Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: a systematic review
Journal article
Hunt, M., Everaert, L., Brown, M., Muraru, L., Hatzidimitriadou, E. and Desloovere, K. 2022. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: a systematic review . Gait & Posture. 98, pp. 343-354. https://doi.org/10.1016/j.gaitpost.2022.09.082
Authors | Hunt, M., Everaert, L., Brown, M., Muraru, L., Hatzidimitriadou, E. and Desloovere, K. |
---|---|
Abstract | Abstract Research Question: Does exoskeleton-assisted walking improve gait in children with CP? Methods: The PRISMA guidelines were used to conduct this systematic review. Articles were obtained in a search of the following electronic databases: Embase, CINAHL Complete, PubMed, Web of Science and MEDLINE. Studies investigating spatiotemporal, kinematic, kinetic, muscle activity and/or physiological parameters during exoskeleton-assisted walking in children with CP were included. All articles were assessed for methodological quality using an adapted version of the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group, provided by NIH. Results: Thirteen studies were included. They involved the use of the following exoskeletons: tethered knee exoskeleton, pediatric knee exoskeleton (P.REX), untethered ankle exoskeleton, WAKE-Up ankle module, WAKE-Up ankle & knee module and unilateral ankle exosuit. Methodological quality varied, with key limitations in sample size and allocated time to adapt to the exoskeleton. There was a consensus that robotic exoskeletons improve gait given careful optimisation of exoskeleton torque and sufficient exoskeleton practice time for each participant. Improvements in gait included reduced metabolic cost of walking, increased walking speed, and increased knee and hip extension during stance. Furthermore, exoskeletons with an actuated ankle module were shown to promote normal ankle rocker function. Significance: Robotic exoskeletons have the potential to improve the mobility of CP children and may therefore increase community participation and improve quality of life. Future work should involve larger controlled intervention studies utilising robotic exoskeletons to improve gait in children with CP. These studies should ensure sufficient exoskeleton practice time for each participant. |
Keywords | Robotic exoskeletons; Gait; Cerebral palsy; Assistive devices ; Powered orthosis; Biomechanics |
Year | 2022 |
Journal | Gait & Posture |
Journal citation | 98, pp. 343-354 |
Publisher | Elsevier |
ISSN | 0966-6362 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.gaitpost.2022.09.082 |
Official URL | https://www.sciencedirect.com/science/article/pii/S0966636222005914 |
Funder | 2 Seas Interreg |
Publication dates | |
Online | 25 Oct 2022 |
Publication process dates | |
Accepted | 19 Sep 2022 |
Deposited | 31 Oct 2022 |
Publisher's version | License File Access Level Open |
Output status | Published |
References | [1] C. Cans, Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers, Dev. Med. Child Neurol. 42 (2000) 816–824. [2] A. Johnson, Prevalence and characteristics of children with cerebral palsy in Europe, Dev. Med. Child Neurol. 44 (2002) 633–640. [3] E. Sellier, M.J. Platt, G.L. Andersen, I. Krägeloh-Mann, J. De La Cruz, C. Cans, M. Van Bakel, C. Arnaud, M. Delobel, J. Chalmers, V. McManus, A. Lyons, J. Parkes, H. Dolk, K. Himmelmann, M. Pahlman, V. Dowding, A. Colver, L. Pennington, K. Horridge, J. Kurinczuk, G. Surman, M.J. Platt, P. Udall, G. Rackauskaite, M.G. Torrioli, M. Marcelli, G. Andersen, S. Julsen Hollung, M. Bottos, G. Gaffney, J. De la Cruz, C. Pallas, D. Neubauer, M. Jekovec-Vrhovšek, D. Virella, M. Andrada, A. Greitane, K. Hollody, S. Sigurdardottir, I. Einarsson, M. Honold, K. Rostasy, V. Mejaski-Bosnjak, Decreasing prevalence in cerebral palsy: A multi-site European population-based study, 1980 to 2003, Dev. Med. Child Neurol. 