A comprehensive variable temperature study of the layered oxide Ca2Mn3O8

Journal article

Vera-Stimpson, L.J., McNulty, J.A., Morrison, F.D., Mahajan, A., McCabe, E.E., Gibbs, A.S., Stenning, G.B.G., Jura, M. and Arnold, D.C. 2020. A comprehensive variable temperature study of the layered oxide Ca2Mn3O8. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2020.155633
AuthorsVera-Stimpson, L.J., McNulty, J.A., Morrison, F.D., Mahajan, A., McCabe, E.E., Gibbs, A.S., Stenning, G.B.G., Jura, M. and Arnold, D.C.

Ca2Mn3O8 forms a delafossite-related layered structure, which crystallises with monoclinic C2/m symmetry. Compared with the delafossite-structure, the MnO6 layers in Ca2Mn3O8 exhibit an ordered cation void which forms a magnetic ‘bow-tie’ like connectivity of Mn4+ ion layers separated by Ca2+ ions. In-situ variable temperature diffraction data demonstrates that the structure is robust up to a temperature of approximately 1173 K before the material decomposes into the perovskite, CaMnO3 and marokite, CaMn2O4 phases. Simultaneous thermal analysis suggests that a very small amount of water remains within the layers post synthesis. Impedance spectroscopy indicates that Ca2Mn3O8 is an electronic conductor in the range ~400 – 700 K with an activation energy of 0.50±0.01 eV.

KeywordsCa2Mn3O8; Layered oxides; Neutron diffraction; Electronic measurements
JournalJournal of Alloys and Compounds
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jallcom.2020.155633
Official URLhttps://doi.org/10.1016/j.jallcom.2020.155633
Publication dates
Online08 Jun 2020
Publication process dates
Accepted13 May 2020
Deposited26 Jun 2020
Accepted author manuscript
Output statusPublished

