Ponto-Caspian amphipod co-location with zebra mussel beds (Dreissena polymorpha) is influenced by substrate size and population source

Journal article


Buckley, P. and Sanders, C. 2024. Ponto-Caspian amphipod co-location with zebra mussel beds (Dreissena polymorpha) is influenced by substrate size and population source. Hydrobiologia. https://doi.org/10.1007/s10750-024-05515-4
AuthorsBuckley, P. and Sanders, C.
Abstract

The global spread of non-native species is leading to an increasing frequency of multiple co-occurring non-native species. We examined the co-occurrence of Dreissena polymorpha with three Ponto-Caspian amphipods (Dikerogammarus villosus, Dikerogammarus haemobaphes, and Chelicorophium curvispinum) across England and Wales in association with in-situ substate size. For all three amphipod species, substrate grain size where amphipods co-occurred with D. polymorpha was significantly finer than when recorded in isolation. Subsequently, we confirmed this observational association via aquarium experiments. We examined the occurrence of D. villosus with D. polymorpha when present with cobbles, gravel or sand from three population sources (co-location with abundant D. polymorpha populations, co-location with low populations, and naïve). Aquarium experiments demonstrated that D. villosus actively sought shelter on or near D. polymorpha, with their co-location being significantly more prevalent in finer grained substrates (sand > gravel > cobble). The strength of this co-location was also found to differ as a function of the population source with those co-located with high D. polymorpha densities demonstrating a greater association. Our analyses and experiments indicate that D. polymorpha may enable Ponto-Caspian amphipods to expand into otherwise suboptimal locations.

KeywordsDikerogammarus; Ponto-Caspian; Gammarids; Invasive species; Benthic sediments; Invasional meltdown hypothesis
Year2024
JournalHydrobiologia
PublisherSpringer
ISSN0018-8158
1573-5117
Digital Object Identifier (DOI)https://doi.org/10.1007/s10750-024-05515-4
Official URLhttps://link.springer.com/article/10.1007/s10750-024-05515-4
Publication dates
Online10 Apr 2024
Publication process dates
Accepted29 Feb 2024
Deposited14 Mar 2024
Accepted author manuscript
License
File Access Level
Restricted
Publisher's version
License
File Access Level
Open
Output statusPublished
References

