Evaluation of dark etching regions for standard bearing steel under accelerated rolling contact fatigue

Journal article


Muhammad U. Abdullah, Zulfiqar A. Khan and Wolfram Kruhoeffer 2020. Evaluation of dark etching regions for standard bearing steel under accelerated rolling contact fatigue. Tribology International. 152, p. 106579. https://doi.org/10.1016/j.triboint.2020.106579
AuthorsMuhammad U. Abdullah, Zulfiqar A. Khan and Wolfram Kruhoeffer
Abstract

Subsurface microstructural alterations are formed in the later stages of rolling contact fatigue (RCF) under high contact pressure. The subsurface changes observed as a dark contrast under optical microscopy are classified as Dark Etching Regions (DERs). Despite the fact that DERs have been presented for several decades, the understanding of its development and growth is yet to comprehend. Current research employed a modified high-speed microprocessor rotary tribometer to conduct systematic RCF study under accelerated testing conditions with variable temperatures and contact pressures. Comprehensive RCF data has been acquired, analysed and is reported for the very first time with ball-on-ball point contact loading conditions. The subsurface microscopic investigations have shown the ongoing progression and development of DER extent and are reported to be associated with the accumulation of plasticity during RCF. The comparison of the DER with the responsible stress components have revealed that DER formation is more closely related to the von Mises stresses when superposed with residual stresses. The experimentally observed area fraction of dark etching zones has been evaluated in terms of DER% and compared with the dislocation assisted carbon diffusion model for DER formation. The overprediction of the numerical model in comparison with the presented results in current research manifests its limitations which can be improved with the incorporation of cyclic plasticity governed by evolved von Mises stresses. Detailed evaluated DER results are presented as 3D DER% maps incorporating the combined effects of contact stress, temperature and rolling cycles simultaneously which enables an in-depth RCF understanding within microstructural context and therefore can be used as guidelines for DER formation models.

KeywordsBall bearings; Rolling contact fatigue; Dark etching regions; White etching bands; 4-Ball test
Year2020
JournalTribology International
Journal citation152, p. 106579
PublisherElsevier
ISSN0301-679X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.triboint.2020.106579
Official URLhttps://www.sciencedirect.com/science/article/pii/S0301679X20304096
Publication dates
Online18 Aug 2020
Publication process dates
Accepted26 Jul 2020
Deposited27 Jul 2023
Accepted author manuscript
License
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/951v8/evaluation-of-dark-etching-regions-for-standard-bearing-steel-under-accelerated-rolling-contact-fatigue

Download files


Accepted author manuscript
TRIBINT-D-20-00862R1.pdf
License: CC BY-NC-ND 4.0

  • 183
    total views
  • 41
    total downloads
  • 5
    views this month
  • 0
    downloads this month

