References | [1] H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, L. Seneviratne, (2018) Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications, Advanced Engineering Materials, 20 1800290. [2] K. Essa, H. Hassanin, M.M. Attallah, N.J. Adkins, A.J. Musker, G.T. Roberts, N. Tenev, M. Smith, (2017) Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications, Applied Catalysis A: General, 542 125-135. [3] H. Hassanin, K. Jiang, (2013) Fabrication and characterization of stabilised zirconia micro parts via slip casting and soft moulding, Scripta Materialia, 69 433-436. [4] H. Hassanin, K. Jiang, (2010) Functionally graded microceramic components, Microelectronic Engineering, 87 1610-1613. [5] H. Hassanin, K. Jiang, (2009) Alumina composite suspension preparation for softlithography microfabrication, Microelectronic Engineering, 86 929-932. [6] H. Hassanin, K. Jiang, (2010) Optimized process for the fabrication of zirconia micro parts, Microelectronic Engineering, 87 1617-1619. [7] C. Qiu, N.J.E. Adkins, H. Hassanin, M.M. Attallah, K. Essa, (2015) In-situ shelling via selective laser melting: Modelling and microstructural characterisation, Materials & Design, 87 845-853. [8] Y. Li, Z. Feng, L. Huang, K. Essa, E. Bilotti, H. Zhang, T. Peijs, L. Hao, (2019) Additive manufacturing high performance graphene-based composites: A review, Composites Part A: Applied Science and Manufacturing, 124 105483. [9] A. Mohammed, A. Elshaer, P. Sareh, M. Elsayed, H. Hassanin, (2020) Additive Manufacturing Technologies for Drug Delivery Applications, International Journal of Pharmaceutics, 580 119245. [10] H. Hassanin, A. Abena, M.A. Elsayed, K. Essa, (2020) 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance, Micromachines, 11 745. [11] A. Sabouri, A.K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, H. Butt, (2017) Three-Dimensional Microstructured Lattices for Oil Sensing, Energy & Fuels, 31 2524-2529. [12] H. Klippstein, A. Diaz De Cerio Sanchez, H. Hassanin, Y. Zweiri, L. Seneviratne, (2018) Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review, Advanced Engineering Materials, 20 1700552. [13] A. Galatas, H. Hassanin, Y. Zweiri, L. Seneviratne, (2018) Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applications, Polymers, 10 1262. [14] H. Hassanin, F. Modica, M.A. El-Sayed, J. Liu, K. Essa, (2016) Manufacturing of Ti–6Al–4V Micro-Implantable Parts Using Hybrid Selective Laser Melting and Micro-Electrical Discharge Machining, Advanced Engineering Materials, 18 1544-1549. [15] M. Abosaf, (2018) Finite element modelling of multi-point forming, in: Mechanical Engineering, University of Birmingham, pp. 180. [16] M.Z. Li, Z.Y. Cai, Z. Sui, Q.G. Yan, (2002) Multi-point forming technology for sheet metal, Journal of Materials Processing Technology, 129 333-338. [17] N. Nakajima, (1969) A Newly Developed Technique to Fabricate Complicated Dies and Electrodes with Wires, Bulletin of JSME, 12 1546-1554. [18] A. Elghawail, K. Essa, M. Abosaf, A. Tolipov, S. Su, D. Pham, (2019) Low-cost metal-forming process using an elastic punch and a reconfigurable multi-pin die, International Journal of Material Forming, 12 391-401. [19] E.v. Finckenstein, M. Kleiner, (1991) Flexible Numerically Controlled Tool System for Hydro-Mechanical Deep Drawing, CIRP Annals, 40 311-314. [20] M. Amini, M. Bakhshi, J.J. Fesharaki, (2014) Design, fabrication, and use of a new reconfigurable discrete die for forming tubular parts, The International Journal of Advanced Manufacturing Technology, 75 1055-1063. [21] G. Schuh, G. Bergweiler, F. Fiedler, P. Bickendorf, C. Colag, A Review on Flexible Forming of Sheet Metal Parts, 2019. [22] D.F. Walczyk, D.E. Hardt, (1998) Design and analysis of reconfigurable discrete dies for sheet metal forming, Journal of Manufacturing Systems, 17 436-454. [23] J.-W. Park, J. Kim, B.-S. Kang, (2019) Development on a Prediction Model for Experimental Condition of Flexibly Reconfigurable Roll Forming Process, Metals, 9. [24] V. Paunoiu, P. Cekan, E. Gavan, D. Nicoara, (2008) Numerical Simulations in Reconfigurable Multipoint Forming, International Journal of Material Forming, 1 181-184. [25] G.-Z. Quan, T.-W. Ku, B.-S. Kang, (2011) Improvement of formability for multi-point bending process of AZ31B sheet material using elastic cushion, International Journal of Precision Engineering and Manufacturing, 12 1023-1030. [26] M. B. Gorji, N. Manopulo, P. Hora, F. Barlat, (2016) Numerical investigation of the post-necking behavior of aluminum sheets in the presence of geometrical and material inhomogeneities, International Journal of Solids and Structures, 102-103 56-65. [27] Z.