58 (2016) [4] R.W. Armstrong, Definition and classification of cerebral palsy, Dev. Med. Child Neurol. 49 (2007) 166. [5] I. Novak, M. Hines, S. Goldsmith, R. Barclay, Clinical prognostic messages from a systematic review on cerebral palsy, Pediatrics. 130 (2012). [6] N.G. Moreau, A.W. Bodkin, K. Bjornson, A. Hobbs, M. Soileau, K. Lahasky, Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: Systematic review and Meta-Analysis, Phys. Ther. 96 (2016) 1938–1954. [7] R. Schenker, W. Coster, S. Parush, Participation and activity performance of students with cerebral palsy within the school environment, Disabil. Rehabil. 27 (2005) 539–552. [8] E. Beckung, G. Hagberg, Neuroimpairments, activity limitations, and participation restrictions in children with cerebral palsy, Dev. Med. Child Neurol. 44 (2002) 309–316. [9] A. Caliskan Uckun, C. Celik, H. Ucan, N.K. Ordu Gokkaya, Comparison of effects of lower extremity orthoses on energy expenditure in patients with cerebral palsy, Dev. Neurorehabil. 17 (2014) 388–392. [10] A. Aboutorabi, M. Arazpour, M. Ahmadi Bani, H. Saeedi, J.S. Head, Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: A systematic review, Ann. Phys. Rehabil. Med. 60 (2017) 393–402. [11] J.P. Betancourt, P. Eleeh, S. Stark, N.B. Jain, Impact of Ankle-Foot Orthosis on Gait Efficiency in Ambulatory Children with Cerebral Palsy: A Systematic Review and Meta-analysis, Am. J. Phys. Med. Rehabil. 98 (2019) 759–770. [12] M. Wingstrand, G. Hägglund, E. Rodby-Bousquet, Ankle-foot orthoses in children with cerebral palsy: A cross sectional population based study of 2200 children, BMC Musculoskelet. Disord. 15 (2014) 1–7. [13] Z.F. Lerner, D.L. Damiano, H.-S. Park, A.J. Gravunder, T.C. Bulea, A Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy: Design and Initial Application, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (2017) 650–659. [14] I. novak, S. Mcintyre, C. Morgan, L. Campbell, L. Dark, N. Morton, E. Stumbles, S.A. Wilson, S. Goldsmith, A systematic review of interventions for children with cerebral palsy: State of the evidence, Dev. Med. Child Neurol. 55 (2013) 885–910. [15] I. Mileti, J. Taborri, S. Rossi, M. Petrarca, F. Patane, P. Cappa, Evaluation of the effects on stride-to-stride variability and gait asymmetry in children with Cerebral Palsy wearing the WAKE-up ankle module, in: 2016 IEEE Int. Symp. Med. Meas. Appl., IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2016: pp. 286–291. [16] G. Orekhov, Y. Fang, J. Luque, Z.F. Lerner, Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals with Cerebral Palsy, IEEE Trans. Neural Syst. Rehabil. Eng. 28 (2020) 461–467. [17] Y. Mataki, H. Kamada, H. Mutsuzaki, Y. Shimizu, R. Takeuchi, M. Mizukami, K. Yoshikawa, K. Takahashi, M. Matsuda, N. Iwasaki, H. Kawamoto, Y. Wadano, Y. Sankai, M. Yamazaki, Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: A case report, BMC Res. Notes. 11 (2018). [18] S. Rossi, A. Colazza, M. Petrarca, E. Castelli, P. Cappa, H.I. Krebs, Feasibility Study of a Wearable Exoskeleton for Children: Is the Gait Altered by Adding Masses on Lower Limbs?, PLoS One. 8 (2013). [19] E. Russell Esposito, K.A. Schmidtbauer, J.M. Wilken, Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction, J. Neuroeng. Rehabil. 15 (2018) 1–10. [20] C. Bayon, R. Raya, Robotic Therapies for Children with Cerebral Palsy: A Systematic Review, Transl. Biomed. 7 (2016). [21] S. Lefmann, R. Russo, S. Hillier, The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review, J. Neuroeng. Rehabil. 