Semi-synthetic analogues of Cryptolepine as a potential source of sustainable drugs for the treatment of malaria, human African trypanosomiasis, and cancer

Journal article


Yabula, Z.A., Donkor Forkuo, A., Gbedena, SY., Mittal, N., Ottilie,S., Rocamora, F., Winzeler, E.A., van Schalkyk, D.A., Kelly, J.M., Taylor, M.C., Reader, J., Birkholtz, L-M., Lisgarten, D., Cockcroft, J.C., Lisgarten, J.N., Palmer, R.A., Talbert, R.C., Shnyder, S.D. and Wright, C.D. 2022. Semi-synthetic analogues of Cryptolepine as a potential source of sustainable drugs for the treatment of malaria, human African trypanosomiasis, and cancer. Frontiers in Pharmacology. 13, pp. 1-11. https://doi.org/10.3389/fphar.2022.875647
AuthorsYabula, Z.A., Donkor Forkuo, A., Gbedena, SY., Mittal, N., Ottilie,S., Rocamora, F., Winzeler, E.A., van Schalkyk, D.A., Kelly, J.M., Taylor, M.C., Reader, J., Birkholtz, L-M., Lisgarten, D., Cockcroft, J.C., Lisgarten, J.N., Palmer, R.A., Talbert, R.C., Shnyder, S.D. and Wright, C.D.
Abstract

The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual,sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub Cryptolepis sanguinolenta is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (1), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine (2) is of interest as a lead toward new antimalarial agents. Cryptolepine (1) was isolated using a two-step Soxhlet extraction of C.sanguinolenta roots, followed by crystallization (yield 0.8% calculated as a base with respect to the dried roots). Semi-synthetic 7-bromo- (3), 7, 9-dibromo- (4), 7-iodo- (5), and 7, 9 dibromocryptolepine (6) were obtained in excellent yields by reaction of 1 with N-bromo- or N-iodosuccinimide in trifluoroacetic acid as a solvent. All compounds were active against Plasmodia in vitro, but 6 showed the most selective profile with respect to Hep G2 cells: P. falciparum (chloroquine-resistant strain K1), IC50 = 0.25 µM, SI= 113; late stage, gametocytes, IC50 = 2.2 µM, SI = 13; liver stage, P. berghei sporozoites IC50 = 6.13 µM, SI = 4.6. Compounds 3–6 were also active against the emerging zoonotic species P. knowlesi with 5 being the most potent (IC50 = 0.11 µM). In addition, 3–6 potently inhibited T. brucei in vitro at nM concentrations and good selectivity with 6 again being the most selective (IC50 = 59 nM, SI = 478). These compounds were also cytotoxic to wild-type ovarian cancer cells as well as adriamycin-resistant and, except for 5, cisplatin-resistant ovarian cancer cells. In an acute oral toxicity test in mice, 3–6 did not exhibit toxic effects at doses of up to 100 mg/kg/dose × 3 consecutive days. This study demonstrates that C.sanguinolenta may be utilized as a sustainable source of novel compounds that may lead to the development of novel for the treatment of malaria, African trypanosomiasis,
and cancer.

KeywordsSustainable pharmaceuticals; Halogenation of cryptolepine; Plasmodium falciparum; Plasmodium knowlesi; Trypanosoma brucei; Ovarian cancer
Year2022
JournalFrontiers in Pharmacology
Journal citation13, pp. 1-11
PublisherFrontiers
ISSN1663-9812
Digital Object Identifier (DOI)https://doi.org/10.3389/fphar.2022.875647
Official URLhttps://doi.org/10.3389/fphar.2022.875647
Publication dates
Print26 Apr 2022, 00:00
Publication process dates
Accepted08 Mar 2022, 00:00
Deposited04 May 2022
Publisher's version
License
File Access Level
Open
Output statusPublished
References