Borza, P., Huber, T., Leitner, P., Remund, N. and Graf, W., 2017. Current velocity shapes co‐existence patterns among invasive Dikerogammarus species. Freshwater Biology, 62(2), pp.317-328. https://doi.org/10.1111/fwb.12869
Burlakova, L.E., Karatayev, A.Y. & Karatayev, V.A., 2012. Invasive mussels induce community changes by increasing habitat complexity. Hydrobiologia, 685, pp.121-134. https://doi.org/10.1007/s10750-011-0791-4
Centre for Ecology and Hydrology (2023) RIVPACS reference database website. Available at: https://www.ceh.ac.uk/services/rivpacs-reference-database .
Clinton, K.E., Mathers, K.L., Constable, D., Gerrard, C. & Wood, P.J., 2018. Substrate preferences of coexisting invasive amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, under field and laboratory conditions. Biological Invasions, 20, pp.2187-2196. https://doi.org/10.1007/s10530-018-1695-2
Copilaș-Ciocianu, D., Sidorov, D. & Šidagytė-Copilas, E., 2023. Global distribution and diversity of alien Ponto-Caspian amphipods. Biological Invasions, 25, pp.179-195. https://doi.org/10.1007/s10530-022-02908-1
Coughlan, N.E., Cunningham, E.M., Potts, S., McSweeney, D., Healey, E., Dick, J.T., Vong, G.Y., Crane, K., Caffrey, J.M., Lucy, F.E. & Davis, E., 2020. Steam and flame applications as novel methods of population control for invasive Asian Clam (Corbicula fluminea) and Zebra Mussel (Dreissena polymorpha). Environmental Management, 66, pp.654-663. https://doi.org/10.1007/s00267-020-01325-1
Coughlan, N.E., Cunningham, E.M., Cuthbert, R.N., Joyce, P.W., Anastácio, P., Banha, F., Bonel, N., Bradbeer, S.J., Briski, E., Butitta, V.L. and Čadková, Z., 2021. Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves. Journal of Applied Ecology, 58, pp.1945-1956. https://doi.org/10.1111/1365-2664.13941 .
Cuthbert, R.N., Kotronaki, S.G., Dick, J.T. & Briski, E., 2020. Salinity tolerance and geographical origin predict global alien amphipod invasions. Biology Letters, 16, p.20200354. https://doi.org/10.1098/rsbl.2020.0354
DAISIE (2009) Handbook of Alien Species in Europe. Springer, Knoxville, Tennessee, USA.
Davidson, A.M., Jennions, M. and Nicotra, A.B., 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta‐analysis. Ecology Letters, 14(4), pp.419-431.
Devin, S., Piscart, C., Beisel, J.N. & Moreteau, J.C., 2003. Ecological traits of the amphipod invader Dikerogammarus villosus on a mesohabitat scale. Archiv für Hydrobiologie, 158, pp.43-56. https://doi.org/10.1127/0003-9136/2003/0158-0043
Diagne, C., Ballesteros-Mejia, L., Cuthbert, R.N., Bodey, T.W., Fantle-Lepczyk, J., Angulo, E., Bang, A., Dobigny, G. & Courchamp, F., 2023. Economic costs of invasive rodents worldwide: the tip of the iceberg. PeerJ, 11, p.e14935. https://doi.org/10.7717/peerj.14935
Doherty, T.S., Glen, A.S., Nimmo, D.G., Ritchie, E.G. & Dickman, C.R., 2016. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences, 113, pp.11261-11265. https://doi.org/10.1073/pnas.1602480113
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L. & Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews, 81, pp.163-182. https://doi.org/10.1017/S1464793105006950
Environment Agency (2023) Environment Agency Ecology & Fish Data Explorer website. Available at: https://environment.data.gov.uk/ecology/explorer/ .
ESRI. (2020) ArcGIS desktop: Version 10.8. Redlands, CA: Environmental Systems Research Institute.
Fei, S., Phillips, J. & Shouse, M., 2014. Biogeomorphic impacts of invasive species. Annual review of ecology, evolution, and systematics, 45, pp.69-87. https://doi.org/10.1146/annurev-ecolsys-120213-091928
Gallardo, B. & Aldridge, D.C., 2013. The ‘dirty dozen’: socio‐economic factors amplify the invasion potential of 12 high‐risk aquatic invasive species in Great Britain and Ireland. Journal of Applied Ecology, 50, pp.757-766. https://doi.org/10.1111/1365-2664.12079
Gallardo, B. & Aldridge, D.C., 2015. Is Great Britain heading for a Ponto–Caspian invasional meltdown?. Journal of applied Ecology, 52, pp.41-49. https://doi.org/10.1111/1365-2664.12348
García-Berthou, E., Alcaraz, C., Pou-Rovira, Q., Zamora, L., Coenders, G. & Feo, C., 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences, 62, pp.453-463. https://doi.org/10.1139/f05-017
