The nature of multiple boron-nitrogen bonds studied using electron localization function (ELF), electron density (AIM), and natural bond orbital (NBO) methods

Journal article


Mierzwa, G., Gordon, A.J. and Berski, S. 2020. The nature of multiple boron-nitrogen bonds studied using electron localization function (ELF), electron density (AIM), and natural bond orbital (NBO) methods. Journal of Molecular Modeling. 26 (136), pp. 1-23. https://doi.org/10.1007/s00894-020-04374-9
AuthorsMierzwa, G., Gordon, A.J. and Berski, S.
Abstract

Local nature of the boron-nitrogen (BN) bonding with different formal multiplicities (B≡N, B=N, B-N) have been investigated for 25 experimentally established organoboron molecules in both real and the Hilbert space, using topological analysis of electron localization function (ELF), electron density (AIM), and natural bond orbital (NBO) method. Each BN bond has been represented (ELF) by the bonding disynaptic attractor V(B,N), with the basin electron population between 5.72e and 1.83e, confirming possible existence of all the three bond types. A covalent character of bonding can be associated with the dative mechanism due to the V(B,N) bonding basin formed mainly (91–96%) by the N electron density. Similarly, the NBO method shows 2-center natural orbitals, consisting largely of the hybrids from the N atom. The AIM analysis yields the features typical for shared (H(3,−1)(r) < 0) and closed-shell (∇2ρ(3,−1)(r) > 0) interactions. The delocalization indices, describing electron exchanges between B and N quantum atoms, are smaller than 1.5, even for formally very short triple B≡N bonds.

KeywordsB-N; B=N ; B≡N; Chemical bond; Double bond; Triple bond; ELF; Electron localization; Attractor; Basin
Year2020
JournalJournal of Molecular Modeling
Journal citation26 (136), pp. 1-23
PublisherSpringer
ISSN1610-2940
0948-5023
Digital Object Identifier (DOI)https://doi.org/10.1007/s00894-020-04374-9
Official URLhttps://link.springer.com/article/10.1007/s00894-020-04374-9
Publication dates
Online13 May 2020
Publication process dates
Accepted31 Mar 2020
Deposited04 Jan 2024
Publisher's version
License
File Access Level
Open
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/96v17/the-nature-of-multiple-boron-nitrogen-bonds-studied-using-electron-localization-function-elf-electron-density-aim-and-natural-bond-orbital-nbo-methods

Download files


Publisher's version
s00894-020-04374-9 2020.pdf
License: CC BY 4.0
File access level: Open

  • 52
    total views
  • 17
    total downloads
  • 4
    views this month
  • 2
    downloads this month