Adjalley, S. H., Johnston, G. L., Li, T., Eastman, R. T., Ekland, E. H., Eappen, A. G.,
et al. (2011). Quantitative Assessment of Plasmodium Falciparum Sexual Development Reveals Potent Transmission-Blocking Activity by Methylene Blue. Proc. Natl. Acad. Sci. U S A. 108, E1214–E1223. doi:10.1073/pnas.1112037108
Ansah, C., Khan, A., and Gooderham, N. J. (2005). In Vitro genotoxicity of the West African Anti-malarial Herbal Cryptolepis Sanguinolenta and its Major Alkaloid Cryptolepine. Toxicology 208, 141–147. doi:10.1016/j.tox.2004.11.026
Antonova-Koch, Y., Meister, S., Abraham, M., Luth, M. R., Ottilie, S., Lukens, A. K., et al. (2018). Open-source Discovery of Chemical Leads for Next-Generation
Chemoprotective Antimalarials. Science 362, eaat9446. doi:10.1126/science. aat9446
Barber, B. E., Grigg, M. J., Cooper, D. J., van Schalkwyk, D. A., William, T., Rajahram, G. S., et al. (2021). Clinical Management of Plasmodium Knowlesi Malaria. Adv. Parasitol. 113, 45–76. doi:10.1016/bs.apar.2021. 08.004
Bennett, T. N., Paguio, M., Gligorijevic, B., Seudieu, C., Kosar, A. D., Davidson, E., et al. (2004). Novel, Rapid, and Inexpensive Cell-Based Quantification of
Antimalarial Drug Efficacy. Antimicrob. Agents Chemother. 48, 1807–1810. doi:10.1128/AAC.48.5.1807-1810.2004
Bergström, M., Suresh, G., Naidu, V. R., and Unelius, C. R. (2017). N
-Iodosuccinimide (NIS) in Direct Aromatic Iodination. Eur. J. Org. Chem. 2017, 3234–3239. doi:10.1002/ejoc.201700173
Bonjean, K., De Pauw-Gillet, M. C., Defresne, M. P., Colson, P., Houssier, C., Dassonneville, L., et al. (1998). The DNA Intercalating Alkaloid Cryptolepine
Interferes with Topoisomerase II and Inhibits Primarily DNA Synthesis in B16 Melanoma Cells. Biochemistry 37, 5136–5146. doi:10.1021/bi972927q
Frontiers in Pharmacology | www.frontiersin.org 10 April 2022 | Volume 13 | Article 875647 Abacha et al. Cryptolepine Analogue Therapeutic Agents
Burrows, J. N., Duparc, S., Gutteridge, W. E., van Huijsduijnen, R. H., Kaszubska, W., Macintyre, F., et al
(2017). Erratum to: New Developments in Antimalarial Target Candidate and Product Profiles. Malar. J. 16, 151. doi:10.1186/ s12936-017-1809-9
Castanet, A.-S., Colobert, F., and Broutin, P.-E. (2002). Mild and Regioselective Iodination of Electron-Rich Aromatics with N -iodosuccinimide and Catalytic Trifluoroacetic Acid. Tetrahedron Lett. 43, 5047–5048. doi:10.1016/S0040-
4039(02)01010-9
Chen, Y.-J., Liu, H., Zhang, S.-Y., Li, H., Ma, K.-Y., Liu, Y.-Q., et al. (2021). Design,
Synthesis, and Antifungal Evaluation of Cryptolepine Derivatives against Phytopathogenic Fungi. J. Agric. Food Chem. 69, 1259–1271. doi:10.1021/ acs.jafc.0c06480
Dickie, E. A., Giordani, F., Gould, M. K., Mäser, P., Burri, C., Mottram, J. C., et al.
(2020). New Drugs for Human African Trypanosomiasis: A Twenty First century success story. Trop. Med. Infect. Dis. 5, 29. doi:10.3390/ tropicalmed5010029
Forkuo, A. D., Ansah, C., Mensah, K. B., Annan, K., Gyan, B., Theron, A., et al.(2017). In Vitro anti-malarial Interaction and Gametocytocidal Activity of
Cryptolepine. Malar. J. 16, 496. doi:10.1186/s12936-017-2142-z Gopalan, R. C., Emerce, E., Wright, C. W., Karahalil, B., Karakaya, A. E., and Anderson, D. (2011). Effects of the Anti-malarial Compound Cryptolepine and its Analogues in Human Lymphocytes and Sperm in the Comet Assay. Toxicol.
Lett. 207, 322–325. doi:10.1016/j.toxlet.2011.09.010
Grellier, P., Ramiaramanana, L., Millerioux, V., Deharo, E., Schrével, J., Frappier, F., et al. (1996). Antimalarial Activity of Cryptolepine and Isocryptolepine,
Alkaloids Isolated fromCryptolepis Sanguinolenta. Phytother. Res. 10, 317–321. doi:10.1002/(sici)1099-1573(199606)10:4<317::aid-ptr858>3.0.co;2-0
J, N. A., D, O. S., C, M. A., B, M. A., E, Y. D., and I, A.M. (2016). Influence of Ageand Staking on the Growth and Cryptolepine Concentration in Cultivated
Roots of Cryptolepis Sanguinolenta (Lindl.) Schlt. J. Med. Plants Res. 10,
113–121. doi:10.5897/JMPR2015.5793
Lisgarten, J. N., Coll, M., Portugal, J., Wright, C. W., and Aymami, J. (2002). The
Antimalarial and Cytotoxic Drug Cryptolepine Intercalates into DNA at Cytosine-Cytosine Sites. Nat. Struct. Biol. 9, 57–60. doi:10.1038/nsb729
Makler, M. T., Ries, J. M., Williams, J. A., Bancroft, J. E., Piper, R. C., Gibbins, B. L.,
et al. (1993). Parasite Lactate Dehydrogenase as an Assay for Plasmodium Falciparum Drug Sensitivity. Am. J. Trop. Med. Hyg. 48, 739–741. doi:10.4269/