Guareschi, S., Laini, A., England, J., Barrett, J. and Wood, P.J., 2021. Multiple co‐occurrent alien invaders constrain aquatic biodiversity in rivers. Ecological Applications, 31(6), p.e02385.
Holway DA, Suarez AV (1999) Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution 14, 328–330. https://doi.org/10.1016/S0169-5347(99)01636-5
Keller, R.P., Zu Ermgassen, P.S., Aldridge, D.C. (2009). Vectors and timing of freshwater invasions in Great Britain. Conservation Biology, 23(6), 1526-1534. https://doi.org/10.1111/j.1523-1739.2009.01249.x
Kley, A. and Maier, G., 2005. An example of niche partitioning between Dikerogammarus villosus and other invasive and native gammarids: a field study. Journal of Limnology, 64(1), pp.85-88.
Kley, A., Kinzler, W., Schank, Y., Mayer, G., Waloszek, D. & Maier, G., 2009. Influence of substrate preference and complexity on co-existence of two non-native gammarideans (Crustacea: Amphipoda). Aquatic Ecology, 43, pp.1047-1059. https://doi.org/10.1007/s10452-009-9242-y
Kobak, J. & Żytkowicz, J., 2007. Preferences of invasive Ponto-Caspian and native European gammarids for zebra mussel (Dreissena polymorpha, Bivalvia) shell habitat. Hydrobiologia, 589, pp.43-54. https://doi.org/10.1007/s10750-007-0716-4
Kobak, J., Jermacz, Ł. & Dzierżyńska‐Białończyk, A., 2015. Substratum preferences of the invasive killer shrimp Dikerogammarus villosus. Journal of Zoology, 297, pp.66-76. https://doi.org/10.1111/jzo.12252
Kobak, J., Jermacz, Ł. & Płąchocki, D., 2014. Effectiveness of zebra mussels to act as shelters from fish predators differs between native and invasive amphipod prey. Aquatic Ecology, 48, pp.397-408. https://doi.org/10.1007/s10452-014-9492-1
Kobak, J., Kakareko, T., Jermacz, Ł. & Poznańska, M., 2013. The impact of zebra mussel (Dreissena polymorpha) periostracum and biofilm cues on habitat selection by a Ponto-Caspian amphipod Dikerogammarus haemobaphes. Hydrobiologia, 702, pp.215-226. https://doi.org/10.1007/s10750-012-1322-7
Lenth, R., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. (2020). emmeans. https://CRAN.Rproj ector g/package=emmean
MacNeil, C., Platvoet, D. & Dick, J.T., 2008. Potential roles for differential body size and microhabitat complexity in mediating biotic interactions within invasive freshwater amphipod assemblages. Fundamental and applied limnology, 172, p.175. https://doi.org/10.1127/1863-9135/2008/0172-0175
Magurran, A.E., Seghers, B.H., Carvalho, G.R. & Shaw, P.W., 1992. Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of anti-predator behaviour in the wild. Proceedings of the Royal Society of London. Series B: Biological Sciences, 248, pp.117-122. https://doi.org/10.1098/rspb.1992.0050
Mason, R.J. & Sanders, H., 2021. Invertebrate zoogeomorphology: A review and conceptual framework for rivers. Wiley Interdisciplinary Reviews: Water, 8, p.e1540. https://doi.org/10.1002/wat2.1540
Mathers, K.L., Clinton, K., Constable, D., Gerrard, C., Patel, C. & Wood, P.J., 2023. Invasion dynamics of Ponto‐Caspian amphipods leads to changes in invertebrate community structure and function. Ecosphere, 14(7), p.e4593. https://doi.org/10.1002/ecs2.4593
Michaelis, B.T., Leathers, K.W., Bobkov, Y.V., Ache, B.W., Principe, J.C., Baharloo, R., Park, I.M. & Reidenbach, M.A., 2020. Odor tracking in aquatic organisms: the importance of temporal and spatial intermittency of the turbulent plume. Scientific Reports, 10, pp.1-11. https://doi.org/10.1038/s41598-020-64766-y
Mills, D.N., 2019. Ecological Impacts of a New Invasive Species in UK Rivers: The Quagga Mussel, Dreissena Rostriformis Bugensis (Bivalva: Dreissenidae; Andrusov 1897) (Doctoral dissertation, King's College London).
Mills, D.N., Chadwick, M.A. & Francis, R.A., 2017. Impact of invasive quagga mussel (Dreissena rostriformis bugensis, Bivalva: Dreissenidae) on the macroinvertebrate community structure of a UK river. Aquatic Invasions, 4, pp.509-521. https://doi.org/10.3391/ai.2017.12.4.08
Mowery, M.A., Vink, C., Mason, A.C. & Andrade, M.C., 2021. Behavioural, morphological, and life history shifts during invasive spread. Biological Invasions, 23, pp.3497-3511. https://doi.org/10.1007/s10530-021-02593-6
