Single vs replicate Real-Time PCR SARS-CoV-2 testing: Lessons learned for effective pandemic management.

Journal article


Webb, William R., Thapa, Gauri, Tirnoveanu, Alice, Kallu, Sabrina, Loo Jin Yi, Charlene, Shah, Nirali, Macari, Joseph, Mitchell, Sadie, Fagg, Graham J, Jeremiah, Rachael N, Theminimulle, Sandiya, Vuono, Romina and Mylona, A. 2022. Single vs replicate Real-Time PCR SARS-CoV-2 testing: Lessons learned for effective pandemic management. PLoS ONE. 17 (7), p. e0269883. https://doi.org/10.1371/journal.pone.0269883
AuthorsWebb, William R., Thapa, Gauri, Tirnoveanu, Alice, Kallu, Sabrina, Loo Jin Yi, Charlene, Shah, Nirali, Macari, Joseph, Mitchell, Sadie, Fagg, Graham J, Jeremiah, Rachael N, Theminimulle, Sandiya, Vuono, Romina and Mylona, A.
AbstractCoronavirus Disease 19 (COVID-19) caused by the SARS-CoV-2 virus remains a global pandemic having a serious impact on national economies and healthcare infrastructure. Accurate infection detection protocols are key to policy guidance and decision making. In this pilot study, we compared single versus replicate PCR testing for effective and accurate SARS-CoV-2 infection detection. One-Step Real-Time RT-PCR was employed for the detection of SARS-CoV-2 RNA isolated from individual nasopharyngeal swabs. A total of 10,014 swabs, sampled from the general public (hospital admissions, A&E, elective surgeries, cancer patients, care home residents and healthcare staff), were tested using standard replicate testing. Our analysis demonstrates that approximately 19% of SARS-CoV-2 infected individuals would have been reported as false negative if single sample Real-Time PCR testing was used. Therefore, two replicate tests can substantially decrease the risk of false negative reporting and reduce hospital and community infection rates. As the number of variants of concern increases, we believe that replicate testing is an essential consideration for effective SARS-CoV-2 infection detection and prevention of further outbreaks. A strategic approach limiting the number of missed infections is crucial in controlling the rise of new SARS-CoV-2 variants as well as the management of future pandemics.
KeywordsReal-Time Polymerase Chain Reaction; SARS-CoV-2 - genetics; Pilot Projects; Pandemics - prevention & control; Humans; COVID-19 - diagnosis - epidemiology; RNA, Viral - genetics
Year2022
JournalPLoS ONE
Journal citation17 (7), p. e0269883
PublisherPLoS
ISSN1932-6203
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0269883
https://doi.org/PONE-D-21-40437
Official URLhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269883
Publication dates
Print14 Jul 2022
Online14 Jul 2022
Publication process dates
Deposited18 Jul 2022
Accepted29 May 2022
Publisher's version
License
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/917v2/single-vs-replicate-real-time-pcr-sars-cov-2-testing-lessons-learned-for-effective-pandemic-management

