References | 1. Ullah, Z., & Baseer, M. (2022). Operational planning and design of market-based virtual power plant with high penetration of renewable energy sources. International Journal of Renewable Energy Development, 11(3), 620-629. DOI: 10.14710/ijred.2022.44586 2. Naval, N., & Yusta, J. M. (2021). Virtual power plant models and electricity markets-A review. Renewable and Sustainable Energy Reviews, 149, 111393. DOI:10.1016/J.RSER.2021.111393 3. Ullah, Z., & Mirjat, N. H. (2021). Virtual power plant: state of the art providing energy flexibility to local distribution grids. In E3S Web of Conferences (Vol. 231, p. 01002). EDP Sciences. DOI:10.1051/E3SCONF/202123101002 4. Wang, X., Liu, Z., Zhang, H., Zhao, Y., Shi, J., & Ding, H. (2019). A review on virtual power plant concept, application and challenges. 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 4328-4333.DOI:10.1109/ISGTAsia.2019.8881433 5. Koza, E., & Öztürk, A. (2021, September). A Literature Review to Analyze the State of the Art of Virtual Power Plants in Context of Information Security. In Environmental Informatics (pp. 49-69). Springer, Cham. DOI: 10.1007/978-3-030-88063-7_4 6. Ullah, Z., Mokryani, G., Campean, F., & Hu, Y. F. (2019). Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources. IET Energy Systems Integration, 1(3), 147-157. https://doi.org/10.1049/iet-esi.2018.0041 7. Yan, Q., Ai, X., & Li, J. (2021). Low-Carbon Economic Dispatch Based on a CCPP-P2G Virtual Power Plant Considering Carbon Trading and Green Certificates. Sustainability, 13(22), 12423. DOI: 10.3390/su132212423 8. Bhuiyan, E. A., Hossain, M. Z., Muyeen, S. M., Fahim, S. R., Sarker, S. K., & Das, S. K. (2021). Towards next generation virtual power plant: Technology review and frameworks. Renewable and Sustainable Energy Reviews, 150, 111358. DOI:10.1016/j.rser.2021.111358 9. Act, C.C., 2008. Climate Change Act 2008. See http://www. legislation. gov. uk/ukpga/2008/27/contents (accessed 13/11/2013). 10. Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., & Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature, 534(7609), 631-639. 11. McKenna, K., & Keane, A. (2015). Residential load modeling of price-based demand response for network impact studies. IEEE Transactions on Smart Grid, 7(5), 2285-2294. DOI: 10.1109/TSG.2015.2437451 12. Ullah, Z., & Hassanin, H. (2022). Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources. Energies, 15(14), 5296. DOI: 10.3390/en15145296 13. Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Anvari-Moghaddam, A., & Siano, P. (2020). risk-averse probabilistic framework for scheduling of virtual power plants considering demand response and uncertainties. International Journal of Electrical Power & Energy Systems, 121, 106126. DOI:10.1016/j.ijepes.2020.106126 14. Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Shafie-Khah, M., & Catalão, J. P. (2020). Risk-Averse Optimal Energy and Reserve Scheduling for Virtual Power Plants Incorporating Demand Response Programs. IEEE Transactions on Smart Grid, 12(2), 1405-1415. DOI: 10.1109/TSG.2020.3026971 15. Ullah, Zahid., Mirjat, N,H. (2021). "Optimisation and management of virtual power plants energy mix trading model." International Journal of Renewable Energy Development. DOI:10.14710/ijred.2022.39295 16. Ullah, Z., & Mirjat, N. H. (2021). Modelling and analysis of virtual power plants interactive operational characteristics in distribution systems. Energy Conversion and Economics. DOI: 10.1049/enc2.12033 17. Liu, J., Tang, H., Xiang, Y., Liu, J., & Zhang, L. (2017). Multi-stage market transaction method with participation of virtual power plants. Electric Power Construction, 38(3), 137-144. 