Nakano, D. and Strayer, D.L., 2014. Biofouling animals in fresh water: biology, impacts, and ecosystem engineering. Frontiers in Ecology and the Environment, 12(3), pp.167-175. https://doi.org/10.1890/130071
Naura, M., Clark, M.J., Sear, D.A., Atkinson, P.M., Hornby, D.D., Kemp, P., England, J., Peirson, G., Bromley, C. & Carter, M.G., 2016. Mapping habitat indices across river networks using spatial statistical modelling of River Habitat Survey data. Ecological Indicators, 66, pp.20-29. https://doi.org/10.1016/j.ecolind.2016.01.019
NBN Atlas (2023) National Biodiversity Network Atlas website. Available at: https://nbnatlas.org/ .
Pejchar, L. & Mooney, H.A., 2009. Invasive species, ecosystem services and human well-being. Trends in ecology & evolution, 24, pp.497-504. https://doi.org/10.1016/j.tree.2009.03.016
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/ .
Reid, D.F. & Orlova, M.I., 2002. Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, pp.1144-1158. https://doi.org/10.1139/f02-099
Reznick, D.N. & Ghalambor, C.K., 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Microevolution rate, pattern, process, pp.183-198. https://doi.org/10.1007/978-94-010-0585-2_12
Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an" invasional meltdown" occurring in the Great Lakes?. Canadian journal of fisheries and aquatic sciences, 58, pp.2513-2525. https://doi.org/10.1139/f01-178
Rolla, M., Consuegra, S. & de Leaniz, C.G., 2019. Predator recognition and anti-predatory behaviour in a recent aquatic invader, the killer shrimp (Dikerogammarus villosus). bioRxiv, p.636100. https://doi.org/10.1101/636100
Sala, O.E., Stuart Chapin, F.I.I.I., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A. & Leemans, R., 2000. Global biodiversity scenarios for the year 2100. Science, 287, pp.1770-1774. https://doi.org/10.1126/science.287.5459.1770
Sanders, C.H., Rice, S.P., Wood, P.J. & Albertson, LK., 2023. River bank burrowing is innate in native and invasive signal crayfish (Pacifastacus leniusculus) and is driven by biotic and abiotic cues. Biological Invasions 25, 3425–3442. https://doi.org/10.1007/s10530-023-03115-2
Sanders, H. & Mills, D.N., 2022. Predation preference of signal crayfish (Pacifastacus leniusculus) on native and invasive bivalve species. River Research and Applications, 38, pp.1469-1480. https://doi.org/10.1002/rra.4023
Sanders, H., Mason, R.J., Mills, D.N. & Rice, S.P., 2022. Stabilization of fluvial bed sediments by invasive quagga mussels (Dreissena bugensis). Earth Surface Processes and Landforms, 47, pp.3259-3275. https://doi.org/10.1002/esp.5455
Simberloff, D., 2006. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both?. Ecology Letters, 9(8), 912-919. https://doi.org/10.1111/j.1461-0248.2006.00939.x
Simberloff, D. & Von Holle, B., 1999. Positive interactions of nonindigenous species: invasional meltdown?. Biological Invasions, 1(1), 21-32. https://doi.org/10.1023/A:1010086329619
Sol, D. & Weis, J.S., 2019. Highlights and Insights from" Biological Invasions and Animal Behaviour". Aquatic Invasions, 14. https://doi.org/10.3391/ai.2019.14.3.12
Soto, I., Cuthbert, R.N., Ricciardi, A., Ahmed, D.A., Altermatt, F., Schäfer, R.B., Archambaud-Suard, G., Bonada, N., Cañedo-Argüelles, M., Csabai, Z. & Datry, T., 2023. The faunal Ponto-Caspianization of central and western European waterways. Biological Invasions, pp.1-17. https://doi.org/10.1007/s10530-023-03060-0
Strayer, D.L., 2009. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Frontiers in Ecology and the Environment, 7, pp.135-141. https://doi.org/10.1890/080020
Tricarico, E., Mazza, G., Orioli, G., Rossano, C., Scapini, F. & Gherardi, F., 2010. The killer shrimp, Dikerogammarus villosus(Sowinsky, 1894), is spreading in Italy. Aquatic Invasions, 5, pp.211-214. https://doi.org/10.3391/ai.2010.5.2.14
van der Velde, G., Rajagopal, S. & bij de Vaate, A. eds., 2010. The zebra mussel in Europe. Leiden/Margraf, Weikersheim: Backhuys.
Wright, T.F., Eberhard, J.R., Hobson, E.A., Avery, M.L. & Russello, M.A., 2010. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethology Ecology & Evolution, 22 pp.393-404. https://doi.org/10.1080/03949370.2010.505580