[1] A.P. Amrute, Z. Lodziana, C. Mondelli, F. Krumeich, J. Perez-Ramirez, Solid state
chemistry of cuprous delafossites; synthesis and stability aspects, Chem. Mater. 25 (2013)
[2] A.M. Abakumov, A.A. Tsirlin, I. Bakaimi, G. Van Tendeloo, A. Lappas, Multiple
twinning as a structure directing mechanism in layered rock-salt-type oxides: NaMnO2
polymorphism, redox potentials, and magnetism, Chem. Mater. 26 (2014) 3306.
[3] A.M.L. Lopez, G.N.P. Oliveira, T.M. Mendonca, J. Agostinho Moreira, A. Almeida, J.P.
Araujo, V.S. Amaral, J.G. Correira, Local distortions in multiferroic AgCrO2 triangular spin
lattice, Phys. Rev. B. 84 (2011) 014434.
[4] Q.-L. Liu, Z.-Y. Zhao, R.-D. Zhao, J.-H. Yi, Fundamental properties of delafossite
CuFeO2 as photocatalyst for solar energy conversion, J. Alloys Compd. 819 (2020) 153032.
[5] M. Tato, R. Shirnoniski, M. Haglwara, F. Fujihara, Reactive templated grain growth and
thermoelectric power factor enhancement of textured CuFeO2 ceramics, ACS Appl. Energy
Mater. 3 (2020) 1979.
[6] S.Y. Wang, G. Wang, X.P. Che, S.F. Wang, C.X. Li, Y.Q. Zhang, Q. Dong, J.S. Qiu,
Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and
redox-reaction, Environ. Sci. : Nano. 6 (2019) 2379.
[7] Q.-M. Zhao, Z.-Y. Zhao, Q.-L. Lui, G.-Y. Yao, X.-D. Dong, Delafossite CuGaO2 as
promising visible-light-driven photocatalyst: synthesize, properties, and performances, J.
Phys. D.; Appl. Phys. 53 (2020) 135102.
[8] Y. Chen, Z. Yang, X.G. Jia, Y.H. Wu, N. Yuan, J. Ding, W.-H. Zhang, S.Z. Liu,
Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped
CuGaO2 as efficient mesoporous hole-transporting layer, Nano Energy. 61 (2019) 148.
[9] C. Vecchini, M. Poienar, F. Damay, O. Adamopoulos, A. Daoud-Aladine, A. Lappas,
J.M. Perez-Mato, L.C. Chapon, C. Martin, Magnetoelastic coupling in the frustrated
antiferromagnetic triangular lattice CuMnO2, Phys. Rev. B. 82 (2010) 094404.
[10] L.J. Vera Stimpson, S. Ramos, G.B.G. Stenning, M. Jura, S. Parry, G. Cibin, D.C.
Arnold, Investigation of the role of morphology on the magnetic properties of Ca2Mn3O8
materials, Dalton Trans. 46 (2017) 14130.
[11] L.J. Vera Stimpson, E.E. Rodriguez, C.M. Brown, G.B.G. Stenning, M. Jura, D.C.
Arnold, Magnetic ordering in a bow-tie lattice, J. Mater. Chem. C. 6 (2018) 4541.
[12] G.B. Ansell, M.A. Modrick, J.M. Longo, K.R. Poeppelmeier, H.S. Horowitz, Structure
of calcium manganese oxide Ca2Mn3O8, Acta. Crystallogr. B. 28 (1982) 1795.
[13] T.R. White, W.S. Glaunsinger, H.S. Horowitz, J.M. Longo, Magnetic properties of the
layered compounds Ca2Mn3O8 and Cd2Mn3O8, J. Solid State Chem. 29 (1979) 205.
[14] H.S. Horowitz, J.M. Longo, Calcium manganese oxide, Ca2Mn3O8, Inorg. Synth. 22
(1983) 73.
[15] H.S. Horowitz, J.M. Longo, Phase relations in the Ca-Mn-O system, Mat. Res. Bull. 13
(1978) 1359.
[16] Y.J. Park, M.A. Doeff, Synthesis and electrochemical characterization of M2Mn3O8 (M=
Ca, Cu) compounds and derivatives, Solid State Ionics. 177 (2006) 893.
[17] M.M. Najafpour, N. Pashaei S., Nayeri, Calcium manganese(IV) oxides: biomimetic and
efficient catalysts for water oxidation, Dalton Trans. 41 (2012) 4799.
[18] M.M. Najafpour, D.J. Sedigh, Water oxidation by manganese oxides, a new step towards
a complete picture: simplicity is the ultimate sophistication, Dalton Trans. 42 (2013) 12173.
[19] A. Ramirez, P. Bogdanoff, D. Friedrich, S. Fiechter, Synthesis of Ca2Mn3O8 films and
their electrochemical studies for the oxygen evolution reaction (OER) of water, Nano Energy.
1 (2012) 282.
[20] E. Braktash, I. Zaharieva, M. Schroder, C. Goebel, H. Dau, A. Thomas, Cyanamide
route to calcium–manganese oxide foams for water oxidation, Dalton Trans. 42 (2013)
[21] X. Han, T. Zhang, J. Du, F. Cheng, J. Chen, Porous calcium–manganese oxide
microspheres for electrocatalytic oxygen reduction with high activity, Chem. Sci. 4 (2013) 368.
[22] J. Yang, H. Yu, Y. Wang, F. Qi, H. Liu, L.-. Lou, K. Yu, W. Zhou, S. Liu, Effect of
Oxygen coordination environment of Ca-Mn oxides on the catalytic performance of Pd
supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural, Catal. Sci. Technol.
9 (2019) 6659.
[23] A. Gagrani, M. Alsultan, G.F. Swiegers, T. Tsuzuki, Comparitive evaluation of the
structural and other features governing photo-electrochemical oxygen evolution by Ca/Mn
oxides, Catal. 10 (2020) 2152.
[24] D.C. Arnold, K.S. Knight, G. Catalan, S.A.T. Redfern, J.F. Scott, P. Lightfoot, F.D.
Morrison, The β‐to‐γ Transition in BiFeO3: A Powder Neutron Diffraction Study, Adv.
Funct. Mater. 20 (2010) 2116.
[25] O. Mahroua, B. Alili, A. Ammari, B. Ballal, D. Bradai, M. Trari, On the physical and
semiconducting properties of the crednerite AgMnO2, prepared by sol-gel auto-ignition,
Ceram Int. 45 (2019) 10511.
[26] A. Mazario-Fernandez, A. Torres-Pardo, A. Verela, M. Parras, J.L. Martinez, M.T.
Fernandez-Diaz, M. Hernando, J.M. Gonzalez-Calbet, Atomically resolved short-range order
at the nanoscale in the Ca–Mn–O system, Inorg. Chem. 56 (2017) 11753.
[27] I. Bakaimi, R. Brescia, C.M. Brown, A.A. Tsirlin, M.A. Green, A. Lappas, Hydrationinduced spin-glass state in a frustrated Na-Mn-O triangular lattice, Phys. Rev. B. 93 (2016)
[28] P. Zhang, J. Liu, K. Page, A. Navrotsky, Calorimetric study of the thermodynamic
properties of Mn5O8, J. Am. Ceram. Soc. 102 (2019) 1394.
[29] J. Schorne-Pinto, L. Cassayre, L. Presmanes, A. Barnabe, Insights on the stability and
cationic nonstoichiometry of CuFeO2 delafossite, Inorg. Chem. 58 (2019) 6431.
[30] D. Xiong, Q. Zhang, Z. Du, S.K. Verma, H. Li, X. Zhao, Low temperature hydrothermal
synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals, New J. Chem. 40
(2016) 6498.
[31] Z. Du, D. Xiong, S.K. Verma, B. Liu, X. Zhao, L. Liu, H. Li, A low temperature
hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution
reaction in alkaline solutions, Inorg. Chem. Front. 5 (2018) 183.
[32] B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34
(2001) 210.
[33] A.C. Larson, R.B. von Dreele, General structure analysis system (GSAS), Los Alamos
National Report LAUR. 96 (1994) 86.
[34] E. Kroumova, M.I. Aroyo, J.M. Prez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H.
Wondratschek, Bilbao crystallographic server: useful databases and tools for phase-transition
studies, Phase Transitions. 76 (2003) 155.
[35] G. Pananpitiya, G. Avendano-Franco, J.P. Lewis, Structural and electronic properties of
Fe-doped silver delafossites: AgAl1−xFexO2 and AgGa1−xFexO2 (x=1–5%), Comput. Mater.
Sci. 170 (2019) 109173.
[36] T. Zhao, A.L. Liu, Z.-Y. Zhao, High-throughput screening delafossite CuMO2 (M =
IIIA, 3d, 4d, 5d, and RE) optoelectronic functional materials based on first-principles
calculations, J. Phys. Chem. C. 123 (2019) 14292.
[37] https://doi.org/10.5286/ISIS.E.RB1520166.
[38] https://doi.org/10.5286/ISIS.E.RB1720182.

