Genetic consequences of intensive conservation management for the Mauritius parakeet

Journal article


Raisin, C., Frantz, A., Kundu, S., Greenwood, A., Jones, C., Zuel, N. and Groombridge, J. 2012. Genetic consequences of intensive conservation management for the Mauritius parakeet. Conservation Genetics. 13 (3), pp. 707-715. https://doi.org/10.1007/s10592-012-0319-0
AuthorsRaisin, C., Frantz, A., Kundu, S., Greenwood, A., Jones, C., Zuel, N. and Groombridge, J.
Abstract

For conservation managers tasked with recovering threatened species, genetic structure can exacerbate the rate of loss of genetic diversity because alleles unique to a sub-population are more likely to be lost by the effects of random genetic drift than if a population is panmictic. Given that intensive management techniques commonly used to recover threatened species frequently involve movement of individuals within and between populations, managers need to be aware not only of pre-existing levels of genetic structure but also of the potential effects that intensive management might have on these patterns. The Mauritius parakeet (Psittacula echo) has been the subject of an intensive conservation programme, involving translocation and reintroduction that has recovered the population from less than 20 individuals in 1987 to approximately 500 in 2010. Analysis of genotype data derived from 18 microsatellite markers developed for this species reveals a clear signal of structure in the population before intensive management began, but which subsequently disappears following management intervention. This study illustrates the impacts that conservation management can have on the genetic structure of an island endemic population and demonstrates how translocations or reintroductions can benefit populations of endangered species by reducing the risk of loss of genetic diversity.

KeywordsMauritius parakeet (Psittacula echo); Conservation; Genetic diversity
Year2012
JournalConservation Genetics
Journal citation13 (3), pp. 707-715
PublisherSpringer
ISSN1566-0621
Digital Object Identifier (DOI)https://doi.org/10.1007/s10592-012-0319-0
Publication dates
PrintJun 2012
Publication process dates
Deposited07 Apr 2016
Accepted12 Jan 2012
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/87qxw/genetic-consequences-of-intensive-conservation-management-for-the-mauritius-parakeet

