An insight into the current perceptions of UK radiographers on the future impact of AI on the profession: A cross-sectional survey.
Journal article
Rainey, Clare, O'Regan, Tracy, Matthew, Jacqueline, Skelton, Emily, Woznitza, Nick, Chu, Kwun-Ye, Goodman, Spencer, McConnell, Jonathan, Hughes, Ciara, Bond, Raymond, Malamateniou, Christina and McFadden, Sonyia 2022. An insight into the current perceptions of UK radiographers on the future impact of AI on the profession: A cross-sectional survey. Journal of Medical Imaging and Radiation Sciences. https://doi.org/S1939-8654(22)00282-X
Authors | Rainey, Clare, O'Regan, Tracy, Matthew, Jacqueline, Skelton, Emily, Woznitza, Nick, Chu, Kwun-Ye, Goodman, Spencer, McConnell, Jonathan, Hughes, Ciara, Bond, Raymond, Malamateniou, Christina and McFadden, Sonyia |
---|---|
Abstract | As a profession, radiographers have always been keen on adapting and integrating new technologies. The increasing integration of artificial intelligence (AI) into clinical practice in the last five years has been met with scepticism by some, who predict the demise of the profession, whilst others suggest a bright future with AI, full of opportunities and synergies. Post COVID-19 pandemic need for economic recovery and a backlog of medical imaging and reporting may accelerate the adoption of AI. It is therefore timely to appreciate practitioners' perceptions of AI used in clinical practice and their perception of the short-term impact on the profession. This study aims to explore the perceptions of AI in the UK radiography workforce and to investigate its current AI applications and future technological expectations of radiographers. An online survey (Qualtrics ) was created by a team of radiography AI experts. The survey was disseminated via social media and professional networks in the UK. Demographic information and perceptions of the impact of AI on several aspects of the radiography profession were gathered, including the current use of AI in practice, future expectations and the perceived impact of AI on the profession. 411 responses were collected (80% diagnostic radiographers (DR); 20% therapeutic radiographers (TR)). Awareness of AI used in clinical practice is low, with DR respondents suggesting AI will have the most value/potential in cross sectional imaging and image reporting. TR responses linked AI as having most value in treatment planning, contouring, and image acquisition/matching. Respondents felt that AI will impact radiographers' daily work (DR, 79.6%; TR, 88.9%) by standardising some aspects of patient care and technical factors of radiography practice. A mixed response about impact on careers was reported. Respondents were unsure about the ways in which AI is currently used in practice and how AI will impact on careers in the future. It was felt that AI integration will lead to increased job opportunities to contribute to decision making as an end user. Job security was not identified as a cause for concern. [Abstract copyright: Copyright © 2022. Published by Elsevier Inc.] |
Keywords | Radiography; AI; Artificial Intelligence |
Year | 2022 |
Journal | Journal of Medical Imaging and Radiation Sciences |
Publisher | Elsevier |
ISSN | 1876-7982 |
Digital Object Identifier (DOI) | https://doi.org/S1939-8654(22)00282-X |
https://doi.org/10.1016/j.jmir.2022.05.010 | |
Official URL | https://www.jmirs.org/article/S1939-8654(22)00282-X/fulltext |
Publication dates | |
Online | 14 Jun 2022 |
Publication process dates | |
Deposited | 16 Jun 2022 |
Accepted | 24 May 2022 |
Publisher's version | License |
Output status | Published |
Permalink -
https://repository.canterbury.ac.uk/item/91424/an-insight-into-the-current-perceptions-of-uk-radiographers-on-the-future-impact-of-ai-on-the-profession-a-cross-sectional-survey
Download files
135
total views45
total downloads7
views this month1
downloads this month
Export as
Related outputs
An implementation facilitation intervention to improve the musculoskeletal X‑ray reporting by radiographers across London
Lockwood, P., Burton, C., Shaw, T., Woznitza, N., Compton, E., Groombridge, H., Hayes, N., Mane, U., O'Brien, A. and Patterson, S. 2025. An implementation facilitation intervention to improve the musculoskeletal X‑ray reporting by radiographers across London. BMC Health Services Research. 25 (248), p. 1. https://doi.org/10.1186/s12913-025-12356-xAccuracy of interpretation of nasogastric tube position on chest radiographs by diagnostic radiographers: A multi-case, multi-reader study
Creeden, A., McFadden, S., Ather, S. and Woznitza, N. 2025. Accuracy of interpretation of nasogastric tube position on chest radiographs by diagnostic radiographers: A multi-case, multi-reader study. Radiography. 31 (1), pp. 83-88. https://doi.org/10.1016/j.radi.2024.10.022Achieving earlier diagnosis of symptomatic lung cancer
Bradley, S., Baldwin, D., Bhartia, B., Black, G., Callister, Matthew Ej, Clayton, Karen, Eccles, Sinan R, Evison, Matthew, Fox, Jesme, Hamilton, W., Konya, J., Lee, Richard W, Bradley, S., Navani, Neal, Noble, Ben, Quaife, Samantha L, Randle, Amelia, Rawlinson, Janette, Richards, Michael, Woznitza, Nick and O'Dowd, Emma 2024. Achieving earlier diagnosis of symptomatic lung cancer. The British Journal of General Practice : The Journal of the Royal College of General Practitioners. 75 (750), pp. 40-43. https://doi.org/10.3399/bjgp25X740493Artificial intelligence (AI) for paediatric fracture detection: a multireader multicase (MRMC) study protocol.
