Toxicity and biodegradability of caffeic acid in anaerobic digesting sludge

Journal article


Hernandez, E. and Edyvean, R.G.J. 2018. Toxicity and biodegradability of caffeic acid in anaerobic digesting sludge. Water SA. 44 (1). https://doi.org/10.4314/wsa.v44i1.04
AuthorsHernandez, E. and Edyvean, R.G.J.
Abstract

Caffeic acid in waste comes from a variety of industries, and its disposal is likely to increase due to emerging processes such as graphene production and use in healthcare products. The current sustainable option to treat waste caffeic acid and prevent its natural transformation in soil to greenhouse gases, is anaerobic digestion. However, little is known about the toxic and inhibitory effects of caffeic acid on biogas production as well as its ultimate anaerobic biodegradability; or about the reactive-adsorptive processes taking place with caffeic acid in sludge, metabolic intermediates, thermodynamic limitations and the effects on extracellular polymeric substances (EPS). Standard methods revealed that 80% of biogas production (EC80) from a readily digestible biomass was inhibited at 389 mg caffeic acid·g-1 VSS. Up to 52% of caffeic acid was biodegraded. β-oxidation and reductive dehydroxylation were the initial activation reactions transforming caffeic acid into typical polyphenol structural units (protocatechuic acid and 4HBA). Adsorption of caffeic acid (53.3% and 28.6%) to the sludge occurred even at inhibitory concentrations. The EPS structure remained unchanged regardless of the increase in concentration of caffeic acid. Reasonable concentrations of caffeic acid could be co-digested with a similar readily digestible biomass with an expected reduction in biogas production. It is feasible to treat waste caffeic acid by anaerobic digestion and adsorption of its derivates, in order to reduce the contribution to global warming and to protect the environment.

KeywordsAnaerobes; Anaerobic digestion; Biogas; Biomass; Caffeic acid; Graphene; Inhibition; Polyphenols; Renewable energy; Toxicity; Wastewater
Year2018
JournalWater SA
Journal citation44 (1)
PublisherWater Research Commission SA
ISSN1816-7950
0378-4738
Digital Object Identifier (DOI)https://doi.org/10.4314/wsa.v44i1.04
Official URLhttps://doi.org/10.4314/wsa.v44i1.04
Publication dates
OnlineJan 2018
Publication process dates
Deposited14 Feb 2020
Output statusPublished
Additional information

Creative Commons Attribution Licence

Permalink -

https://repository.canterbury.ac.uk/item/8qv66/toxicity-and-biodegradability-of-caffeic-acid-in-anaerobic-digesting-sludge

