References | 1. Sa, M., Ferrer-Ledo, N., Wijels, R., Crespo, J., Barbosa, M. and Galinha, C., 2020. Monitoring of eicosapentaenoic acid (EPA) production in the microalgae Nannochloropsis oceanica. Algal Research, 45, p.101766. doi: 10.1016/j.algal.2019.101766 2. The Nutrition Source. 2021. Omega-3 Fatty Acids: An Essential Contribution. [online] Available at: <https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/fat... terol/types-of-fat/omega-3-fats/> [Accessed 10 August 2021]. 3. Sumaila, R., Khan, A., Watson, R., Munro, G., Zeller, D., Baron, N. and Pauly, D., 2007. The world trade organization and global sheries sustainability. Fisheries Research, 88(1-3), pp.1-4. doi: 10.1016/j.shres.2007.08.017 4. R. J. Winwood (2015). Algal oils: Properties and processing for use in foods and supplements, in Talbot, G., Specialty Oils and Fats in Food and Nutrition. Sawston: Woodhead publishing. pp. 159-172. 5. Wu, H., Volponi, J., Oliver, A., Parikh, A., Simmons, B. and Singh, S., 2011. In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences, 108(9), pp.3809- 3814 doi: 10.1038/npre.2010.4428.1 6. Alfonso, B. and Al-Rubeai, M., 2011, Flow Cytometry in Moo-Young, M., Comprehensive Biotechnology. 3rd Ed. Elsevier, pp541-560 7. BOYD, A., GUNASEKERA, T., ATTFIELD, P., SIMIC, K., VINCENT, S. and VEAL, D., 2003. A ow-cytometric method for determination of yeast viability and cell number in a brewery. FEMS Yeast Research, 3(1), pp.11-16. doi: 10.1016/s1567-1356(02)00125-3 8. Rutten, T., Sandee, B. and Hofman, A., 2005. Phytoplankton monitoring by high performance ow cytometry: A successful approach?. Cytometry Part A, 64A(1), pp.16-26. doi: 10.1002/cyto.a.20106 9. Biocompare. 2013. Cell Analysis at the Bench: Benchtop Flow Cytometers. [online] Available at: <https://www.biocompare.com/editorial-articles/146008-cell-analysis-a... benchtop-flow-cytometers/> [Accessed 23 August 2021]. 7 10. Santagapita, P., Rosa, S., Mazzobre, M., Cueto, M., de Pilar Buera, M. and Galvagno, M., 2013. Differential scanning calorimetry evaluation of oxidation stability of docosahexaenoic acid in microalgae cells and their extracts. International Journal of Food Science & Technology, 48(8), pp.1729-1735. doi: 10.1111/ijfs.12144 11. Smith, B., 2011. Fundamentals of Fourier transform infrared spectroscopy. Boca Raton, FL: CRC Press, pp.1-17. 12. Capuano, E. and van Ruth, S., 2016. Infrared Spectroscopy: Applications. Encyclopedia of Food and Health, pp.424-431. doi: 10.1016/B978-0-12-384947-2.00644-9 13. Patil, M., 2020. Dierence between IR and FTIR. [online] Chrominfo.blogspot.com. Available at: <https://chrominfo.blogspot.com/2019/02/difference-between-ir-and-fti... [Accessed 10 August 2021]. 14. Chemistry LibreTexts. 2020. How an FTIR Spectrometer Operates. [online] Available at: <https: //chem.libretexts.org/@go/page/1844> [Accessed 20 August 2021] 15. Wagner, H., Dunker, S., Liu, Z. and Wilhelm, C., 2013. Subcommunity FTIR-spectroscopy to determine physiological cell states. Current Opinion in Biotechnology, 24(1), pp.88-94. doi: 10.1016/j.copbio.2012.09.008 16. Chan, K. and Kazarian, S., 2006. Detection of trace materials with Fourier transform infrared spectroscopy using a multi-channel detector. The Analyst, 131(1), pp.126-131. doi: 10.1039/b511243e 17. Wang, L., Zeng, S., Chen, T. and Qu, H., 2014. Direct analysis in real time mass spectrometry, a process analytical technology tool for real-time process monitoring in botanical drug manufacturing. Journal of Pharmaceutical and Biomedical Analysis, 91, pp.202-209. doi: 10.1016/j.jpba.2013.12.034 18. Gui, Y., Lu, Y., Li, S., Zhang, M., Duan, X., Liu, C., Jia, J. and Liu, G., 2020. Direct analysis in real time-mass spectrometry for rapid quantication of ve anti-arrhythmic drugs in human serum: application to therapeutic drug monitoring. Scientic Reports, 10(1). doi: 10.1038/s41598-020-72490-w 19. Zaitsu, K., Hayashi, Y., Murata, T., Yokota, K., Ohara, T., Kusano, M., Tsuchihashi, H., Ishikawa, T., Ishii, A., Ogata, K. and Tanihata, H., 2018. In Vivo Real-Time Monitoring System Using Probe Electrospray Ionization/Tandem Mass Spectrometry for Metabolites in Mouse Brain. Analytical Chemistry, 90(7), pp.4695-4701. doi: 10.1021/acs.analchem.7b05291 20. Kumar, R., Bansal, V., Patel, M.B. and Sarpal, A.S. 2014. Compositional Analysis of Algal Biomass in a Nuclear Magnetic Resonance (NMR) Tube. Algal Biomass Utilization. 5(3). pp 36-45. 21. Sarpal, A., Teixeira, C., Silva, P., da Costa Monteiro, T., da Silva, J., da Cunha, V. and Daroda, R., 2015. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential. Applied Microbiology and Biotechnology, 100(5), pp.2471-2485. doi: 10.1007/s00253-015-7140-x 22. Reisch, M., 2015. NMR Instrument Price Hikes Spook Users. [online] Chemical and Engineering News. Available at: <https://cen.acs.org/articles/93/i26/NMR-Instrument-Price-Hikes-S pook.html> [Accessed 24 August 2021]. 23. Senesi, N. and D'Orazio, V., 2005. FLUORESCENCE SPECTROSCOPY. Encyclopedia of Soils in the Environment, pp.35-52. doi: 10.1016/b0-12-348530-4/00211-3 8 24. Galinha, C., Portugal, C., Carvalho, G., Guglielmi, G., Chiarani, D., Andreottola, G., Oliveira, R., Reis, M. and Crespo, J., 2009. Monitoring of Membrane Bioreactors for Wastewater Treatment Using 2D-Fluorescence Spectroscopy. Proceedings of the Water Environment Federation, 2009(10), pp.5629-5632. doi: 10.2175/193864709793952873 25. Sa, M., Bertinetto, C., Ferrer-Ledo, N., Jansen, J., Wijels, R., Crespo, J., Barbosa, M. and Galinha, C., 2020. Fluorescence spectroscopy and chemometrics for simultaneous monitoring of cell concentration, chlorophyll and fatty acids in Nannochloropsis oceanica. Scientic Reports, 10(1). doi: 10.1038/s41598-020-64628-7 26. Jayasooriya, U. A. and Jenkins, R.D., 2002. Introduction to Raman Spectroscopy in Andrews, D. and Demidov, A.,. An introduction to laser spectroscopy. 2nd ed. Boston, MA: Springer US, pp.77-104. 27. Bumbrah, G. and Sharma, R., 2016. Raman spectroscopy { Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 6(3), pp.209-215. doi: 10.1016/j.ejfs.2015.06.001 28. Maquelin, K., Kirschner, C., Choo-Smith, L., van den Braak, N., Endtz, H., Naumann, D. and Puppels, G., 2002. Identication of medically relevant microorganisms by vibrational spectroscopy. Journal of Microbiological Methods, 51(3), pp.255-271. doi: 10.1016/S0167-7012(02)00127-6 29. Harz, M., Rosch, P., Peschke, K., Ronneberger, O., Burkhardt, H. and Popp, J., 2005. Micro-Raman spectroscopic identication of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. The Analyst, 130(11), p.1543. doi: 10.1039/b507715j 30. Samek, O., Al-Marashi, J. and Telle, H., 2010. The potential of Raman spectroscopy for the identi- cation of biolm formation by Staphylococcus epidermidis. Laser Physics Letters, 7(5), pp.378-383. doi: 10.1002/lapl.200910154 31. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., and Valev, V. K., 2019. Raman Techniques: Fundamentals and Frontiers. Nanoscale research letters, 14(1), 231. doi:.10.1186/s11671-019-3039-2 32. Lukin, S., Uzarevic, K. and Halasz, I., 2021. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nature Protocols, 16(7), pp.3492-3521. doi: 10.1038/s41596-021-00545-x 33. Nitika, N., Chhabra, H. and Rathore, A., 2021. Raman spectroscopy for in situ, real time monitoring of protein aggregation in lyophilized biotherapeutic products. International Journal of Biological Macromolecules, 179, pp.309-313. doi: 10.1016/j.ijbiomac.2021.02.214. 