14 (2017). [22] L.R. Bunge, A.J. Davidson, B.R. Helmore, A.D. Mavrandonis, T.D. Page, T.R. Schuster-Bayly, S. Kumar, Effectiveness of powered exoskeleton use on gait in individuals with cerebral palsy: A systematic review, PLoS One. 16 (2021) e0252193. [23] L.E. Cañadas Martinez, S. Montero Mendoza, Efectividad de los sistemas automatizados de marcha en niños con parálisis cerebral: una revisión sistemática, Fisioterapia. 42 (2020) 75–84. [24] H. Nedergård, A. Arumugam, M. Sandlund, A. Bråndal, C.K. Häger, Effect of robotic-assisted gait training on objective biomechanical measures of gait in persons post-stroke: a systematic review and meta-analysis, J. Neuroeng. Rehabil. 18 (2021) 1–22. [25] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement, BMJ. 339 (2009) 332–336. [26] Study Quality Assessment Tools | NHLBI, NIH, (n.d.). https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-too... (accessed August 4, 2020). [27] Z.F. Lerner, G.M. Gasparri, M.O. Bair, J.L. Lawson, J. Luque, T.A. Harvey, A.T. Lerner, An untethered ankle exoskeleton improves walking economy in a pilot study of individuals with cerebral palsy, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (2018) 1985–1993. [28] Z.F. Lerner, T.A. Harvey, J.L. Lawson, A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy, Ann. Biomed. Eng. 47 (2019) 1345–1356. [30] J. Chen, J. Hochstein, C. Kim, L. Tucker, L.E. Hammel, D.L. Damiano, T.C. Bulea, A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy, Front. Robot. AI. 8 (2021) 1–16. [31] Z.F. Lerner, D.L. Damiano, T.C. Bulea, A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2016: pp. 2214–2217. [32] Z.F. Lerner, D.L. Damiano, T.C. Bulea, A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy, Sci. Transl. Med. 9 (2017). [33] Z.F. Lerner, D.L. Damiano, T.C. Bulea, The effects of exoskeleton assisted knee extension on lower-extremity gait kinematics, kinetics, and muscle activity in children with cerebral palsy, Sci. Rep. 7 (2017). [34] Z.F. Lerner, D.L. Damiano, T.C. Bulea, Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait, in: L. Amirabdollahian, F and Burdet, E and Masia (Ed.), IEEE Int. Conf. Rehabil. Robot., IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2017: pp. 492–497. [35] F. Patané, S. Rossi, F. Del Sette, J. Taborri, P. Cappa, WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking, IEEE Trans. Neural Syst. Rehabil. Eng. 25 (2017) 906–916. [36] M. Thurston, J.P. Kulmala, J. Nurminen, J. Avela, Beyond orthoses: Using an exosuit to enhance the walking pattern of patients with unilateral Cerebral Palsy, Gait Posture. 90 (2021) 271–273. [37] F. Reyes, C. Niedzwecki, D. Gaebler-Spira, Technological Advancements in Cerebral Palsy Rehabilitation, Phys. Med. Rehabil. Clin. N. Am. 31 (2020) 117–129. [38] Z.F. Lerner, D.L. Damiano, T.C. Bulea, Estimating the Mechanical Behavior of the Knee Joint during Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses, IEEE Trans. Neural Syst. Rehabil. Eng. 24 (2016) 621–629. [39] B.C. Conner, J. Luque, Z.F. Lerner, Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy, Ann. Biomed. Eng. 48 (2020) 1309–1321. [40] D. Sutherland, The development of mature gait, Gait Posture. 6 (1997) 163–170. [41] K.J. Ganley, C.M. Powers, Gait kinematics and kinetics of 7-year-old children: A comparison to adults using age-specific anthropometric data, Gait Posture. 21 (2005) [42] T. Jung, Y. Kim, L.E. Kelly, M.F. Abel, Biomechanical and perceived differences between overground and treadmill walking in children with cerebral palsy, Gait Posture. 45 (2016) 1–6. [43] G.M. Gasparri, J. Luque, Z.F. Lerner, G. G.M., L. J., L. Z.F., Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance, IEEE Trans. Neural Syst. Rehabil. Eng. 27 (2019) 751–759. |
https://repository.canterbury.ac.uk/item/92z82/effectiveness-of-robotic-exoskeletons-for-improving-gait-in-children-with-cerebral-palsy-a-systematic-review
Download files
297
total views48
total downloads0
views this month1
downloads this month