Export as

Related outputs

Experimental investigation of engine valve train friction considering effects of operating conditions and WPC surface treatment
Muhammad Usman Bhutta, Muhammad Huzaifa Najeeb, Muhammad Usman Abdullah, Samiur Rahman Shah, Muhammad Khurram, Riaz Ahmad Mufti, Kiyotaka Ogawa, Jawad Aslam, Rehan Zahid, Mian Ashfaq Ali and Muazzam Arshad 2023. Experimental investigation of engine valve train friction considering effects of operating conditions and WPC surface treatment. Materials. https://doi.org/10.3390/ma16093431
Corrosion mechanisms of 304L NAG in boiling 9M HNO3 containing Cr (VI) ions
Shagufta Khan, Adil Saeed, Mian Hammad Nazir, Muhammad Usman Abdullah and Zulfiqar Ahmad Khan 2023. Corrosion mechanisms of 304L NAG in boiling 9M HNO3 containing Cr (VI) ions. Sustainability. 15 (2), p. 916. https://doi.org/10.3390/su15020916
A multiscale overview of modelling rolling cyclic fatigue in bearing elements
Abdullah, U. and Khan, Z.A. 2022. A multiscale overview of modelling rolling cyclic fatigue in bearing elements. Materials. 15 (17), p. 5885. https://doi.org/10.3390/ma15175885
Further investigations and parametric analysis of microstructural alterations under rolling contact fatigue
Abdullah, U. and Khan, Z.A. 2022. Further investigations and parametric analysis of microstructural alterations under rolling contact fatigue. Materials. 15 (22), p. 8072. https://doi.org/10.3390/ma15228072
Friction and wear performance evaluation of bio-lubricants and DLC coatings on cam/tappet interface of internal combustion engines
Rehan Zahid, Muhammad Usman Bhutta, Riaz Ahmad Mufti, Muhammad Usman Abdullah, Haji Hassan Masjuki, Mahendra Varman, Muhammad Abul Kalam, Mian Ashfaq Ali, Jawad Aslam and Khalid Akhtar 2021. Friction and wear performance evaluation of bio-lubricants and DLC coatings on cam/tappet interface of internal combustion engines. Materials. 14 (23), p. 7206. https://doi.org/10.3390/ma14237206
Development of white etching bands under accelerated rolling contact fatigue
Muhammad U. Abdullah, Zulfiqar A. Khan, Wolfram Kruhoeffer, Toni Blass and Bernd Vierneusel 2021. Development of white etching bands under accelerated rolling contact fatigue. Tribology International. 164, p. 107240. https://doi.org/10.1016/j.triboint.2021.107240
Roller sliding in engine valve train: Effect of oil film thickness considering lubricant composition
Muhammad Khurram, Riaz Ahmad Mufti, Muhammad Usman Bhutta, Naqash Afzal, Muhammad Usman Abdullah, Sami ur Rahman, Saif ur Rehman, Rehan Zahid, Khalid Mahmood, Mian Ashfaq and Muhammad Umar 2020. Roller sliding in engine valve train: Effect of oil film thickness considering lubricant composition. Tribology International. https://doi.org/https://doi.org/10.1016/j.triboint.2019.06.022
A 3D finite element model of rolling contact fatigue for evolved material response and residual stress estimation
Muhammad U Abdullah, Zulfiqar A Khan, Wolfram Kruhoeffer and Toni Blass 2020. A 3D finite element model of rolling contact fatigue for evolved material response and residual stress estimation. Tribology Letters. 66 (122). https://doi.org/10.1007/s11249-020-01359-w
Tribological characteristics comparison of formulated palm trimethylolpropane ester and polyalphaolefin for cam/tappet interface of direct acting valve train system
Rehan Zahid, Masjuki Hj. Hassan, Abdullah Alabdulkarem, Mahendra Varman, Md Abul Kalam, Riaz Ahmad Mufti, Nurin Wahidah Mohd Zulkifli, Mubashir Gulzar, Muhammad Usman Bhutta, Mian Ashfaq Ali, Usman Abdullah and Robiah H Yunus 2018. Tribological characteristics comparison of formulated palm trimethylolpropane ester and polyalphaolefin for cam/tappet interface of direct acting valve train system. Industrial Lubrication and Tribology. https://doi.org/10.1108/ILT-06-2017-0156
Benefits of wonder process craft on engine valve train performance
M Usman Abdullah, Samiur Rahman Shah, M Usman Bhutta, Riaz Ahmad Mufti, Muhammad Khurram, M Huzaifa Najeeb, Waseem Arshad and Kiyo Ogawa 2018. Benefits of wonder process craft on engine valve train performance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 233 (5), pp. 1125-1135. https://doi.org/10.1177/0954407018760935
Technique developed to study camshaft and tappet wear on real production engine
Waseem Arshad, Muhammad Adnan Hanif, Muhammad Usman Bhutta, Riaz Ahmad Mufti, Samiur Rahman Shah, Muhammad Usman Abdullah and Muhammad Huzaifa Najeeb 2017. Technique developed to study camshaft and tappet wear on real production engine. Industrial Lubrication and Tribology. 69 (2), pp. 174-181. https://doi.org/10.1108/ILT-06-2016-0135