34. Samek, O., Jonas, A., Pilat, Z., Zemanek, P., Nedbal, L., Triska, J., Kotas, P. and Trtlek, M., 2010. Raman Spectroscopy for the characterization of algal cells. Proceedings of SPIE, 7746. doi: 10.1117/12.882196 35. Meksiarun, P., Spegazzini, N., Matsui, H., Nakajima, K., Matsuda, Y. and Sato, H., 2015. In Vivo Study of Lipid Accumulation in the Microalgae Marine Diatom Thalassiosira pseudonana Using Raman Spectroscopy. Applied Spectroscopy, 69(1), pp.45-51. doi: 10.1366/14-07598 36. Huang, Y., Beal, C., Cai, W., Ruo, R. and Terentjev, E., 2009. Micro-Raman spectroscopy of algae: Composition analysis and uorescence background behavior. Biotechnology and Bioengineering, 105(5), pp.889-898. doi: 10.1002/bit.22617 9 37. Fried, S., Mackie, B. and Nothwehr, E., 2003. Nitrate and phosphate levels positively aect the growth of algae species found in Perry Pond. Tillers. 4, pp.21-24. 38. Yang, L., Chen, J., Qin, S., Zeng, M., Jiang, Y., Hu, L., Xiao, P., Hao, W., Hu, Z., Lei, A. and Wang, J., 2018. Growth and lipid accumulation by dierent nutrients in the microalga Chlamydomonas reinhardtii. Biotechnology for Biofuels, 11(1). doi: 10.1186/s13068-018-1041-z 39. Xin, L., Hong-ying, H., Ke, G. and Ying-xue, S., 2010. Eects of dierent nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), pp.5494-5500. doi: 10.1016/j.biortech.2010.02.016 40. Mabrouk, K., Kaumann, T. and Fontana, M., 2013. Abilities of Raman sensor to probe pollutants in water. Journal of Physics: Conference Series, 450, p.012014. doi: 10.1088/1742-6596/450/1/012014 41. Sanchez, L., Ermolenkov, A., Biswas, S., Septiningsih, E. and Kurouski, D., 2020. Raman Spectroscopy Enables Non-invasive and Conrmatory Diagnostics of Salinity Stresses, Nitrogen, Phosphorus, and Potassium Deciencies in Rice. Frontiers in Plant Science, 11. doi: 10.3389/fpls.2020.573321 42. Pilat, Z., Bernatova, S., Jezek, J., Sery, M., Samek, O., Zemanek, P., Nedbal, L. and Trtlek, M., 2011. Raman microspectroscopy of algal lipid bodies: -carotene quantication. Journal of Applied Phycology, 24(3), pp.541-546. doi: 10.1007/s10811-011-9754-4 43. Samek, O., Jonas, A., Pilat, Z., Zemanek, P., Nedbal, L., Trska, J., Kotas, P. and Trtlek, M., 2010. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors, 10(9), pp.8635-8651. doi: 10.3390/s100908635 44. Heraud, P., Wood, B., Beardall, J. and McNaughton, D., 2006. Eects of pre-processing of Raman spectra on in vivo classication of nutrient status of microalgal cells. Journal of Chemometrics, 20(5), pp.193-197. doi: 10.1002/cem.990 45. Heraud, P., Beardall, J., McNaughton, D. and Wood, B., 2007. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiology Letters, 275(1), pp.24-30. doi: 10.1111/j.1574-6968.2007.00861.x 46. Stellarnet.us. 2021. Raman Spectrometers, Lasers, and Probes. [online] Available at: <https: //www.stellarnet.us/systems/raman-spectrometers-lasers-and-probes/?gclid=EAIaIQobC hMI-s3z8oe48gIVVe3tCh0rDwmBEAAYAyAAEgKVYfD BwE> [Accessed 10 August 2021]. 47. Wasatch Photonics. 2021. Compact & OEM Raman spectrometers and systems. [online] Available at: <https://wasatchphotonics.com/product-category/spectrometers/raman>... [Accessed 18 August 2021]. 48. Cbrnetechindex.com. 2021. Raman Spectroscopy (Raman). [online] Available at: <https://www. cbrnetechindex.com/Explosives-Detection/Technology-ED/Molecular-Spectroscopy-ED-T/ Raman-ED-MS?f=Unit%20Cost%3A%2410%2C000%20-%20%2420%2C000> [Accessed 10 August 2021]. 49. Emmanuel, N., Nair, R., Abraham, B. and Yoosaf, K., 2021. Fabricating a Low-Cost Raman Spectrometer to Introduce Students to Spectroscopy Basics and Applied Instrument Design. Journal of Chemical Education, 98(6), pp.2109-2116. doi: 10.1021/acs.jchemed.0c01028 10 50. Buzgar N., Apopei A. I., and Buzatu A. (2009) { Romanian Database of Raman Spectroscopy. [online] Available at: <http://rdrs.ro> [Accessed 3 August 2021] 11 |
---|