Genomic structure and cloning of two transcript isoforms of human Sp8.

Journal article


Mylona, A., Gough, J. and Edgar, A. 2004. Genomic structure and cloning of two transcript isoforms of human Sp8. BMC Genomics. 5 (86). https://doi.org/10.1186/1471-2164-5-86
AuthorsMylona, A., Gough, J. and Edgar, A.
Abstract

Background: The Specificity proteins (Sp) are a family of transcription factors that have three highly conserved zinc-fingers located towards the carboxy-terminal that bind GC-boxes and assist in the initiation of gene transcription. Human Sp1-7 genes have been characterized. Recently, the phenotype of Sp8 null mice has been described, being tailless and having severe truncation of both fore and hind limbs. They also have malformed brains with defective closure of the anterior and posterior neuropore during brain development.
Results: The human Sp8 gene is a three-exon gene that maps to 7p21.3,close to the related Sp4 gene. From an osteosarcoma cell line we cloned two transcript variants that use two different first exons and have a common second exon. One clone encodes a 508-residue protein, Sp8L (isoform 1) and the other a shorter 490-residue protein, Sp8S (isoform 2). These two isoforms are conserved being found also in mice and zebrafish. Analysis of the Sp8L protein sequence reveals an amino-terminal hydrophobic Sp-motif that is disrupted in Sp8S, a buttonhead box and three C2H2 zinc-fingers. Sp8 mRNA expression was detected in a wide range of tissues at a low level, with the highest levels being found in brain. Treatment of the murine pluripotent cell line C3H10T1/2 with 100 ng/mL BMP-2 induced Sp8 mRNA after 24 hours.
Conclusions: There is conservation of the two Sp8 protein isoforms between primates, rodents and fish, suggesting that the isoforms have differing roles in gene regulation. Sp8 may play a role in chondrogenic/osteoblastic differentiation in addition to its role in brain and limb development.

Year2004
JournalBMC Genomics
Journal citation5 (86)
PublisherBioMed Central
ISSN1471-2164
Digital Object Identifier (DOI)https://doi.org/10.1186/1471-2164-5-86
Publication process dates
Deposited09 Dec 2014
Accepted08 Nov 2004
Output statusPublished
File
Permalink -

https://repository.canterbury.ac.uk/item/8730y/genomic-structure-and-cloning-of-two-transcript-isoforms-of-human-sp8

  • 94
    total views
  • 57
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

A-294 duplicate testing of samples suspected of SARS-CoV-2 infection could prevent misdiagnosis of Covid-19
Sánchez-Sánchez, J, Thapa, G, Mylona, A and Vuono, R 2023. A-294 duplicate testing of samples suspected of SARS-CoV-2 infection could prevent misdiagnosis of Covid-19. Clinical Chemistry. 69 (Supplement_1). https://doi.org/10.1093/clinchem/hvad097.259
Utilising DOE to optimise hydrogel composition for tissue engineering
UPTON, A., Tirnoveanu, A., Thapa, G., Zimbitas, G., Mylona, A. and Webb, R. 2022. Utilising DOE to optimise hydrogel composition for tissue engineering.
Rheological properties of bioinks for printing optimisation
Upton, A., Thapa, G., Zimbitas, G., Mylona, A. and Webb, R. 2022. Rheological properties of bioinks for printing optimisation.
Proteomic analysis of the extracellular vesicles derived from human hip joints affected by osteoarthritis
Tirnoveanu, A., Ahmed, S., Webb, R., Howland, K., Hurt, A., Wilson, C. and Mylona, A. 2022. Proteomic analysis of the extracellular vesicles derived from human hip joints affected by osteoarthritis.
Enhanced bone marrow derived mesenchymal stem cell differentiation when isolated and expanded with human platelet rich plasma and differentiation media is supplemented with vitamin D
Thapa, G., Tirnoveanu, A., Mylona, A. and Webb, R. 2020. Enhanced bone marrow derived mesenchymal stem cell differentiation when isolated and expanded with human platelet rich plasma and differentiation media is supplemented with vitamin D. eCM Periodicals & Conferences.
Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia
Zambetti, N., Ping, Z., Chen, S., Kenswill, K., Mylona, A., Sanders, M., Hoogenboezem, R., Bindels, E., Adisty, N., Van Strien, P., van der Leije, C., Westers, T., Cremers, E., Milanese, C., Mastroberardino, P., van Leeuwen, J., van der Eerden, B., Touw, I., Kuijpers, T., Kanaar, R., van der Loosdrecht, A., Vogl, T. and Raaijmakers, M. 2016. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell. 19 (5), pp. 613-627. https://doi.org/10.1016/j.stem.2016.08.021
The Isl1/Ldb1 complex orchestrates heart-specific chromatin organization and transcriptional regulation
Caputo, L., Witzel, H., Kolovos, P., Cheedipudi, S., Looso, M., Mylona, A., van Ijcken, W., Evans, S., Braun, T., Soler, E., Grosveld, F. and Dobreva, G. 2015. The Isl1/Ldb1 complex orchestrates heart-specific chromatin organization and transcriptional regulation. Cell Stem Cell. 17 (3), pp. 287-299. https://doi.org/10.1016/j.stem.2015.08.007
Massive parallel RNA sequencing of highly purified mesenchymal elements in low-risk MDS reveals tissue-context dependent activation of inflammatory programs
Chen, S., Zambetti, N., Bindels, E., Kenswill, K., Mylona, A., Adisty, N., Hoogenboezem, R., Sanders, M., Cremers, E., Jansen, J., van de Loosdrecht, A. and Raaijmakers, M. 2016. Massive parallel RNA sequencing of highly purified mesenchymal elements in low-risk MDS reveals tissue-context dependent activation of inflammatory programs. Leukemia. https://doi.org/10.1038/leu.2016.91
Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis.
Mylona, A., Andrieu-Soler, C., Thongjuea, S., Martella, A., Soler, E., Jorna, R., Hou, J., Kockx, C., van Ijcken, W., Lenhard, B. and Grosveld, F. 2013. Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis. Blood. 121 (15). https://doi.org/10.1182/blood-2012-11-467654