Oxidized LDL accelerates cartilage destruction and inflammatory chondrocyte death in osteoarthritis by disrupting the TFEB-regulated autophagy-lysosome pathway

Journal article


Lee, J., Kim, Y., Jhun, J., Na, H., Um, In Gyu, Choi, J., Woo, J., Kim, S., Shetty, A., Kim, S. and Cho, M. 2024. Oxidized LDL accelerates cartilage destruction and inflammatory chondrocyte death in osteoarthritis by disrupting the TFEB-regulated autophagy-lysosome pathway. Immune Network. 24 (3). https://doi.org/10.4110/in.2024.24.e15
AuthorsLee, J., Kim, Y., Jhun, J., Na, H., Um, In Gyu, Choi, J., Woo, J., Kim, S., Shetty, A., Kim, S. and Cho, M.
Abstract

Osteoarthritis (OA) involves cartilage degeneration, thereby causing inflammation and pain. Cardiovascular diseases, such as dyslipidemia, are risk factors for OA; however, the mechanism is unclear. We investigated the effect of dyslipidemia on the development of OA. Treatment of cartilage cells with low-density lipoprotein (LDL) enhanced abnormal autophagy but suppressed normal autophagy and reduced the activity of transcription factor EB (TFEB), which is important for the function of lysosomes. Treatment of LDL-exposed chondrocytes with rapamycin, which activates TFEB, restored normal autophagy. Also, LDL enhanced the inflammatory death of chondrocytes, an effect reversed by rapamycin. In an animal model of hyperlipidemia-associated OA, dyslipidemia accelerated the development of OA, an effect reversed by treatment with a statin, an anti-dyslipidemia drug, or rapamycin, which activates TFEB. Dyslipidemia reduced the autophagic flux and induced necroptosis in the cartilage tissue of patients with OA. The levels of triglycerides, LDL, and total cholesterol were increased in patients with OA compared to those without OA. The C-reactive protein level of patients with dyslipidemia was higher than that of those without dyslipidemia after total knee replacement arthroplasty. In conclusion, oxidized LDL, an important risk factor of dyslipidemia, inhibited the activity of TFEB and reduced the autophagic flux, thereby inducing necroptosis in chondrocytes.

KeywordsOsteoarthritis; Dyslipidemia; Low-density lipoprotein; Autophagy; Necroptis
Year2024
JournalImmune Network
Journal citation24 (3)
PublisherThe Korean Association of Immunologists
ISSN1598-2629
2092-6685
Digital Object Identifier (DOI)https://doi.org/10.4110/in.2024.24.e15
Official URLhttps://immunenetwork.org/DOIx.php?id=10.4110/in.2024.24.e15
FunderNational Research Foundation of Korea
Korea Health Industry Development Institute
Publication dates
Online12 Apr 2024
Publication process dates
Accepted03 Apr 2024
Deposited08 Jul 2024
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/98545/oxidized-ldl-accelerates-cartilage-destruction-and-inflammatory-chondrocyte-death-in-osteoarthritis-by-disrupting-the-tfeb-regulated-autophagy-lysosome-pathway

  • 21
    total views
  • 0
    total downloads
  • 6
    views this month
  • 0
    downloads this month