Export as

Related outputs

How can we educate future generations to effectively respond to global challenges and live sustainably?
Gordon, A.J. and Simpson, S. 2024. How can we educate future generations to effectively respond to global challenges and live sustainably? in: Billingsley, B., Chappell, K. and Simpson, S. (ed.) The Future of Knowledge: The Role of Epistemic Insight in Interdisciplinary Learning London Bloomsbury. pp. 117-136
Importance of entrepreneurship for students and academics.
Gordon, A.J. 2024. Importance of entrepreneurship for students and academics.
The challenges of leading and managing Polish Saturday schools in the United Kingdom.
Gordon, A. J. and Kozinska, M.A. 2024. The challenges of leading and managing Polish Saturday schools in the United Kingdom.
Building collaborations for a better future: Empowering diverse communities in Kent through collaboration, innovation and research
Gordon, A. J. and Stancu, R. F. 2024. Building collaborations for a better future: Empowering diverse communities in Kent through collaboration, innovation and research.
Creative strategies for implementing digital tools
Gordon, A.J. and Keane, K. 2024. Creative strategies for implementing digital tools .
Harnessing the power of AI in business
Gordon, A. J. and Keane, K. 2024. Harnessing the power of AI in business.
A self-study of teaching teachers using Epistemic Insight
Warhurst, A., Gordon, A.J. and Campbell, R. 2024. A self-study of teaching teachers using Epistemic Insight.
Exploring leadership and entrepreneurship in Polish supplementary schools in England: A pilot study
Gordon, A. J. and Kozinska, M.A. 2024. Exploring leadership and entrepreneurship in Polish supplementary schools in England: A pilot study.
Female entrepreneurship: Challenges and opportunities
Gordon, A.J. 2024. Female entrepreneurship: Challenges and opportunities.
EI STFC Power of Light animation - introducing Big Questions and Diamond Light Source
Cullimore, M., Billingsley, B., Heyes, J. and Gordon, A. EI STFC Power of Light animation - introducing Big Questions and Diamond Light Source. https://doi.org/10.5281/zenodo.7439214
Topological analysis of Electron Localization Function (ELF) as a tool for understanding electronic structure
Berski, S. and Gordon, A. J. 2023. Topological analysis of Electron Localization Function (ELF) as a tool for understanding electronic structure. in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier.
Collaborating to improve teaching and learning about sustainability within an international learning community
Gordon, A., Simpson, S., Lawson, F. and Thomas, C. 2023. Collaborating to improve teaching and learning about sustainability within an international learning community.
Embedding epistemic insight (EI) in teacher training programmes in English universities: barriers and how to overcome them
Billingsley, B., Riga, F., Windsor, Mark and Gordon, A. 2023. Embedding epistemic insight (EI) in teacher training programmes in English universities: barriers and how to overcome them. Teacher Development. https://doi.org/10.1080/13664530.2023.2236056
Co-creation of learning resources that cross disciplinary boundaries within an international learning community
Gordon, A., Thomas, C., Simpson, S. and Lawson, F. 2023. Co-creation of learning resources that cross disciplinary boundaries within an international learning community.
Power of Light – collaborative co-creation of innovative resources for primary science education.
Gordon, A. and Cullimore, M. 2023. Power of Light – collaborative co-creation of innovative resources for primary science education.
Teaching sustainability and stewardship workshop 1: Collaborative approach to developing engagement with science and religion: Exploring sustainability in an international learning community
Gordon, A., Lawson, F., Simpson, S. and Thomas, C. 2023. Teaching sustainability and stewardship workshop 1: Collaborative approach to developing engagement with science and religion: Exploring sustainability in an international learning community.
Leading learning and teaching transformation across the ITE EI consortium –impact across the partner institutions
Gordon, A. 2023. Leading learning and teaching transformation across the ITE EI consortium –impact across the partner institutions.
Do multiple bonds to the boron atom exist?
Berski, S., Mierzwa, G. and Gordon, A. 2023. Do multiple bonds to the boron atom exist?
The Power of Light Zine 3 - Why do we explore the world around us? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK
Cullimore, M., Halford, K., Day, S,, Gordon, A., Billingsley, B. and Mosselmans, F. 2022. The Power of Light Zine 3 - Why do we explore the world around us? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK. https://doi.org/10.5281/zenodo.7438811
The Power of Light Zine 2 - Why does life exist? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK
Cullimore, M., Geraki, T., Linton, P., Gordon, A., Billingsley, B. and Halford, K. 2022. The Power of Light Zine 2 - Why does life exist? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK. https://doi.org/10.5281/zenodo.7438698
The Power of Light Zine 1 - Why do things change? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK
Cullimore, M., Halford, K., Mosselmans, F., Reeve, L., Billingsley, B. and Gordon, A. 2022. The Power of Light Zine 1 - Why do things change? - an epistemically insightful way to explore the nature of science and research at Diamond Light Source, UK. https://doi.org/10.5281/zenodo.7401129
CPD 1 - Embedding Epistemic Insight and Big Questions across a whole school curriculum
Simpson, S. and Gordon, A. 2022. CPD 1 - Embedding Epistemic Insight and Big Questions across a whole school curriculum. https://doi.org/10.5281/zenodo.7729394
Creating epistemically insightful learning experiences in primary classrooms: insights into the nature of science
Gordon, A., Simpson, S. and Lawson, F. 2022. Creating epistemically insightful learning experiences in primary classrooms: insights into the nature of science.
Transforming teacher education - introducing ITE students to Epistemic Insight: a workshop
Warhurst, A., Campbell, R. and Gordon, A.J. 2022. Transforming teacher education - introducing ITE students to Epistemic Insight: a workshop.
Bristlebots and other friends. A progression of Epistemic insight workshops using small things to ask big questions
Bentley, K., Gordon, A.J. and Litchfield, A. 2022. Bristlebots and other friends. A progression of Epistemic insight workshops using small things to ask big questions.
Science, religion and sustainability in schools: outlining a teacher learning community approach.
Gordon, A.J., Lawson, F., Simpson, S. and Thomas, C. 2022. Science, religion and sustainability in schools: outlining a teacher learning community approach.
The epistemic insight digest: Issue : Autumn 2022
Gordon, A., Shalet, D., Simpson, S., Hassanin, H., Lawson, F., Lawson, M., Litchfield, A., Thomas, C., Canetta, E., Manley, K. and Choong, C. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue : Autumn 2022. Canterbury Canterbury Christ Church University.
Leading transformation in ITE teaching within the EI consortium
Gordon, A.J. 2022. Leading transformation in ITE teaching within the EI consortium.
The epistemic insight digest: Issue 4: Spring 2022
Gordon, A., Cullimore, M., Hackett, L., Shalet, D., Jennings, B-L, Semaan, A. S. and Pickett, M. Shalet, D. (ed.) 2022. The epistemic insight digest: Issue 4: Spring 2022. Canterbury Canterbury Christ Church University.
Interdisciplinary engineering education - essential for the 21st century
Gordon, A., Simpson, S. and Hassanin, H. 2022. Interdisciplinary engineering education - essential for the 21st century.
Theoretical insights and quantitative prediction of the nature of boron–chalcogen (O, S, Se, Te) interactions using the electron density and the electron localisation function (ELF)
Michalski, M., Gordon, A. and Berski, S. 2021. Theoretical insights and quantitative prediction of the nature of boron–chalcogen (O, S, Se, Te) interactions using the electron density and the electron localisation function (ELF). Polyhedron. https://doi.org/10.1016/j.poly.2021.115495
In the search for ditriel B⋯Al non-covalent bonding
Berski, S. and Gordon, A. 2021. In the search for ditriel B⋯Al non-covalent bonding. New Journal of Chemistry . 45, pp. 16740-16749. https://doi.org/10.1039/D1NJ01963E
The nature of the triple Btriple bondB, double, Bdouble bondB, single, B–B, and one-electron, B.B boron-boron bonds from the topological analysis of electron localisation function (ELF) perspective
Mierzwa, G., Gordon, A.J. and Berski, S. 2020. The nature of the triple Btriple bondB, double, Bdouble bondB, single, B–B, and one-electron, B.B boron-boron bonds from the topological analysis of electron localisation function (ELF) perspective. Journal of Molecular Structure. 1221, p. 128530. https://doi.org/10.1016/j.molstruc.2020.128530
Epistemic insight: a systematic problem and an ecosystemic solution.
Nassaji, M. and Gordon, A.J. 2020. Epistemic insight: a systematic problem and an ecosystemic solution.
Topological analysis of the electron localisation function (ELF) applied to the electronic structure of oxaziridine: the nature of N-O bond
Michalski, M., Gordon, A.J. and Berski, S. 2019. Topological analysis of the electron localisation function (ELF) applied to the electronic structure of oxaziridine: the nature of N-O bond. Stuctural Chemistry. 30, pp. 2181-2189. https://doi.org/10.1007/s11224-019-01407-9
Topological analysis of electron localisation function: Unlocking the nature of B-C chemical bond. Possible existence of multiple bonds B@C and B„C
Mierzwa, G., Gordon, A.J. and Berski, S. 2019. Topological analysis of electron localisation function: Unlocking the nature of B-C chemical bond. Possible existence of multiple bonds B@C and B„C. Polyhedron. 170, pp. 180-187. https://doi.org/https://doi.org/10.1016/j.poly.2019.05.035
