Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications.

Journal article


Lomas, A., Webb, R., Han, J., Chen, G., Sun, X., Zhang, Z., El Haj, A. and Forsyth, N. 2013. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Engineering. 19 (8). https://doi.org/10.1089/ten.TEC.2012.0457
AuthorsLomas, A., Webb, R., Han, J., Chen, G., Sun, X., Zhang, Z., El Haj, A. and Forsyth, N.
Abstract

The benefits associated with polyhydroxyalkanoates (PHA) in tissue engineering include high immunotolerance, low toxicity, and biodegradability. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a molecule from the PHA family of biopolymers, shares these features.

In this study, the applicability of human embryonic stem cells (hESCs), spontaneously differentiated hESCs (SDhESCs), and mesenchymal stem cells (hMSCs) in conjunction with PHBHHx and collagen as a biocompatible replacement strategy for damaged tissues was exploited. Collagen gel contraction was monitored by seeding cells at controlled densities (0, 103, 104, and 105 cells/mL) and measuring length and diameter at regular time intervals thereafter when cultured in a complete medium. Cell viability was measured by trypan blue exclusion assay. Porous PHBHHx tube scaffolds were prepared using a dipping method followed by salt leaching. PHBHHx/collagen composites were generated via syringe injection of collagen/cell mixtures into sterile PHBHHx porous tubes. Reverse transcription polymerase chain reaction was used to determine the fate of cells within PHBHHx/collagen scaffolds with tendon, bone, cartilage, and fat-linked transcript expression being explored at days 0, 5 10, and 20. The capacity of PHBHHx/collagen scaffolds to support differentiation was explored using a medium specific for osteogenic, chondrogenic, and adipogenic lineage generation. Collagen gel tube contraction required initial seeding densities of ≥105 hMSCs or SDhESCs in 1.5 mg/mL collagen gel tubes. Gels with a collagen concentration of 3 mg/mL did not display contraction across the examined cell seeding densities. Cell viability was ∼50% for SDhESC and 90% for hMSCs at all cell densities tested in porous PHBHHx tube/3 mg/mL collagen hybrid scaffolds after 20 days in vitro culture. Undifferentiated hESCs did not contract collagen gel tubes and were unviable after 20 days culture. In the absence of additional stimuli, SOX9 was sporadically found, while RUNX2 was not present in both hMSC and SDhESC. Hybrid scaffolds were shown to promote retention of osteogenic, chondrogenic, and adipogenic differentiation by expression of RUNX2, SOX9, and PPARγ genes, respectively, following exposure to the appropriate induction medium. PHBHHx/collagen scaffolds have been successfully used to culture hMSC and SDhESC over an extended period supporting the potential of this scaffold combination in future tissue engineering applications.

Year2013
JournalTissue Engineering
Journal citation19 (8)
PublisherMary Ann Liebert
ISSN1076-3279
Digital Object Identifier (DOI)https://doi.org/10.1089/ten.TEC.2012.0457
FunderEU Framework 7
Publication dates
Print06 Feb 2013
Publication process dates
Deposited27 Mar 2019
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/88z42/poly-3-hydroxybutyrate-co-3-hydroxyhexanoate-collagen-hybrid-scaffolds-for-tissue-engineering-applications