ajtmh.1993.48.739
Oluwafemi, A. J., Okanla, E. O., Camps, P., Muñoz-Torrerob, D., Mackey, Z. B.,
Chiang, P. K., et al. (2009). Evaluation of Cryptolepine and Huperzine Derivatives as lead Compounds towards New Agents for the Treatment of Human African Trypanosomiasis. Nat. Prod. Commun. 4, 193–198. doi:10. 1177/1934578X0900400205
Onyeibor, O., Croft, S. L., Dodson, H. I., Feiz-Haddad, M., Kendrick, H., Millington, N. J., et al. (2005). Synthesis of Some Cryptolepine Analogues,
Assessment of Their Antimalarial and Cytotoxic Activities, and Consideration
of Their Antimalarial Mode of Action. J. Med. Chem. 48, 2701–2709. doi:10.1021/jm040893w
Pelfrene, E., Harvey Allchurch, M., Ntamabyaliro, N., Nambasa, V., Ventura, F. V.,Nagercoil, N., et al. (2019). The European Medicines Agency’s Scientific
Opinion on Oral Fexinidazole for Human African Trypanosomiasis. PLoSNegl. Trop. Dis. 13, e0007381.
doi:10.1371/journal.pntd.0007381
Reader, J., Botha, M., Theron, A., Lauterbach, S. B., Rossouw, C., Engelbrecht, D.,
et al. (2015). Nowhere to Hide: Interrogating Different Metabolic Parameters of
Plasmodium Falciparum Gametocytes in a Transmission Blocking Drug Discovery Pipeline towards Malaria Elimination. Malar. J. 14, 213. doi:10. 1186/s12936-015-0718-z
Reader, J., van der Watt, M. E., Taylor, D., Le Manach, C., Mittal, N., Ottilie, S., et al.(2021). Multistage and Transmission-Blocking Targeted Antimalarials
Discovered from the Open-Source MMV Pandemic Response Box. Nat.Commun. 12, 269. doi:10.1038/s41467-020-20629-8
Shnyder, S. D., Cooper, P. A., Millington, N. J., Gill, J. H., and Bibby, M. C. (2008).
Sodium Pancratistatin 3,4-O-Cyclic Phosphate, a Water-Soluble Synthetic Derivative of Pancratistatin, Is Highly Effective in a Human colon Tumor Model. J. Nat. Prod. 71, 321–324. doi:10.1021/np070477p
Shnyder, S. D., and Wright, C. W. (2021). Recent Advances in the Chemistry and Pharmacology of Cryptolepine. Prog. Chem. Org. Nat. Prod. 115, 177–203.
doi:10.1007/978-3-030-64853-4_4Smilkstein, M.,
Sriwilaijaroen, N., Kelly, J. X., Wilairat, P., and Riscoe, M. (2004).
Simple and Inexpensive Fluorescence-Based Technique for High-Throughput Antimalarial Drug Screening. Antimicrob. Agents Chemother. 48, 1803–1806. doi:10.1128/AAC.48.5.1803-1806.2004
Tackie, A. N., Boye, G. L., Sharaf, M. H. M., Schiff, P. L., Crouch, R. C., Spitzer, T.D., et al. (1993). Cryptospirolepine, a Unique spiro-nonacyclic Alkaloid Isolated from Cryptolepis Sanguinolenta. J. Nat. Prod. 56, 653–670. doi:10.1021/ np50095a001
Taylor, M. C., McLatchie, A. P., and Kelly, J. M. (2013). Evidence that Transport of Iron from the Lysosome to the Cytosol in African Trypanosomes Is Mediated
by a Mucolipin Orthologue. Mol. Microbiol. 89, 420–432. doi:10.1111/mmi. 12285
Trager, W., and Jensen, J. B. (1976). Human Malaria Parasites in Continuous Culture. Science 193, 673–675. doi:10.1126/science.781840
van Schalkwyk, D. A., Blasco, B., Davina Nunez, R., Liew, J. W. K., Amir, A., Lau, Y.L., et al. (2019). Knowlesi Exhibits Distinct In Vitro Drug Susceptibility Profiles from Those of Plasmodium Falciparum. Int.J. Parasitol. Drugs Drug Resist. 9, 93–99. doi:10.1016/j.ijpddr.2019.02.004
van Schalkwyk, D. A., Moon, R. W., Blasco, B., and Sutherland, C. J. (2017). Comparison of the Susceptibility of Plasmodium Knowlesi and Plasmodium Falciparum to Antimalarial Agents. J. Antimicrob. Chemother. 72, 3051– 3058. doi:10.1093/jac/dkx279WHO Fact Sheet (2021). Trypanosomiasis,
Human African (Sleeping
Sickness). https://www.who.int/news-room/fact-sheets/detail/
trypanosomiasis-human-african-(sleeping-sickness).
WHO (2016). Global Technical Strategy for Malaria 2016-2030. Geneva: World Health Organisation.
http://www.whoint/malaria/areas/global_technical_
strategy/en/.2016.WHO World Malaria Report (2021). World Malaria Report 2021: Regional Data and Trends. http://www.who.int/publications/m/item/WHO-UCN-GMP2021.09.
Wright, C. W., Addae-Kyereme, J., Breen, A. G., Brown, J. E., CoxCroft, M. F. S. L.,Croft, S. L., et al. (2001). Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents. J. Med. Chem. 44, 3187–3194.
doi:10.1021/jm010929+
Wright, C. W., Phillipson, J. D., Awe, S. O., Kirby, G. C., Warhurst, D. C., QuetinLeclercq, J., et al. (1996). Antimalarial Activity of Cryptolepine and Some Other
Anhydronium Bases. Phytother. Res. 10, 361–363. doi:10.1002/(sici)1099-1573(199606)10:4<361::aid-ptr845>3.0.co;2-n

Additional information

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: X-ray data for
compound 6. The corresponding CIF file with hkl and
intensity data have been deposited at the Cambridge
Crystallographic Data Center at https://www.ccdc.cam.ac.uk
with deposition codes 2155899 (Cu) and 2155900 (Mo).

Permalink -

https://repository.canterbury.ac.uk/item/90zz6/semi-synthetic-analogues-of-cryptolepine-as-a-potential-source-of-sustainable-drugs-for-the-treatment-of-malaria-human-african-trypanosomiasis-and-cancer

Download files


Publisher's version
fphar-13-875647 (2).pdf
License: CC BY 4.0
File access level: Open

  • 55
    total views
  • 28
    total downloads
  • 3
    views this month
  • 1
    downloads this month

Export as

Related outputs

Ultra-high resolution X-ray structure of orthorhombic bovine pancreatic Ribonuclease A at 100K
Lisgarten, D., Palmer. R.A., Cooper. J.B., Naylor. C.E., Talbert. R.C., Howlin. B.J., Lisgarten J.N., Konc. J., Najmudin. S. and Lobley. C.M.C. 2023. Ultra-high resolution X-ray structure of orthorhombic bovine pancreatic Ribonuclease A at 100K. BMC Chemistry. 17 (91), pp. 2-30. https://doi.org/10.1186/s13065-023-00959-6
X-ray structure at 150 K of the Polar Alkyl Mesogenic Compound 7CBB:4-Cyanobiphenyl-4′-heptylbiphenyl Carboxylate
Gupta, S.,, Choudhury, T,, Kumar Das, M., Lisgarten, D., Cockcroft, J.C., Palmer, R. A. and Lisgarten, J. N. 2020. X-ray structure at 150 K of the Polar Alkyl Mesogenic Compound 7CBB:4-Cyanobiphenyl-4′-heptylbiphenyl Carboxylate. Journal of Chemical Crystallography. pp. 3-13. https://doi.org/doi:10.1007/s10870-020-00826-5
Crystal and molecular structure and DFT calculations of the steroidaloxime 6E-hydroximino-androst-4-ene-3,17-dione ( C19H25NO3)a Molecule with Antiproliferative Activity
Palmer, R., Lisgarten, D., Cockcroft, J., Lisgarten, J., Talbert, R., Dines, T., Bansal, R., Chandra Archarya, P. and Amruta, S. 2018. Crystal and molecular structure and DFT calculations of the steroidaloxime 6E-hydroximino-androst-4-ene-3,17-dione ( C19H25NO3)a Molecule with Antiproliferative Activity. Journal of Chemical Crystallography. 49, pp. 1-8. https://doi.org/10.1007/s10870-018-0747-x
Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K
David R. Lisgarten, Rex A. Palmer, Carina M. C. Lobley, Claire E. Naylor, Babur Z. Chowdhry, Zakieh I. Al-Kurdi, Adnan A. Badwan, Brendan J. Howlin, Nicholas C. J. Gibbons, José W. Saldanha, John N. Lisgarten and Ajit K. Basak 2017. Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K. Chemistry Central Journal. 11 (73), pp. 1-26. https://doi.org/10.21203/rs.3.rs-2852137/v1