Redox mediator as cathode modifier for enhanced degradation of azo dye in a sequential dual chamber microbial fuel cell-aerobic treatment process

Journal article


Khan, Mohammad Danish, Thimmappa, Ravikumar, Anwer, Abdul Hakeem, Khan, N., Tabraiz, Shamas, Li, Da, Khan, Mohammad Zain and Yu, Eileen Hao 2021. Redox mediator as cathode modifier for enhanced degradation of azo dye in a sequential dual chamber microbial fuel cell-aerobic treatment process. International Journal of Hydrogen Energy. 46 (79), pp. 39427-39437. https://doi.org/10.1016/j.ijhydene.2021.09.151
AuthorsKhan, Mohammad Danish, Thimmappa, Ravikumar, Anwer, Abdul Hakeem, Khan, N., Tabraiz, Shamas, Li, Da, Khan, Mohammad Zain and Yu, Eileen Hao
AbstractThe electron transfer from cathode to azo dye Acid Blue 29 (AB29) using thionine (TH) and anthraquinone-2-sulfonate (AQS) redox mediators were investigated in dual chamber microbial fuel cells (DCMFCs). More than 90% of color was removed using electropolymerized TH (192 h) and AQS (264 h) cathodes. Chemical oxygen demand (COD) removal after anaerobic treatment in cathode chamber of TH-MFC, AQS-MFC and unmodified-MFC were 76.6 ± 1.7, 70.8 ± 2.5 and 18.3 ± 2.9%, respectively, which increased to 85.4 ± 1.5, 79.8 ± 3 and 20.6 ± 2.1%, respectively, after aerobic post treatment. Gas chromatography–mass spectrometry (GC–MS) investigations revealed the formation of aromatic amines in DCMFCs which were further degraded into low molecular-weight products in the aerobic post treatment. Electrochemical impedance spectroscopic (EIS) analysis showed lowest charge transfer resistance of TH-cathode which increased the electrochemical reactions and electron transfer rates. These results indicated that AB29 can be efficiently degraded by utilizing modified cathode based DCMFC-aerobic post treatment process along with bioelectricity generation.
KeywordsRedox mediator; Electron transfer; Cathodes
Year2021
JournalInternational Journal of Hydrogen Energy
Journal citation46 (79), pp. 39427-39437
PublisherElsevier
ISSN0360-3199
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ijhydene.2021.09.151
Official URLhttps://www.sciencedirect.com/science/article/abs/pii/S0360319921037046
FunderNERC
EPSRC
Commonwealth Scholarship Commission United Kingdom
Publication dates
Online03 Nov 2021
Publication process dates
Accepted18 Sep 2021
Deposited31 Jan 2025
Output statusPublished
Additional information

Publications router.

Permalink -

https://repository.canterbury.ac.uk/item/8z81x/redox-mediator-as-cathode-modifier-for-enhanced-degradation-of-azo-dye-in-a-sequential-dual-chamber-microbial-fuel-cell-aerobic-treatment-process

  • 3
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Nonlinear viscoelasticity of filamentous fungal biofilms of
Aiswarya, N. M., Tabraiz, Shamas, Taneja, H., Ahmed, A. and Aravinda Narayanan, R. 2024. Nonlinear viscoelasticity of filamentous fungal biofilms of . Biofilm. 8, p. 100227. https://doi.org/10.1016/j.bioflm.2024.100227
Optimization of coagulation to remove turbidity from surface water using novel nature-based plant coagulant and response surface methodology
Shahzadi, Fakhara, Haydar, Sajjad and Tabraiz, Shamas 2024. Optimization of coagulation to remove turbidity from surface water using novel nature-based plant coagulant and response surface methodology. Sustainability. 16 (7), p. 2941. https://doi.org/10.3390/su16072941
Seasonal variations in dissolved organic matter concentration and composition in an outdoor system for bank filtration simulation.
Zeeshan, Muhammad, Ali, Omamah, Tabraiz, Shamas and Ruhl, Aki Sebastian 2023. Seasonal variations in dissolved organic matter concentration and composition in an outdoor system for bank filtration simulation. Journal of Environmental Sciences. 135, pp. 252-261. https://doi.org/10.1016/j.jes.2023.01.006
Ecotoxicological impacts associated with the interplay between micro(nano)plastics and pesticides in aquatic and terrestrial environments
Junaid, Muhammad, Abbas, Zohaib, Siddiqui, Junaid Ali, Liu, Shulin, Tabraiz, Shamas, Yue, Qiang and Wang, J. 2023. Ecotoxicological impacts associated with the interplay between micro(nano)plastics and pesticides in aquatic and terrestrial environments. TrAC Trends in Analytical Chemistry. 165, p. 117133. https://doi.org/10.1016/j.trac.2023.117133
Rapid proteomic characterization of bacteriocin-producing Enterococcus faecium strains from foodstuffs
Quintela-Baluja, M., Jobling, Kelly, Graham, D., Tabraiz, S., Calo-Mata, P., Alnakip, M., Böhme, Karola, Shamurad, B., Barros-Velázquez, J. and Carrera, M. 2022. Rapid proteomic characterization of bacteriocin-producing Enterococcus faecium strains from foodstuffs. International Journal of Molecular Sciences. 23 (22), p. 13830. https://doi.org/10.3390/ijms232213830
Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta
Ahmed, A., Tabraiz, S., N.M.Aiswarya, Taneja, H. and R. Aravinda Narayanan 2022. Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta . Journal of Environmental Management. 324, p. 116363. https://doi.org/10.1016/j.jenvman.2022.116363
Investigation of the effect of equal and unequal feeding time intervals on process stability and methane yield during anaerobic digestion grass silage
Egwu, U., Onyelowe, Kennedy, Tabraiz, S., Johnson, Emmanuel and Mutshow, A. 2022. Investigation of the effect of equal and unequal feeding time intervals on process stability and methane yield during anaerobic digestion grass silage. Renewable and Sustainable Energy Reviews. 158, p. 112092. https://doi.org/10.1016/j.rser.2022.112092
Temperature and immigration effects on quorum sensing in the biofilms of anaerobic membrane bioreactors
Tabraiz, Shamas, Petropoulos, Evangelos, Shamurad, Burhan, Quintela-Baluja, Marcos, Mohapatra, Sanjeeb, Acharya, Kishor, Charlton, Alex, Davenport, Russell J, Dolfing, Jan and Sallis, Paul J 2021. Temperature and immigration effects on quorum sensing in the biofilms of anaerobic membrane bioreactors. Journal of Environmental Management. 293, p. 112947. https://doi.org/10.1016/j.jenvman.2021.112947