  • 58
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Genetic homogenisation of two major orchid viruses through global trade‐based dispersal of their hosts
Fogell, Deborah J., Kundu, Samit and Roberts, David L. 2019. Genetic homogenisation of two major orchid viruses through global trade‐based dispersal of their hosts. Plants, People, Planet. 1 (4), pp. 356-362. https://doi.org/10.1002/ppp3.46
Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis
Pickles, R., Groombridge, J., Rojas, V., Van Damme, P., Gotelli, D., Kundu, S., Bodmer, R., Ariani, C., Iyengar, A. and Jordan, W. 2011. Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis. Molecular Phylogenetics and Evolution. 61 (3), pp. 616-627. https://doi.org/doi:10.1016/j.ympev.2011.08.017
The evolution of the Indian ocean parrots (Psittaciformes): extinction, adaptive radiation and eustacy
Kundu, S., Jones, C., Prys-Jones, R. and Groombridge, J. 2012. The evolution of the Indian ocean parrots (Psittaciformes): extinction, adaptive radiation and eustacy. Molecular Phylogenetics and Evolution. 62 (1), pp. 296-305. https://doi.org/10.1016/j.ympev.2011.09.025
Recombination of globally circulating Varicella Zoster Virus
Norberg, P., Depledge, D., Kundu, S., Atkinson, C., Brown, J., Haque, T., Hussaini, Y., MacMohan, E., Molyneaux, P., Papaevangelou, V., Sengupta, N., Koay, E., Tang, J., Underhill, G., Grahn, A., Studahl, M., Breuer, J. and Bergstrom, T. 2015. Recombination of globally circulating Varicella Zoster Virus. Journal of Virology. https://doi.org/10.1128/JVI.00437-15
Micro-CT X-rays do not fragment DNA in preserved bird skins
Paredes, U., Prys-Jones, R., Adams, M., Groombridge, J., Kundu, S., Agapow, P. and Abel, R. 2012. Micro-CT X-rays do not fragment DNA in preserved bird skins. Journal Of Zoological Systematics And Evolutionary Research. 50 (3), pp. 247-250. https://doi.org/10.1111/j.1439-0469.2012.00657.x
A tangled history: patterns of major histocompatibility complex evolution in the African mole-rats (family: Bathyergidae)
Kundu, S. and Faulkes, C. 2007. A tangled history: patterns of major histocompatibility complex evolution in the African mole-rats (family: Bathyergidae). Biological Journal of the Linnean Society. 91 (3), pp. 493-503. https://doi.org/10.1111/j.1095-8312.2007.00814.x
Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples
Christiansen, M., Brown, A., Kundu, S., Tutill, H., Williams, R., Brown, J., Holdstock, J., Holland, M., Stevenson, S., Dave, J., Tong, W., Einer-Jensen, K., Depledge, D. and Breuer, J. 2014. Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. BMC Infectious Diseases. 14 (591). https://doi.org/10.1186/s12879-014-0591-3
Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of Varicella Zoster Virus and its vaccine in humans
Depledge, D., Kundu, S., Jensen, N., Gray, E., Jones, M., Steinberg, S., Gershon, A., Kinchington, P., Schmid, S., Balloux, F., Nichols, R. and Breuer, J. 2014. Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of Varicella Zoster Virus and its vaccine in humans. Molecular Biology and Evolution. 31 (2), pp. 397-409. https://doi.org/10.1093/molbev/mst210
Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a Circovirus in the endangered Echo parakeet
Kundu, S., Faulkes, C., Greenwood, A., Jones, C., Kaiser, P., Lyne, O., Black, S., Chowrimootoo, A. and Groombridge, J. 2012. Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a Circovirus in the endangered Echo parakeet. Journal of Virology. 86 (9), pp. 5221-5229. https://doi.org/10.1128/JVI.06504-11
Evolution of cocirculating Varicella-Zoster Virus genotypes during a Chickenpox outbreak in Guinea-Bissau
Depledge, D., Gray, E., Kundu, S., Cooray, S., Poulsen, A., Aaby, P. and Breuer, J. 2014. Evolution of cocirculating Varicella-Zoster Virus genotypes during a Chickenpox outbreak in Guinea-Bissau. Journal of Virology. 88 (24), pp. 13936-13946. https://doi.org/10.1128/JVI.02337-14
Next-generation whole genome sequencing identifies the direction of Norovirus transmission in linked patients
Kundu, S., Lockwood, J., Depledge, D., Chaudhry, Y., Aston, A., Rao, K., Hartley, J., Goodfellow, I. and Breuer, J. 2013. Next-generation whole genome sequencing identifies the direction of Norovirus transmission in linked patients. Clinical Infectious Diseases. 57 (3), pp. 407-414. https://doi.org/10.1093/cid/cit287
Rates of vaccine evolution show strong effects of latency: implications for Varicella Zoster Virus epidemiology
Weinert, L., Depledge, D., Kundu, S., Gershon, A., Nichols, R., Balloux, F., Welch, J. and Breuer, J. 2015. Rates of vaccine evolution show strong effects of latency: implications for Varicella Zoster Virus epidemiology. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu406
Evidence for evolutionary distinctiveness of a newly discovered population of sooglossid frogs on Praslin island, Seychelles
Taylor, M., Bunbury, N., Chong-Seng, L., Doak, N., Kundu, S., Griffiths, R. and Groombridge, J. 2012. Evidence for evolutionary distinctiveness of a newly discovered population of sooglossid frogs on Praslin island, Seychelles. Conservation Genetics. 13 (2), pp. 557-566. https://doi.org/10.1007/s10592-011-0307-9
Patterns of MHC selection in African mole-rats, family Bathyergidae: the effects of sociality and habitat
Kundu, S. and Faulkes, C. 2004. Patterns of MHC selection in African mole-rats, family Bathyergidae: the effects of sociality and habitat. Proceedings of the Royal Society B: Biological Sciences. 271 (1536), pp. 273-278. https://doi.org/10.1098/rspb.2003.2584