-Y. Cai, S.-H. Wang, M.-Z. Li, (2008) Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and springback, The International Journal of Advanced Manufacturing Technology, 37 927-936. [28] Y. Liu, M. Li, F. Ju, (2017) Research on the process of flexible blank holder in multi-point forming for spherical surface parts, The International Journal of Advanced Manufacturing Technology, 89 2315-2322. [29] E. Qu, M. Li, R. Li, (2020) Deformation behavior in multi-point forming using a strip steel pad, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234 1775-1785. [30] B. Zareh-Desari, B. Davoodi, A. Vedaei-Sabegh, (2017) Investigation of deep drawing concept of multi-point forming process in terms of prevalent defects, International Journal of Material Forming, 10 193-203. [31] K. Essa, P. Hartley, (2010) Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224. [32] G. Hussain, L. Gao, N. Hayat, (2009) Empirical modelling of the influence of operating parameters on the spifability of a titanium sheet using response surface methodology, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223 73-81. [33] S. Majagi, G. Chandramohan, M. Krishna, (2014) Optimization of Incremental Sheet Metal Forming Parameters by Design of Experiments, Applied Mechanics and Materials, 527 111-116. [34] A. Elghawail, K. Essa, M. Abosaf, A. Tolipov, S. Su, D. Pham, (2017) Prediction of springback in multi-point forming, Cogent Engineering, 4 1400507. [35] A. Tolipov, A. Elghawail, M. Abosaf, D. Pham, H. Hassanin, K. Essa, (2019) Multipoint forming using mesh-type elastic cushion: modelling and experimentation, The International Journal of Advanced Manufacturing Technology, 103 2079-2090. [36] M.A. El-Sayed, H. Hassanin, K. Essa, (2016) Effect of casting practice on the reliability of Al cast alloys, International Journal of Cast Metals Research, 29 350-354. [37] K. Essa, R. Khan, H. Hassanin, M.M. Attallah, R. Reed, (2016) An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts, The International Journal of Advanced Manufacturing Technology, 83 1835-1845. [38] M. Abosaf, K. Essa, A. Alghawail, A. Tolipov, S. Su, D. Pham, (2017) Optimisation of multi-point forming process parameters, The International Journal of Advanced Manufacturing Technology, 92 1849-1859. [39] M. Abosaf, A. Elghawail, D. Pham, K. Essa, A. Tolipov, S. Su, Effect of overhang between die and blank holder on thickness distribution in multi-point forming, 2017. [40] Q. Bai, H. Yang, M. Zhan, (2008) Finite element modeling of power spinning of thin-walled shell with hoop inner rib, Transactions of Nonferrous Metals Society of China, 18 6-13. [41] K. Essa, P. Hartley, (2009) Numerical simulation of single and dual pass conventional spinning processes, International Journal of Material Forming, 2 271. [42] L. Huang, H. Yang, M. Zhan, L.-j. Hu, (2008) Numerical simulation of influence of material parameters on splitting spinning of aluminum alloy, Transactions of Nonferrous Metals Society of China, 18 674-681. [43] A.A. Tolipov, A. Elghawail, S. Shushing, D. Pham, K. Essa, (2017) Experimental research and numerical optimisation of multi-point sheet metal forming implementation using a solid elastic cushion system, Journal of Physics: Conference Series, 896 012120. [44] A. Rusinek, R. Zaera, J.R. Klepaczko, (2007) Constitutive relations in 3-D for a wide range of strain rates and temperatures – Application to mild steels, International Journal of Solids and Structures, 44 5611-5634. [45] J.D. Campbell, W.G. Ferguson, (1970) The temperature and strain-rate dependence of the shear strength of mild steel, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 21 63-82. [46] M. Abebe, K. Lee, B.-S. Kang, (2016) Surrogate-based multi-point forming process optimization for dimpling and wrinkling reduction, The International Journal of Advanced Manufacturing Technology, 85 391-403. [47] M.F. Alfaidi, X. Li, M.A. Nwir, (2010) Effect of rubber pad on forming quality in multi point forming process, in: 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), pp. 728-731. [48] Z. Budrikis, A.L. Sellerio, Z. Bertalan, S. Zapperi, (2015) Wrinkle motifs in thin films, Scientific Reports, 5 8938. [49] B.-J. Zhou, Y.-C. Xu, (2018) The effect of upper sheet on wrinkling and thickness distribution of formed sheet part using double-layer sheet hydroforming, The International Journal of Advanced Manufacturing Technology, 99 1175-1182. |
---|