Permalink -

https://repository.canterbury.ac.uk/item/9757z/ponto-caspian-amphipod-co-location-with-zebra-mussel-beds-dreissena-polymorpha-is-influenced-by-substrate-size-and-population-source

Download files


Publisher's version
s10750-024-05515-4.pdf
License: CC BY 4.0
File access level: Open

  • 40
    total views
  • 2
    total downloads
  • 13
    views this month
  • 0
    downloads this month

Export as

Related outputs

The effects of recreational footpaths on terrestrial invertebrate communities in a UK ancient woodland: a case study from Blean Woods, Kent, UK
Kennett, S., Rintoul‐Hynes, N. and Sanders, C. 2024. The effects of recreational footpaths on terrestrial invertebrate communities in a UK ancient woodland: a case study from Blean Woods, Kent, UK. Biodiversity. https://doi.org/10.1080/14888386.2024.2333305
The long-term dynamics of invasive signal crayfish forcing of fluvial sediment supply via riverbank burrowing
Sanders, C., Rice, S., Wood, P.J. and Mathers, K.L. 2023. The long-term dynamics of invasive signal crayfish forcing of fluvial sediment supply via riverbank burrowing. Geomorphology. 442, p. 108294. https://doi.org/10.1016/j.geomorph.2023.108924
River bank burrowing is innate in native and invasive signal crayfish (Pacifastacus leniusculus) and is driven by biotic and abiotic cues
Sanders, C., Rice, S., Wood, P.J. and Albertson, L.K. 2023. River bank burrowing is innate in native and invasive signal crayfish (Pacifastacus leniusculus) and is driven by biotic and abiotic cues. Biological Invasions. 25, p. 3425–3442. https://doi.org/10.1007/s10530-023-03115-2
A glimpse of the long view: Human attitudes to an established population of Eurasian beaver ( castor fiber ) in the lowlands of south-east England
Oliveira, Sara, Buckley, Phil and Consorte-McCrea, Adriana 2023. A glimpse of the long view: Human attitudes to an established population of Eurasian beaver ( castor fiber ) in the lowlands of south-east England. Frontiers in Conservation Science. 3, p. 925594. https://doi.org/10.3389/fcosc.2022.925594
Stabilisation of fluvial bed sediments by invasive quagga mussels (Dreissena bugensis)
Sanders, C., Mason, R., Mills, D. N. and Rice, S. 2022. Stabilisation of fluvial bed sediments by invasive quagga mussels (Dreissena bugensis). Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.5455
Predation preference of signal crayfish (Pacifastacus leniusculus) on native and invasive bivalve species
Sanders, H. and Mills, D. 2022. Predation preference of signal crayfish (Pacifastacus leniusculus) on native and invasive bivalve species. River Research and Applications. pp. 1-12. https://doi.org/10.1002/rra.4023
Still Here and Still Queer: LGBTQIA+ Staff Network in time of pandemic
Hallenberg, K., Digby-Bowl, C., Dainton, M. and Sanders, H. 2021. Still Here and Still Queer: LGBTQIA+ Staff Network in time of pandemic.
Invertebrate zoogeomorphology: A review and conceptual framework for rivers
Mason, R. and Sanders, H. 2021. Invertebrate zoogeomorphology: A review and conceptual framework for rivers. WIREs Water. 8 (5). https://doi.org/10.1002/wat2.1540
Signal crayfish burrowing, bank retreat and sediment supply to rivers: A biophysical sediment budget
Sanders, H., Rice, S.P. and Wood, P.J. 2021. Signal crayfish burrowing, bank retreat and sediment supply to rivers: A biophysical sediment budget. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.5070
Biological flora of the British Isles: Crassula helmsii
Smith, T. and Buckley, P. 2020. Biological flora of the British Isles: Crassula helmsii. Journal of Ecology. 108 (2), pp. 797-813. https://doi.org/10.1111/1365-2745.13336
The growth of the non-native Crassula helmsii increases the rarity scores of macrophyte assemblages in south-eastern England
Smith, T. and Buckley, P. 2015. The growth of the non-native Crassula helmsii increases the rarity scores of macrophyte assemblages in south-eastern England. New Journal of Botany. 5 (3), pp. 192-199. https://doi.org/10.1080/20423489.2015.1096137
Can the effectiveness of different forms of feedback be measured? Retention and student preference for written and verbal feedback in level 4 bioscience students
Buckley, P. 2012. Can the effectiveness of different forms of feedback be measured? Retention and student preference for written and verbal feedback in level 4 bioscience students. Journal of Biological Education. 4 (46), pp. 242-246. https://doi.org/10.1080/00219266.2012.702676
Filter feeding crustaceans in the Stour Estuary, Kent, UK
Buckley, P. and Dussart, G. 2008. Filter feeding crustaceans in the Stour Estuary, Kent, UK. Current Marine and Coastal Issues for North East Kent: Proceedings of the Third North East Kent Coastal Conference.