernandez, J.E., Mohd Fuzi, S.F.Z. and Azman, N. A. 2023. Graphene-based nanomaterials and their application in bioreactors. in: Castro, G. R., Nguyen, T. A., Bilal, M., Nadda, A. K. and Sharma, S. (ed.) Nanomaterials for Bioreactors and Bioprocessing Applications Elsevier. pp. 19-42
Caracterización fisicoquímica de la grasa de ovino y evaluación del efecto de la pre-esterificación y transesterificación en la producción de biodiesel
Hernandez, E., Pérez Cadena, R., González-Escamilla, E. and Delgadillo-López, A. E. 2022. Caracterización fisicoquímica de la grasa de ovino y evaluación del efecto de la pre-esterificación y transesterificación en la producción de biodiesel. Difu100ci@, Revista de difusión científica, ingeniería y tecnologías . 16 (3).
Interpretation of initial adhesion of Pseudomonas Putida on hematite and quartz using surface thermodynamics, DLVO, and XDLVO theories
Hernandez, E., Zuki, F.M., Pourzolfagh, H. and Edyvean, R.G.J. 2022. Interpretation of initial adhesion of Pseudomonas Putida on hematite and quartz using surface thermodynamics, DLVO, and XDLVO theories. Surface Engineering and Applied Electrochemistry. 58 (3).
Feedstocks and challenges to biofuel development
Hernandez, E., Botella, C., Diaz, A.B., Liang, Y. and Sivakumar, S.V. 2022. Feedstocks and challenges to biofuel development. in: Handbook of Biofuels Production Processes and Technologies Elsevier.
Real-time monitoring of healthy omega-3 production in micro-algae: A viability study
Hernandez, E. and Vaccaro, N.M. 2021. Real-time monitoring of healthy omega-3 production in micro-algae: A viability study.
Viability study on real-time monitoring of healthy omega-3 production in micro-algae
Hernandez, E. and Vaccaro, N.M. 2021. Viability study on real-time monitoring of healthy omega-3 production in micro-algae. UK BBSRC.
Performance evaluation of a small scale digester for achieving decentralised
Gonzalez, R., Hernandez, E., Gomez, X., Smith, R., Gonzales Arias, J., Elias Martínez, J. and Blanco, D. 2020. Performance evaluation of a small scale digester for achieving decentralised. Waste Management. 118, pp. 99-109. https://doi.org/10.1016/j.wasman.2020.08.020
New approaches to engineering higher education: case studies
Nortcliffe, A., McIntosh, G. and Hernandez, E. 2019. New approaches to engineering higher education: case studies.
Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation
Botella, Carolina, Hernandez, J.E. and Webb, Colin 2019. Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation. Food and Bioproducts Processing. 114, pp. 144-153. https://doi.org/10.1016/j.fbp.2018.12.002
Toxicity and biodegradability of caffeic acid in anaerobic digesting sludge
Hernandez, E. and Edyvean, R.G.J. 2018. Toxicity and biodegradability of caffeic acid in anaerobic digesting sludge. Water SA. 44 (1). https://doi.org/10.4314/wsa.v44i1.04
Conceptualization, modelling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration
Martinez-Hernandez, E. and Hernandez, E. 2018. Conceptualization, modelling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration. Journal of Cleaner Production. 185, pp. 707-722. https://doi.org/10.1016/j.jclepro.2018.02.297
New DNA sequences from bacteria converting phenol into acetate under strict anaerobic conditions
Hernandez, E. and Edyvean, R. 2016. New DNA sequences from bacteria converting phenol into acetate under strict anaerobic conditions. Journal of Medical and Bioengineering. 5 (1), pp. 1-10. https://doi.org/10.12720/jomb.5.1.1-10
A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products
Hernandez, E., Colin, W. and Trzcinski, A. 2012. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products. Bioresource Technology. 116, pp. 295-301. https://doi.org/10.1016/j.biortech.2012.03.078
Comparison between a two-stage and single-stage digesters when treating a synthetic wastewater contaminated with phenol
Hernandez, J. E. and Edyvean, R.G.J. 2011. Comparison between a two-stage and single-stage digesters when treating a synthetic wastewater contaminated with phenol. Water SA. 37 (1), pp. 1-6. https://doi.org/10.4314/wsa.v37i1.64103
Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge
Hernandez, E. and Edyvean, R.G.J. 2008. Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge. Journal of Hazardous Materials. 160 (1), p. 20–28. https://doi.org/10.1016/j.jhazmat.2008.02.075
A cost-benefit analysis of methods for the determination of biomass concentration in wastewater treatment
Hernandez, J.E., Bachmann, R.T. and Edyvean, R.G.J. 2006. A cost-benefit analysis of methods for the determination of biomass concentration in wastewater treatment. Anaerobe. 12 (5-6), pp. 254-259. https://doi.org/10.1016/j.anaerobe.2006.09.005
Anaerobic treatment of phenol in a two-stage anaerobic reactor
Hernandez, J.E. and Edyvean, R.G.J. 2004. Anaerobic treatment of phenol in a two-stage anaerobic reactor. in: Brebbia, C.A., Kungolos, S., Popov, V. and Itoh, H. (ed.) Waste Management and the Environment II WIT Press. pp. 203-211