Additional information

In press, Journal pre-proof

Permalink -


Restricted files

Accepted author manuscript

  • 17
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Phase stability of the layered oxide, Ca2Mn3O8: probing the pressure-temperature phase diagram
Vera-Stimpson, L., Etherdo-Sibley K. J., Ridley C. J., Bull C. L. and Arnold D. C 2020. Phase stability of the layered oxide, Ca2Mn3O8: probing the pressure-temperature phase diagram. Materials Advances. 1 (6), pp. 1841 - 1848. https://doi.org/10.1039/D0MA00464B
Spin-glass behavior in KxRu4-yNiyO8 hollandite materials
Vera-Stimpson, L. 2018. Spin-glass behavior in KxRu4-yNiyO8 hollandite materials. Physical Review B (PRB). 98 (17). https://doi.org/10.1103/PhysRevB.98.174429
PZT-like structural phase transitions in the BiFeO3-KNbO3 solid solution
Lennox, R., Taylor, D., Vera-Stimpson, L., Stenning, G., Jura, M., Price, M., Rodriguez, E. and Arnold, D. 2015. PZT-like structural phase transitions in the BiFeO3-KNbO3 solid solution. Dalton Transactions. https://doi.org/10.1039/C5DT00140D
Investigation of the role of morphology on the magnetic properties of Ca2Mn3O8 materials
Vera-Stimpson, L., Ramos, S., Stenning, G., Jura, M. and Arnold, D. 2017. Investigation of the role of morphology on the magnetic properties of Ca2Mn3O8 materials. Dalton Transactions. 41. https://doi.org/10.1039/C7DT03053C
Magnetic ordering in a frustrated bow-tie lattice
Vera-Stimpson, L., Rodriguez, E., Brown, C., Stenning, G., Jura, M. and Arnold, D. 2018. Magnetic ordering in a frustrated bow-tie lattice. Journal of Materials Chemistry C. https://doi.org/10.1039/C7TC05187E