Download files


Publisher's version
journal.pone.0269883.pdf
License: CC BY 4.0

  • 22
    total views
  • 20
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Bench to Bedside (research based evidence in Aesthetics)
Webb, R. 2022. Bench to Bedside (research based evidence in Aesthetics).
The development and validation of a low-cost trans perineal (TP) prostate biopsy simulator from 3D printed mould: improving trainees’ confidence and cognitive targeting skills
Ong, K.O., Thapa, G., Webb, R., Rahman, E., Dryhurst, D.D., Lunawat, R.L. and Sriprasad, S. 2022. The development and validation of a low-cost trans perineal (TP) prostate biopsy simulator from 3D printed mould: improving trainees’ confidence and cognitive targeting skills. Journal of the Royal Society of Medicine.
Utilising DOE to optimise hydrogel composition for tissue engineering
UPTON, A., Tirnoveanu, A., Thapa, G., Zimbitas, G., Mylona, A. and Webb, R. 2022. Utilising DOE to optimise hydrogel composition for tissue engineering.
Diagnostic outcomes between home sleep apnoea testing and in-laboratory polysomnography: systematic review
Rotimi, O., Webb, R. and Rahman, E. 2022. Diagnostic outcomes between home sleep apnoea testing and in-laboratory polysomnography: systematic review.
Rheological properties of bioinks for printing optimisation
Upton, A., Thapa, G., Zimbitas, G., Mylona, A. and Webb, R. 2022. Rheological properties of bioinks for printing optimisation.
Proteomic analysis of the extracellular vesicles derived from human hip joints affected by osteoarthritis
Tirnoveanu, A., Ahmed, S., Webb, R., Howland, K., Hurt, A., Wilson, C. and Mylona, A. 2022. Proteomic analysis of the extracellular vesicles derived from human hip joints affected by osteoarthritis.
Is there a role for stem cell therapy in erectile dysfunction secondary to cavernous nerve injury? Network meta-analysis from animal studies and human trials
Wani, M.M., Rai, B.P., Webb, W.R. and Madaan, S. 2022. Is there a role for stem cell therapy in erectile dysfunction secondary to cavernous nerve injury? Network meta-analysis from animal studies and human trials. Therapeutic Advances in Urology. 14 (1-21). https://doi.org/10.1177/17562872221086999
Auricular reconstruction: where are we now? A critical literature review
Humphries, S., Joshi, A., Webb, R. and Kanegaonkar, R. 2021. Auricular reconstruction: where are we now? A critical literature review. European Archives of Oto-Rhino-Laryngology. https://doi.org/10.1007/s00405-021-06903-5
Update on the role of emerging stem cell technology in head and neck medicine
Spencer, H., Moshkbouymatin, N. A., Webb, W.R., Joshi, A. and D'Souza, A. 2021. Update on the role of emerging stem cell technology in head and neck medicine. Head and Neck. 43 (6), pp. 1928-1938. https://doi.org/10.1002/hed.26674
Enhanced bone marrow derived mesenchymal stem cell differentiation when isolated and expanded with human platelet rich plasma and differentiation media is supplemented with vitamin D
Thapa, G., Tirnoveanu, A., Mylona, A. and Webb, R. 2020. Enhanced bone marrow derived mesenchymal stem cell differentiation when isolated and expanded with human platelet rich plasma and differentiation media is supplemented with vitamin D. eCM Periodicals & Conferences.
Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications.
Lomas, A., Webb, R., Han, J., Chen, G., Sun, X., Zhang, Z., El Haj, A. and Forsyth, N. 2013. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Engineering. 19 (8). https://doi.org/10.1089/ten.TEC.2012.0457
The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model
Webb, R., Dale, T., Lomas, A., Zeng, G., Wimpenny, I., El Haj, A., Forsyth, N. and Chen, G. 2013. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials. 34 (28), pp. 6683-6694. https://doi.org/10.1016/j.biomaterials.2013.05.041
Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model
Dong, C., Webb, R., Peng, Q., Tang, J., Forsyth, N., Chen, G. and Haj, A. 2014. Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model. Journal of Biomedical Materials Research Part A. 103 (1), pp. 282-288.
Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery
Heathman, T., Webb, R., Han, J., Dan, Z., Chen, G., Forsyth, N., El Haj, A., Zhang, Z. and Sun, X. 2014. Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery. European Journal of Pharmaceutical Sciences. 103 (8), pp. 2498-2508. https://doi.org/10.1002/jps.24035
Opportunities for zonal cartilage regeneration: progenitor cell-laden hydrogels and bioprinting
Levato, R., Mouser, V., Webb, R., Otto, I., Gawlitta, D., van Weeren, P., Khan, I. and Malda, J. 2016. Opportunities for zonal cartilage regeneration: progenitor cell-laden hydrogels and bioprinting.
Tenogenic differentiation of human embryonic stem cells
Dale, T., Mazher, S., Webb, R., Zhou, J., Maffulli, N., Chen, G., El Haj, A. and Forsyth, N. 2018. Tenogenic differentiation of human embryonic stem cells. Tissue Engineering. 5-6, pp. 361-368. https://doi.org/10.1089/ten.tea.2017.0017
Macro-porous micro-carriers as a vehicle for chondroprogenitor expansion and scaffold formation for the rapid biofabrication of osteochondral implants
Webb, R., Levato, R., Moshkbouymatin, N., Zhang, Y., Francis, L., van Weeren, P., Malda, J. and Khan, I. 2017. Macro-porous micro-carriers as a vehicle for chondroprogenitor expansion and scaffold formation for the rapid biofabrication of osteochondral implants.
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
Levato, R., Webb, R., Otto, I., Mensinga, A., Zhang, Y., van Rijen, M., van Weeren, P., Khan, I. and Malda, J. 2017. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomaterialia. 61, pp. 41-53. https://doi.org/10.1016/j.actbio.2017.08.005
Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture
Otto, I., Levato, R., Webb, R., Khan, I., Breugem, C. and Malda, J. 2018. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture. European Cells & Materials. 35, pp. 132-150. https://doi.org/10.22203/eCM.v035a10
Isolation of mesenchymal stem cells from bone marrow aspirate
Markides, H., Webb, W.R., El Haj, A.J., Chippendale, T., Coopman, K., Rafiq, Q. and Hewitt, C. 2019. Isolation of mesenchymal stem cells from bone marrow aspirate. in: Moo-Young, M. (ed.) Comprehensive Biotechnology Elsevier. pp. 137-148
Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture
Otto, I. A, Levatto, R., Webb, R., Khan I. M., Breugem, C.C. and Malda, J. 2017. Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture.