Brans-Dicke supergravity and the Lambda naturalness problem

Conference paper


Hewitt, M. 2015. Brans-Dicke supergravity and the Lambda naturalness problem.
AuthorsHewitt, M.
TypeConference paper
Description

The successful $\Lambda CDM$ cosmological model requires a small but nonzero $\Lambda$ which appears to have an unnaturally small value compared to the supersymmetry breaking scale, typically $O(10^{-60}) m_{3/2}^4$ for $m_{3/2} \sim 10 TeV$. We explore the possibility of solving this naturalness problem in a special class of no-scale supergravity models which arise from a supersymmetric version of Brans-Dicke gravity, in which the Volkov and Brans-Dicke multiplets may be identified. These may be embedded in compactified string models, with the Brans-Dicke scalar given by the combination of dilaton and compactification breathing modes which leaves the 4 dimensional gauge couplings fixed. Assuming that 4 dimensional physics has an approximate symmetry under changes in this mode broken only by couplings between the low energy and gravitational or string sectors, the main one loop contribution to $\Lambda$ cancels between Brans-Dicke and gravitational (conformal compensator) F terms, and the leading contributions to $\Lambda$ now appear to be $O(m_{3/2}^8 m_{p}^{-4)}$, enabling a natural reconciliation between observational and particle physics estimates for $\Lambda$.
The Brans-Dicke scalar has a range $O(m_{3/2}^{-1})$, lifting observational constraints on scalar gravity in this scenario.

KeywordsDark energy; cosmological constant
Year2015
ConferenceCOSMO 15 - 19th International Conference on Particle Physics and Cosmology
Official URLhttps://indico.cern.ch/event/438475/contributions/1090897/
Related URLhttps://indico.cern.ch/event/438475/
File
FunderCanterbury Christ Church University
Publication process dates
Deposited17 Sep 2015
Completed10 Sep 2015
Output statusUnpublished
Permalink -

https://repository.canterbury.ac.uk/item/87717/brans-dicke-supergravity-and-the-lambda-naturalness-problem

Download files

  • 55
    total views
  • 33
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Pure spinors, impure spinors and quantum mechanics
Hewitt, M. 2018. Pure spinors, impure spinors and quantum mechanics. in: Dobrev, V. (ed.) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Springer.
Risk management in relation to firearms licensing
Bryant, R., Blackburn, B., Hewitt, M. and Falade, M. 2016. Risk management in relation to firearms licensing.
String condensation and high energy graviton scattering
Hewitt, M. 2016. String condensation and high energy graviton scattering.
String condensation: nemesis of black holes?
Hewitt, M. 2015. String condensation: nemesis of black holes? in: Antoniadis, I., Leontaris, G. and Tamvakis, K. (ed.) 18th International Conference From the Planck Scale to the Electroweak Scale (PLANCK), 25-29 May 2015, Ioannina, Greece SISSA: International School for Advanced Studies. pp. 1-11
Thermal duality: nemesis of black holes?
Hewitt, M. 2015. Thermal duality: nemesis of black holes?
Thermal duality and gravitational collapse
Hewitt, M. 2014. Thermal duality and gravitational collapse.
Thermal duality and gravitational collapse
Hewitt, M. 2015. Thermal duality and gravitational collapse. Journal of Physics: Conference Series. 631 (1). https://doi.org/10.1088/1742-6596/631/1/012076
Thermal duality and gravitational collapse in heterotic string theories
Hewitt, M. 2013. Thermal duality and gravitational collapse in heterotic string theories. arXiv.
Supersymmetry breaking and 4 dimensional string models
Hewitt, M. 2003. Supersymmetry breaking and 4 dimensional string models. ePrint arxiv. https://doi.org/hep-th/0302209
Vacuum instability and gravitational collapse
Hewitt, M. 2002. Vacuum instability and gravitational collapse. ArXiv High Energy Physics - Theory e-prints. https://doi.org/hep-th/0211037
Strings and gravitational collapse
Hewitt, M. 1993. Strings and gravitational collapse. Physics Letters B. 309 (3-4), pp. 264-267. https://doi.org/10.1016/0370-2693(93)90931-7