18. Baseer, M., Mokryani, G., Zubo, R. H., & Cox, S. (2019). Planning of HMG with high penetration of renewable energy sources. IET Renewable Power Generation, 13(10), 1724-1730. DOI: 10.1049/iet-rpg.2018.6024 19. Lu, X., & Cheng, L. (2021). Day-Ahead Scheduling for Renewable Energy Generation Systems considering Concentrating Solar Power Plants. Mathematical Problems in Engineering, 2021. DOI:10.1155/2021/9488222 20. Yu, S., Wei, Z., Sun, G. Q., Sun, Y. H., & Wang, D. (2014). A bidding model for a virtual power plant considering uncertainties. Automation of Electric Power Systems, 38(22), 43-49. 21. Zhou, C., Huang, G., & Chen, J. (2018). Planning of electric power systems considering virtual power plants with dispatchable loads included: an inexact two-stage stochastic linear programming model. Mathematical Problems in Engineering, 2018. DOI:10.1155/2018/7049329 22. Aien, M., Hajebrahimi, A., & Fotuhi-Firuzabad, M. (2016). A comprehensive review on uncertainty modeling techniques in power system studies. Renewable and Sustainable Energy Reviews, 57, 1077-1089. DOI:10.1016/J.RSER.2015.12.070 23. Ullah, Z., & Baseer, M. (2022, August). Demand Response Strategy of a Virtual Power Plant for Internal Electricity Market. In 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE) (pp. 100-104). IEEE. DOI: 10.1109/SEGE55279.2022.9889759 24. Ahmed, S. A., & Mahammed, H. O. (2012). A statistical analysis of wind power density based on the Weibull and Ralyeigh models of “Penjwen Region” Sulaimani/Iraq. Jordan Journal of Mechanical and Industrial Engineering, 6(2), 135-140. https://doi.org/10.1016/j.renene.2003.07.002 25. Reddy, S. S., Abhyankar, A. R., & Bijwe, P. R. (2012, July). Market clearing for a wind-thermal power system incorporating wind generation and load forecast uncertainties. In 2012 IEEE power and energy society general meeting (pp. 1-8). IEEE. DOI: 10.1109/PESGM.2012.6345335 26. Jónsdóttir, G. M., & Milano, F. (2019, August). Modeling solar irradiance for short-term dynamic analysis of power systems. In 2019 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. DOI: 10.1109/PESGM40551.2019.8974093 27. Moe, T. T., & Lin, K. M. (2018). Solar irradiance and power output modeling of photovoltaic module for reliability studies: case study of Mandalay Region. ICSTI, Mandalay, 1-6. 28. Reddy, S. S., Panigrahi, B. K., Kundu, R., Mukherjee, R., & Debchoudhury, S. (2013). Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique. International Journal of Electrical Power & Energy Systems, 53, 113-122. DOI:10.1016/j.ijepes.2013.03.032 29. Lu, X., & Cheng, L. (2021). Day-Ahead Scheduling for Renewable Energy Generation Systems considering Concentrating Solar Power Plants. Mathematical Problems in Engineering, 2021. DOI:10.1155/2021/9488222 30. Montoya-Bueno, S., Muñoz-Hernández, J. I., & Contreras, J. (2016). Uncertainty management of renewable distributed generation. Journal of Cleaner Production, 138, 103-118. DOI:10.1016/j.jclepro.2016.02.135 31. Widén, J. (2011). Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE transactions on sustainable energy, 2(2), 177-184. DOI: 10.1109/TSTE.2010.2101620 32. Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2013). Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal, 9(1), 152-164. DOI: 10.1109/JSYST.2013.2272236 33. Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2013). Optimal posturing in day-ahead market clearing for uncertainties considering anticipated real-time adjustment costs. IEEE Systems Journal, 9(1), 177-190. DOI: 10.1109/JSYST.2013.2265664 34. Li, Y., & Zio, E. (2012). Uncertainty analysis of the adequacy assessment model of a distributed generation system. Renewable Energy, 41, 235-244. DOI:10.1016/j.renene.2011.10.025 35. Ajoulabadi, A., Gazijahani, F. S., & Najafi Ravadanegh, S. (2020). Risk-Constrained Intelligent Reconfiguration of Multi-Microgrid-Based Distribution Systems under Demand Response Exchange. In Demand Response Application in Smart Grids (pp. 119-145). Springer, Cham. 36. Baringo, L., & Rahimiyan, M. (2020). Virtual Power Plants and Electricity Markets. In e-Book. Springer Nature. 37. Soroudi, A. (2017). Power system optimization modeling in GAMS (Vol. 78). Switzerland: Springer. |
---|