References | [1] A.P. Amrute, Z. Lodziana, C. Mondelli, F. Krumeich, J. Perez-Ramirez, Solid state chemistry of cuprous delafossites; synthesis and stability aspects, Chem. Mater. 25 (2013) 4423. [2] A.M. Abakumov, A.A. Tsirlin, I. Bakaimi, G. Van Tendeloo, A. Lappas, Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides: NaMnO2 polymorphism, redox potentials, and magnetism, Chem. Mater. 26 (2014) 3306. [3] A.M.L. Lopez, G.N.P. Oliveira, T.M. Mendonca, J. Agostinho Moreira, A. Almeida, J.P. Araujo, V.S. Amaral, J.G. Correira, Local distortions in multiferroic AgCrO2 triangular spin lattice, Phys. Rev. B. 84 (2011) 014434. [4] Q.-L. Liu, Z.-Y. Zhao, R.-D. Zhao, J.-H. Yi, Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion, J. Alloys Compd. 819 (2020) 153032. [5] M. Tato, R. Shirnoniski, M. Haglwara, F. Fujihara, Reactive templated grain growth and thermoelectric power factor enhancement of textured CuFeO2 ceramics, ACS Appl. Energy Mater. 3 (2020) 1979. [6] S.Y. Wang, G. Wang, X.P. Che, S.F. Wang, C.X. Li, Y.Q. Zhang, Q. Dong, J.S. Qiu, Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction, Environ. Sci. : Nano. 6 (2019) 2379. [7] Q.-M. Zhao, Z.-Y. Zhao, Q.-L. Lui, G.-Y. Yao, X.-D. Dong, Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances, J. Phys. D.; Appl. Phys. 53 (2020) 135102. [8] Y. Chen, Z. Yang, X.G. Jia, Y.H. Wu, N. Yuan, J. Ding, W.-H. Zhang, S.Z. Liu, Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer, Nano Energy. 61 (2019) 148. [9] C. Vecchini, M. Poienar, F. Damay, O. Adamopoulos, A. Daoud-Aladine, A. Lappas, J.M. Perez-Mato, L.C. Chapon, C. Martin, Magnetoelastic coupling in the frustrated antiferromagnetic triangular lattice CuMnO2, Phys. Rev. B. 82 (2010) 094404. [10] L.J. Vera Stimpson, S. Ramos, G.B.G. Stenning, M. Jura, S. Parry, G. Cibin, D.C. Arnold, Investigation of the role of morphology on the magnetic properties of Ca2Mn3O8 materials, Dalton Trans. 46 (2017) 14130. [11] L.J. Vera Stimpson, E.E. Rodriguez, C.M. Brown, G.B.G. Stenning, M. Jura, D.C. Arnold, Magnetic ordering in a bow-tie lattice, J. Mater. Chem. C. 6 (2018) 4541. [12] G.B. Ansell, M.A. Modrick, J.M. Longo, K.R. Poeppelmeier, H.S. Horowitz, Structure of calcium manganese oxide Ca2Mn3O8, Acta. Crystallogr. B. 28 (1982) 1795. [13] T.R. White, W.S. Glaunsinger, H.S. Horowitz, J.M. Longo, Magnetic properties of the layered compounds Ca2Mn3O8 and Cd2Mn3O8, J. Solid State Chem. 29 (1979) 205. [14] H.S. Horowitz, J.M. Longo, Calcium manganese oxide, Ca2Mn3O8, Inorg. Synth. 22 (1983) 73. [15] H.S. Horowitz, J.M. Longo, Phase relations in the Ca-Mn-O system, Mat. Res. Bull. 13 (1978) 1359. [16] Y.J. Park, M.A. Doeff, Synthesis and electrochemical characterization of M2Mn3O8 (M= Ca, Cu) compounds and derivatives, Solid State Ionics. 177 (2006) 893. [17] M.M. Najafpour, N. Pashaei S., Nayeri, Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation, Dalton Trans. 41 (2012) 4799. [18] M.M. Najafpour, D.J. Sedigh, Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication, Dalton Trans. 42 (2013) 12173. 11 [19] A. Ramirez, P. Bogdanoff, D. Friedrich, S. Fiechter, Synthesis of Ca2Mn3O8 films and their electrochemical studies for the oxygen evolution reaction (OER) of water, Nano Energy. 