  • 31
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Bench to Bedside (research based evidence in Aesthetics)
Webb, R. 2022. Bench to Bedside (research based evidence in Aesthetics).
The development and validation of a low-cost trans perineal (TP) prostate biopsy simulator from 3D printed mould: improving trainees’ confidence and cognitive targeting skills
Ong, K.O., Thapa, G., Webb, R., Rahman, E., Dryhurst, D.D., Lunawat, R.L. and Sriprasad, S. 2022. The development and validation of a low-cost trans perineal (TP) prostate biopsy simulator from 3D printed mould: improving trainees’ confidence and cognitive targeting skills. Journal of the Royal Society of Medicine.
Utilising DOE to optimise hydrogel composition for tissue engineering
UPTON, A., Tirnoveanu, A., Thapa, G., Zimbitas, G., Mylona, A. and Webb, R. 2022. Utilising DOE to optimise hydrogel composition for tissue engineering.
Diagnostic outcomes between home sleep apnoea testing and in-laboratory polysomnography: systematic review
Rotimi, O., Webb, R. and Rahman, E. 2022. Diagnostic outcomes between home sleep apnoea testing and in-laboratory polysomnography: systematic review.
Single vs replicate Real-Time PCR SARS-CoV-2 testing: Lessons learned for effective pandemic management.
Webb, William R., Thapa, Gauri, Tirnoveanu, Alice, Kallu, Sabrina, Loo Jin Yi, Charlene, Shah, Nirali, Macari, Joseph, Mitchell, Sadie, Fagg, Graham J, Jeremiah, Rachael N, Theminimulle, Sandiya, Vuono, Romina and Mylona, A. 2022. Single vs replicate Real-Time PCR SARS-CoV-2 testing: Lessons learned for effective pandemic management. PLoS ONE. 17 (7), p. e0269883. https://doi.org/10.1371/journal.pone.0269883
Rheological properties of bioinks for printing optimisation
Upton, A., Thapa, G., Zimbitas, G., Mylona, A. and Webb, R. 2022. Rheological properties of bioinks for printing optimisation.
Proteomic analysis of the extracellular vesicles derived from human hip joints affected by osteoarthritis
Tirnoveanu, A., Ahmed, S., Webb, R., Howland, K., Hurt, A., Wilson, C. and Mylona, A. 2022. Proteomic analysis of the extracellular vesicles derived from human hip joints affected by osteoarthritis.
Is there a role for stem cell therapy in erectile dysfunction secondary to cavernous nerve injury? Network meta-analysis from animal studies and human trials
Wani, M.M., Rai, B.P., Webb, W.R. and Madaan, S. 2022. Is there a role for stem cell therapy in erectile dysfunction secondary to cavernous nerve injury? Network meta-analysis from animal studies and human trials. Therapeutic Advances in Urology. 14 (1-21). https://doi.org/10.1177/17562872221086999
Auricular reconstruction: where are we now? A critical literature review
Humphries, S., Joshi, A., Webb, R. and Kanegaonkar, R. 2021. Auricular reconstruction: where are we now? A critical literature review. European Archives of Oto-Rhino-Laryngology. https://doi.org/10.1007/s00405-021-06903-5
Update on the role of emerging stem cell technology in head and neck medicine
Spencer, H., Moshkbouymatin, N. A., Webb, W.R., Joshi, A. and D'Souza, A. 2021. Update on the role of emerging stem cell technology in head and neck medicine. Head and Neck. 43 (6), pp. 1928-1938. https://doi.org/10.1002/hed.26674
Enhanced bone marrow derived mesenchymal stem cell differentiation when isolated and expanded with human platelet rich plasma and differentiation media is supplemented with vitamin D
Thapa, G., Tirnoveanu, A., Mylona, A. and Webb, R. 2020. Enhanced bone marrow derived mesenchymal stem cell differentiation when isolated and expanded with human platelet rich plasma and differentiation media is supplemented with vitamin D. eCM Periodicals & Conferences.
The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model
Webb, R., Dale, T., Lomas, A., Zeng, G., Wimpenny, I., El Haj, A., Forsyth, N. and Chen, G. 2013. The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model. Biomaterials. 34 (28), pp. 6683-6694. https://doi.org/10.1016/j.biomaterials.2013.05.041
Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model
Dong, C., Webb, R., Peng, Q., Tang, J., Forsyth, N., Chen, G. and Haj, A. 2014. Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model. Journal of Biomedical Materials Research Part A. 103 (1), pp. 282-288.
Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery
Heathman, T., Webb, R., Han, J., Dan, Z., Chen, G., Forsyth, N., El Haj, A., Zhang, Z. and Sun, X. 2014. Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery. European Journal of Pharmaceutical Sciences. 103 (8), pp. 2498-2508. https://doi.org/10.1002/jps.24035
Opportunities for zonal cartilage regeneration: progenitor cell-laden hydrogels and bioprinting
Levato, R., Mouser, V., Webb, R., Otto, I., Gawlitta, D., van Weeren, P., Khan, I. and Malda, J. 2016. Opportunities for zonal cartilage regeneration: progenitor cell-laden hydrogels and bioprinting.
Tenogenic differentiation of human embryonic stem cells
Dale, T., Mazher, S., Webb, R., Zhou, J., Maffulli, N., Chen, G., El Haj, A. and Forsyth, N. 2018. Tenogenic differentiation of human embryonic stem cells. Tissue Engineering. 5-6, pp. 361-368. https://doi.org/10.1089/ten.tea.2017.0017
Macro-porous micro-carriers as a vehicle for chondroprogenitor expansion and scaffold formation for the rapid biofabrication of osteochondral implants
Webb, R., Levato, R., Moshkbouymatin, N., Zhang, Y., Francis, L., van Weeren, P., Malda, J. and Khan, I. 2017. Macro-porous micro-carriers as a vehicle for chondroprogenitor expansion and scaffold formation for the rapid biofabrication of osteochondral implants.
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells
Levato, R., Webb, R., Otto, I., Mensinga, A., Zhang, Y., van Rijen, M., van Weeren, P., Khan, I. and Malda, J. 2017. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomaterialia. 61, pp. 41-53. https://doi.org/10.1016/j.actbio.2017.08.005
Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture
Otto, I., Levato, R., Webb, R., Khan, I., Breugem, C. and Malda, J. 2018. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture. European Cells & Materials. 35, pp. 132-150. https://doi.org/10.22203/eCM.v035a10
Isolation of mesenchymal stem cells from bone marrow aspirate
Markides, H., Webb, W.R., El Haj, A.J., Chippendale, T., Coopman, K., Rafiq, Q. and Hewitt, C. 2019. Isolation of mesenchymal stem cells from bone marrow aspirate. in: Moo-Young, M. (ed.) Comprehensive Biotechnology Elsevier. pp. 137-148
Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture
Otto, I. A, Levatto, R., Webb, R., Khan I. M., Breugem, C.C. and Malda, J. 2017. Progenitor cells in auricular cartilage demonstrate promising cartilage regenerative potential in 3D hydrogel culture.