The nature of the T=T double bond (T = B, Al, Ga, In) in dialumene and its derivatives: topological study of the electron localization function (ELF)
Michalski, M., Gordon, A.J. and Berski, S. 2019. The nature of the T=T double bond (T = B, Al, Ga, In) in dialumene and its derivatives: topological study of the electron localization function (ELF). Journal of Molecular Modeling. 25, p. 211. https://doi.org/10.1007/s00894-019-4075-7
The electronic structure of molecules with the B F and B Cl bond in light of the topological analysis of electron localization function: Possibility of multiple bonds?
Mierzwa, G., Gordon, A.J. and Berski, S. 2018. The electronic structure of molecules with the B F and B Cl bond in light of the topological analysis of electron localization function: Possibility of multiple bonds? International Journal of Quantum Chemistry. 118, p. e25781. https://doi.org/10.1002/qua.25781
On the nature of the boron–copper interaction. Topological study of the electron localisation function (ELF)
Mierzwa, G., Gordon, A.J. and Berski, S. 2018. On the nature of the boron–copper interaction. Topological study of the electron localisation function (ELF). New Journal of Chemistry . 42, pp. 17096-17114. https://doi.org/10.1039/c8nj03516d
Characterisation of the reaction mechanism between ammonia and formaldehyde from the topological analysis of ELF and catastrophe theory perspective
Cmikiewicz, A., Gordon, A.J. and Berski, S. 2018. Characterisation of the reaction mechanism between ammonia and formaldehyde from the topological analysis of ELF and catastrophe theory perspective. Structural Chemistry. 29, pp. 243-255. https://doi.org/10.1007/s11224-017-1024-x
The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes
Makarewicz, E., Lundell, J., Gordon, A.J. and Berski, S. 2016. The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes. Journal of Molecular Modeling. 22 (119). https://doi.org/10.1007/s00894-016-2970-8
The electronic structure of the xenon insertion compounds XXe–MX2 (X = F, Cl, Br, I; M = B, Al, Ga)
Makarewicz, E., Gordon, A. and Berski, S. 2016. The electronic structure of the xenon insertion compounds XXe–MX2 (X = F, Cl, Br, I; M = B, Al, Ga). Polyhedron. 117, pp. 97-109. https://doi.org/10.1016/j.poly.2016.05.025
On the nature of interactions in the F2OXe…NCCH3 complex: Is there the Xe(IV)-N bond?
Makarewicz, E,, Lundell, J., Gordon, A.J. and Berski, S. 2016. On the nature of interactions in the F2OXe…NCCH3 complex: Is there the Xe(IV)-N bond? Journal of Computational Chemistry. 37 (20), pp. 1876-1886. https://doi.org/10.1002/jcc.24402
Diversity of the nature of the nitrogen-oxygen bond in inorganic and organic nitrites in the light of topological analysis of electron localisation function (ELF)
Berski, S. and Gordon, A. J. 2016. Diversity of the nature of the nitrogen-oxygen bond in inorganic and organic nitrites in the light of topological analysis of electron localisation function (ELF). in: Applications of Topological Methods in Molecular Chemistry https://link.springer.com/chapter/10.1007/978-3-319-29022-5_19 Springer. pp. 529-551
How many electrons form chemical bonds in the NgBeS (Ng = Ar, Kr, Xe) molecules? Topological study using the electron localisation function (ELF) and electron localisability indicator (ELI-D)
Makarewicz, E., Gordon, A.J. and Berski, S. 2016. How many electrons form chemical bonds in the NgBeS (Ng = Ar, Kr, Xe) molecules? Topological study using the electron localisation function (ELF) and electron localisability indicator (ELI-D). Structural Chemistry. 27, pp. 57-64. https://doi.org/10.1007/s11224-015-0719-0
The DFT study on the reaction between benzaldehyde and 4-amine-4H-1,2,4-triazole and their derivatives as a source of stable hemiaminals and schiff bases. Effect of substitution and solvation on the reaction mechanism
Berski, S., Gordon, A. J. and Ciunik, Z.L. 2015. The DFT study on the reaction between benzaldehyde and 4-amine-4H-1,2,4-triazole and their derivatives as a source of stable hemiaminals and schiff bases. Effect of substitution and solvation on the reaction mechanism. Journal of Molecular Modeling. 21, p. 57. https://doi.org/10.1007/s00894-015-2606-4
Nature of the bonding in the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules. Topological study on electron density and the electron localization function (ELF)
Makarewicz, E., Gordon, A. J. and Berski, S. 2015. Nature of the bonding in the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules. Topological study on electron density and the electron localization function (ELF). Journal of Physical Chemistry A. 119 (11), p. 2401–2412. https://doi.org/10.1021/jp508266k
On the multiple B-O bonding using the topological analysis of electron localisation function (ELF)
Mierzwa, G., Gordon, A. J., Latajka, Z. and Berski, S. 2014. On the multiple B-O bonding using the topological analysis of electron localisation function (ELF). Computational and Theoretical Chemistry. 1053, pp. 130-141. https://doi.org/10.1016/j.comptc.2014.10.003