  • 95
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Biogas potential of oil palm empty fruit bunch and lignocellulosic insoluble fibre components via the syringe bioreactor method
Tanimu, I.M., Hernandez, J.E. and Bachmann, R.T. 2025. Biogas potential of oil palm empty fruit bunch and lignocellulosic insoluble fibre components via the syringe bioreactor method. Fuel. 385 (1), p. 134087. https://doi.org/10.1016/j.fuel.2024.134087
AI in bioinspired engineering for sustainable development
Hernandez, E. 2024. AI in bioinspired engineering for sustainable development.
Microbially Induced Carbonate Precipitation (MICP): New strains, new perspectives
Hernandez, E., Allala, F., Mechri, Sondes, Chehrî, Ryma, Hadjari, Ouiam, Hammdoud, Ikhlas, Bouacem, K., Jaouadi B. and Bouanane A. 2024. Microbially Induced Carbonate Precipitation (MICP): New strains, new perspectives.
Systems analysis for sustainable bioprocess engineering and biotechnology
Hernandez, J.E. 2024. Systems analysis for sustainable bioprocess engineering and biotechnology.
Sustainable agrobiorefinery system for advanced ethanol production from Opuntia prickly pear cactus nopales
Hernandez, J.E., Espinosa-Solares, T., Pérez-Cadena, R., Téllez-Jurado, A. and Ramírez-Arpide, F.R. 2024. Sustainable agrobiorefinery system for advanced ethanol production from Opuntia prickly pear cactus nopales. Energy Conversion and Management. 321, p. 119052. https://doi.org/10.1016/j.enconman.2024.119052
Standard operating procedure for the operation of SEM-EDX for elemental analysis, with additional applications to biomass
Hernandez, E., Thomas, J.K., Kheirandish, K., Wilson, C. and Ortega, H. 2024. Standard operating procedure for the operation of SEM-EDX for elemental analysis, with additional applications to biomass. Canterbury Christ Church University. https://doi.org/10.5281/zenodo.13736742
Sustainable agriculture: Vertical farming, artificial intelligence and bio-fertiliser; the future of farming
Vaccaro, N. and Hernandez, E. 2024. Sustainable agriculture: Vertical farming, artificial intelligence and bio-fertiliser; the future of farming. https://doi.org/10.5281/zenodo.11485604
Nature inspired strategy to capture smoky carbon dioxide into commercial carbonates and add value to farming
Hernandez, E. 2024. Nature inspired strategy to capture smoky carbon dioxide into commercial carbonates and add value to farming.
New challenger for sustainable ethanol production in industrial biorefineries
Hernandez, E., Espinosa-Solares, T., Cortés-Trejo, I., Téllez-Jurado and A. and Ramírez-Arpide, F.R. 2023. New challenger for sustainable ethanol production in industrial biorefineries.
Graphene-based nanomaterials and their application in bioreactors
Hernandez, J.E., Mohd Fuzi, S.F.Z. and Azman, N. A. 2023. Graphene-based nanomaterials and their application in bioreactors. in: Castro, G. R., Nguyen, T. A., Bilal, M., Nadda, A. K. and Sharma, S. (ed.) Nanomaterials for Bioreactors and Bioprocessing Applications Elsevier. pp. 19-42
Caracterización fisicoquímica de la grasa de ovino y evaluación del efecto de la pre-esterificación y transesterificación en la producción de biodiesel
Hernandez, E., Pérez Cadena, R., González-Escamilla, E. and Delgadillo-López, A. E. 2022. Caracterización fisicoquímica de la grasa de ovino y evaluación del efecto de la pre-esterificación y transesterificación en la producción de biodiesel. Difu100ci@, Revista de difusión científica, ingeniería y tecnologías . 16 (3).
Interpretation of initial adhesion of Pseudomonas Putida on hematite and quartz using surface thermodynamics, DLVO, and XDLVO theories
Hernandez, E., Zuki, F.M., Pourzolfagh, H. and Edyvean, R.G.J. 2022. Interpretation of initial adhesion of Pseudomonas Putida on hematite and quartz using surface thermodynamics, DLVO, and XDLVO theories. Surface Engineering and Applied Electrochemistry. 58 (3).
Feedstocks and challenges to biofuel development
Hernandez, E., Botella, C., Diaz, A.B., Liang, Y. and Sivakumar, S.V. 2022. Feedstocks and challenges to biofuel development. in: Handbook of Biofuels Production Processes and Technologies Elsevier.
Real-time monitoring of healthy omega-3 production in micro-algae: A viability study
Hernandez, E. and Vaccaro, N.M. 2021. Real-time monitoring of healthy omega-3 production in micro-algae: A viability study.
Viability study on real-time monitoring of healthy omega-3 production in micro-algae
Hernandez, E. and Vaccaro, N.M. 2021. Viability study on real-time monitoring of healthy omega-3 production in micro-algae. UK BBSRC.
Performance evaluation of a small scale digester for achieving decentralised
Gonzalez, R., Hernandez, E., Gomez, X., Smith, R., Gonzales Arias, J., Elias Martínez, J. and Blanco, D. 2020. Performance evaluation of a small scale digester for achieving decentralised. Waste Management. 118, pp. 99-109. https://doi.org/10.1016/j.wasman.2020.08.020
New approaches to engineering higher education: case studies
Nortcliffe, A., McIntosh, G. and Hernandez, E. 2019. New approaches to engineering higher education: case studies.
Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation
Botella, Carolina, Hernandez, J.E. and Webb, Colin 2019. Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation. Food and Bioproducts Processing. 114, pp. 144-153. https://doi.org/10.1016/j.fbp.2018.12.002
Conceptualization, modelling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration
Martinez-Hernandez, E. and Hernandez, E. 2018. Conceptualization, modelling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration. Journal of Cleaner Production. 185, pp. 707-722. https://doi.org/10.1016/j.jclepro.2018.02.297
Entrepreneurial Intentions of university students in an emerging economy: The influence of university support and proactive personality on students' entrepreneurial intention
Hernandez, E., Mustafa, M.J,, Mahon, C. and Chee, L.K. 2016. Entrepreneurial Intentions of university students in an emerging economy: The influence of university support and proactive personality on students' entrepreneurial intention. Journal of Entrepreneurship in Emerging Economies. 8 (2), pp. 162-179. https://doi.org/10.1108/JEEE-10-2015-0058
New DNA sequences from bacteria converting phenol into acetate under strict anaerobic conditions
Hernandez, E. and Edyvean, R. 2016. New DNA sequences from bacteria converting phenol into acetate under strict anaerobic conditions. Journal of Medical and Bioengineering. 5 (1), pp. 1-10. https://doi.org/10.12720/jomb.5.1.1-10
Development of prebiotics and prebiotics
Hernandez, E. and Pandiella, S. 2013. Development of prebiotics and prebiotics. in: Teixeira, J. A. and Vicente, A.A. (ed.) Engineering Aspects of Food Biotechnology Abingdon CRC Press. pp. 21-60
A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products
Hernandez, E., Colin, W. and Trzcinski, A. 2012. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products. Bioresource Technology. 116, pp. 295-301. https://doi.org/10.1016/j.biortech.2012.03.078
Comparison between a two-stage and single-stage digesters when treating a synthetic wastewater contaminated with phenol
Hernandez, J. E. and Edyvean, R.G.J. 2011. Comparison between a two-stage and single-stage digesters when treating a synthetic wastewater contaminated with phenol. Water SA. 37 (1), pp. 1-6. https://doi.org/10.4314/wsa.v37i1.64103
Biogas production from cheese whey: Past, present and future
Hernandez, E., Bachmann, R.T. and Johnson, A.C 2008. Biogas production from cheese whey: Past, present and future. in: Cerdan, M.E., González-Siso, M.I and Becerra, M. (ed.) Advances in Cheese Whey Utilization Transworld Research Network. pp. 147-162
Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge
Hernandez, E. and Edyvean, R.G.J. 2008. Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge. Journal of Hazardous Materials. 160 (1), p. 20–28. https://doi.org/10.1016/j.jhazmat.2008.02.075
A cost-benefit analysis of methods for the determination of biomass concentration in wastewater treatment
Hernandez, J.E., Bachmann, R.T. and Edyvean, R.G.J. 2006. A cost-benefit analysis of methods for the determination of biomass concentration in wastewater treatment. Anaerobe. 12 (5-6), pp. 254-259. https://doi.org/10.1016/j.anaerobe.2006.09.005
Anaerobic treatment of phenol in a two-stage anaerobic reactor
Hernandez, J.E. and Edyvean, R.G.J. 2004. Anaerobic treatment of phenol in a two-stage anaerobic reactor. in: Brebbia, C.A., Kungolos, S., Popov, V. and Itoh, H. (ed.) Waste Management and the Environment II WIT Press. pp. 203-211