Shelmerdine, S., Pauling, Cato, Allan, Emma, Langan, Dean, Ashworth, Emily, Yung, Ka-Wai, Barber, Joy, Haque, Saira, Rosewarne, David, Woznitza, N., Ather, S., Novak, A., Theivendran, Kanthan and Arthurs, O. 2024. Artificial intelligence (AI) for paediatric fracture detection: a multireader multicase (MRMC) study protocol. BMJ Open. 14 (12), p. e084448. https://doi.org/10.1136/bmjopen-2024-084448Evaluating the impact of artificial intelligence-assisted image analysis on the diagnostic accuracy of front-line clinicians in detecting fractures on plain X-rays (FRACT-AI): protocol for a prospective observational study.
Novak, A., Hollowday, Max, Espinosa Morgado, A., Oke, Jason, Shelmerdine, S., Woznitza, N., Metcalfe, David, Costa, Matthew L, Wilson, S., Kiam, Jian Shen, Vaz, J., Limphaibool, N., Ventre, Jeanne, Jones, Daniel, Greenhalgh, Lois, Gleeson, Fergus, Welch, Nick, Mistry, Alpesh, Devic, Natasa, Teh, James and Ather, S. 2024. Evaluating the impact of artificial intelligence-assisted image analysis on the diagnostic accuracy of front-line clinicians in detecting fractures on plain X-rays (FRACT-AI): protocol for a prospective observational study. BMJ Open. 14 (9), p. e086061. https://doi.org/10.1136/bmjopen-2024-086061A survey of the NHS reporting radiographer workforce in England
Lockwood, P., Burton, C., Shaw, T. and Woznitza, N. 2024. A survey of the NHS reporting radiographer workforce in England. Radiography Open. 10 (1), pp. 1-18. https://doi.org/10.7577/radopen.5635Reporting radiographers within the European Federation of Radiographer Society (EFRS) member countries - motivation for becoming a reporting radiographer.
Jensen, J, Blackburn, P A, Gale, N, Senior, C, Woznitza, N, Heales, C J and Pedersen, M R V 2024. Reporting radiographers within the European Federation of Radiographer Society (EFRS) member countries - motivation for becoming a reporting radiographer. Radiography. 30 (3), pp. 731-736. https://doi.org/S1078-8174(24)00055-5AI assisted reader evaluation in acute CT head interpretation (AI-REACT): protocol for a multireader multicase study
Howell Fu, Alex Novak, Dennis Robert, Shamie Kumar, Swetha Tanamala, Jason Oke, Kanika Bhatia, Ruchir Shah, Andrea Romsauerova, Tilak Das, Abdalá Espinosa, Mariusz Tadeusz Grzeda, Mariapaola Narbone, Rahul Dharmadhikari, Mark Harrison, Kavitha Vimalesvaran, Jane Gooch, Nicholas Woznitza, Nabeeha Salik, Alan Campbell, Farhaan Khan, David J Lowe, Haris Shuaib and Sarim Ather 2024. AI assisted reader evaluation in acute CT head interpretation (AI-REACT): protocol for a multireader multicase study. BMJ Open. 14 (2), p. e079824. https://doi.org/10.1136/bmjopen-2023-079824Reporting radiographers in Europe survey: An overview of the role within the European Federation of Radiographer Society (EFRS) member countries
Pedersen, M.R. V., Jensen, J., Senior, C., Gale, N., Heales, C. J. and Woznitza, N. 2023. Reporting radiographers in Europe survey: An overview of the role within the European Federation of Radiographer Society (EFRS) member countries. Radiography. 29 (6), pp. 1100-1107. https://doi.org/10.1016/j.radi.2023.09.005Assessing the barriers and enablers to the implementation of the diagnostic radiographer musculoskeletal X‑ray reporting service within the NHS in England: a systematic literature review
Lockwood, P., Burton, C., Woznitza, N. and Shaw, T. 2023. Assessing the barriers and enablers to the implementation of the diagnostic radiographer musculoskeletal X‑ray reporting service within the NHS in England: a systematic literature review. BMC Health Services Research. 23 (1270), pp. 1-41. https://doi.org/10.1186/s12913-023-10161-y