1 (2012) 282. [20] E. Braktash, I. Zaharieva, M. Schroder, C. Goebel, H. Dau, A. Thomas, Cyanamide route to calcium–manganese oxide foams for water oxidation, Dalton Trans. 42 (2013) 16920. [21] X. Han, T. Zhang, J. Du, F. Cheng, J. Chen, Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity, Chem. Sci. 4 (2013) 368. [22] J. Yang, H. Yu, Y. Wang, F. Qi, H. Liu, L.-. Lou, K. Yu, W. Zhou, S. Liu, Effect of Oxygen coordination environment of Ca-Mn oxides on the catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural, Catal. Sci. Technol. 9 (2019) 6659. [23] A. Gagrani, M. Alsultan, G.F. Swiegers, T. Tsuzuki, Comparitive evaluation of the structural and other features governing photo-electrochemical oxygen evolution by Ca/Mn oxides, Catal. 10 (2020) 2152. [24] D.C. Arnold, K.S. Knight, G. Catalan, S.A.T. Redfern, J.F. Scott, P. Lightfoot, F.D. Morrison, The β‐to‐γ Transition in BiFeO3: A Powder Neutron Diffraction Study, Adv. Funct. Mater. 20 (2010) 2116. [25] O. Mahroua, B. Alili, A. Ammari, B. Ballal, D. Bradai, M. Trari, On the physical and semiconducting properties of the crednerite AgMnO2, prepared by sol-gel auto-ignition, Ceram Int. 45 (2019) 10511. [26] A. Mazario-Fernandez, A. Torres-Pardo, A. Verela, M. Parras, J.L. Martinez, M.T. Fernandez-Diaz, M. Hernando, J.M. Gonzalez-Calbet, Atomically resolved short-range order at the nanoscale in the Ca–Mn–O system, Inorg. Chem. 56 (2017) 11753. [27] I. Bakaimi, R. Brescia, C.M. Brown, A.A. Tsirlin, M.A. Green, A. Lappas, Hydrationinduced spin-glass state in a frustrated Na-Mn-O triangular lattice, Phys. Rev. B. 93 (2016) 184422. [28] P. Zhang, J. Liu, K. Page, A. Navrotsky, Calorimetric study of the thermodynamic properties of Mn5O8, J. Am. Ceram. Soc. 102 (2019) 1394. [29] J. Schorne-Pinto, L. Cassayre, L. Presmanes, A. Barnabe, Insights on the stability and cationic nonstoichiometry of CuFeO2 delafossite, Inorg. Chem. 58 (2019) 6431. [30] D. Xiong, Q. Zhang, Z. Du, S.K. Verma, H. Li, X. Zhao, Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals, New J. Chem. 40 (2016) 6498. [31] Z. Du, D. Xiong, S.K. Verma, B. Liu, X. Zhao, L. Liu, H. Li, A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions, Inorg. Chem. Front. 5 (2018) 183. [32] B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34 (2001) 210. [33] A.C. Larson, R.B. von Dreele, General structure analysis system (GSAS), Los Alamos National Report LAUR. 96 (1994) 86. [34] E. Kroumova, M.I. Aroyo, J.M. Prez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao crystallographic server: useful databases and tools for phase-transition studies, Phase Transitions. 76 (2003) 155. [35] G. Pananpitiya, G. Avendano-Franco, J.P. Lewis, Structural and electronic properties of Fe-doped silver delafossites: AgAl1−xFexO2 and AgGa1−xFexO2 (x=1–5%), Comput. Mater. Sci. 170 (2019) 109173. [36] T. Zhao, A.L. Liu, Z.-Y. Zhao, High-throughput screening delafossite CuMO2 (M = IIIA, 3d, 4d, 5d, and RE) optoelectronic functional materials based on first-principles calculations, J. Phys. Chem. C. 123 (2019) 14292. [37] https://doi.org/10.5286/ISIS.E.RB1520166. [38] https://doi.org/10.5286/ISIS.E.RB1720182. |
---|