Export as

Related outputs

Autologous collagen-induced chondrogenesis: From bench to clinical development
Chun, You Seung, Kim, Seon Ae, Kim, Yun Hwan, Lee, Joong Hoon, Shetty, Asode Ananthram and Kim, S. 2023. Autologous collagen-induced chondrogenesis: From bench to clinical development. Medicina (Kaunas, Lithuania). 59 (3), p. 530. https://doi.org/10.3390/medicina59030530
Cartilage regeneration using human umbilical cord blood derived mesenchymal stem cells: A systematic review and meta-analysis
Lee, D., Kim, Seon Ae, Song, Jun-Seob, Shetty, Asode Ananthram, Kim, Bo-Hyoung and Kim, S. 2022. Cartilage regeneration using human umbilical cord blood derived mesenchymal stem cells: A systematic review and meta-analysis. Medicina (Kaunas, Lithuania). 58 (12), p. 1801. https://doi.org/10.3390/medicina58121801
A combination of surgical and chemical induction in a rabbit model for osteoarthritis of the knee
Go, Eun Jeong, Kim, Seon Ae, Cho, Mi-La, Lee, Kwan Soo, Shetty, Asode Ananthram and Kim, S. 2022. A combination of surgical and chemical induction in a rabbit model for osteoarthritis of the knee. Tissue Engineering and Regenerative Medicine. https://doi.org/10.1007/s13770-022-00488-8
Use of injectable acellular dermal matrix combined with negative pressure wound therapy in open diabetic foot amputation
Ahn, Jiyong, Park, Ho Youn, Shetty, Asode Ananthram and Hwang, Wonha 2022. Use of injectable acellular dermal matrix combined with negative pressure wound therapy in open diabetic foot amputation. Journal of Wound Care. 31 (4), pp. 310-320. https://doi.org/10.12968/jowc.2022.31.4.310
Cell therapy for osteonecrosis of femoral head and joint preservation
Chun, You Seung, Lee, Dong Hwan, Won, Tae Gu, Kim, Chan Sik, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Cell therapy for osteonecrosis of femoral head and joint preservation. Journal of Clinical Orthopaedics and Trauma. 24, p. 101713. https://doi.org/10.1016/j.jcot.2021.101713
Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis
Vaish, Abhishek, Shanmugasundaram, Saseendar, Kim, Seon Ae, Lee, Dong-Hwan, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis. Journal of Clinical Orthopaedics and Trauma. 24, p. 101718. https://doi.org/10.1016/j.jcot.2021.101718
Characterization of wild-type and STAT3 signaling-suppressed mesenchymal stem cells obtained from hemovac blood concentrates.
Lee, Dong Hwan, Kim, Seon Ae, Go, Eun Jeong, Yoon, Chi Young, Cho, Mi-La, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Characterization of wild-type and STAT3 signaling-suppressed mesenchymal stem cells obtained from hemovac blood concentrates. Annals of Translational Medicine. 9 (16), p. 1284. https://doi.org/10.21037/atm-21-791
Improved healing of rabbit patellar tendon defects after an atelocollagen injection
Kim, Duck Kyu, Ahn, Jiyong, Kim, Seon Ae, Go, Eun Jeong, Lee, Dong Hwan, Park, Seung Chan, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Improved healing of rabbit patellar tendon defects after an atelocollagen injection. The American Journal of Sports Medicine. 49 (11), pp. 2924-2932. https://doi.org/10.1177/03635465211030508
Comparative characterization of mesenchymal progenitor cells from osteoarthritic and rheumatoid arthritic human articular cartilage
Bm, A., Rao, S., Shetty, S., Shetty, A., Shetty, S., Kim, S. and Mohana Kumar, B. 2021. Comparative characterization of mesenchymal progenitor cells from osteoarthritic and rheumatoid arthritic human articular cartilage. Cytotherapy. 23 (5), p. S56. https://doi.org/10.1016/S1465324921003467
Preliminary results of high fibular osteotomy (HFO) and cartilage regeneration procedure for medial compartment osteoarthritis of knee with varus deformity
Jaheer, H., Shetty, A., Choi, N., Kim, K., Thirumal, S., Song, J., Kim, K., Chun, Y. and Kim, S. 2019. Preliminary results of high fibular osteotomy (HFO) and cartilage regeneration procedure for medial compartment osteoarthritis of knee with varus deformity. Regenerative Therapy. 10, pp. 112-117. https://doi.org/10.1016/j.reth.2019.02.001
A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology.
Shetty, A., Kim, S., Ahmed, S., Trattnig, S., Kim, S. and Jang, H. 2018. A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology. The Annals of the Royal College of Surgeons of England. 100 (3), pp. 240-246. https://doi.org/10.1308/rcsann.2017.0223
Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrows aspirate concentrate
Park, H., Shetty, A., Kim, J., Kim, Y., Jang, J., Choi, N., Lee, J. and Kim, S. 2017. Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrows aspirate concentrate. Cells Tissues Organs. 203 (6), pp. 339-352. https://doi.org/10.1159/000455829
Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC)
Huh, S., Shetty, A., Ahmed, S., Lee, D. and Kim, S. 2016. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC). Journal of Clinical Orthopaedics and Trauma. 7 (3), pp. 153-156. https://doi.org/10.1016/j.jcot.2016.05.004
Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique
Shetty, A., Kim, S., Shetty, V., Jang, J., Huh, S. and Lee, D. 2016. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique. Journal of Clinical Orthopaedics and Trauma. 7 (3), pp. 164-169. https://doi.org/10.1016/j.jcot.2016.05.003