Preliminary results of high fibular osteotomy (HFO) and cartilage regeneration procedure for medial compartment osteoarthritis of knee with varus deformity

Journal article


Jaheer, H., Shetty, A., Choi, N., Kim, K., Thirumal, S., Song, J., Kim, K., Chun, Y. and Kim, S. 2019. Preliminary results of high fibular osteotomy (HFO) and cartilage regeneration procedure for medial compartment osteoarthritis of knee with varus deformity. Regenerative Therapy. 10, pp. 112-117. https://doi.org/10.1016/j.reth.2019.02.001
AuthorsJaheer, H., Shetty, A., Choi, N., Kim, K., Thirumal, S., Song, J., Kim, K., Chun, Y. and Kim, S.
Abstract

Purpose: High fibular osteotomy (HFO) is a simple surgical technique to reduce pain and improve function in patients with osteoarthritis via fibular osteotomy. We report short-term results of HFO and mesenchymal cell induced chondrogenesis (MCIC) for the treatment of osteoarthritis of knee with varus deformity.
Patients and methods: 45 symptomatic patients with 14 males and 31 females age ranging from 40 to 75
years were treated by HFO and MCIC. Main lesions involved medial compartment of knee and lateral
compartment with normal to mild lesions of lateral meniscus and articular cartilage, amenable to treatment via partial meniscectomy or observation.

Results: Knee injury and Osteoarthritis Outcome score and Lysholm showed a statistically significant increase and VAS, varus angle in X-ray showed a statistically significant decrease. A statistically significant difference between preoperative and postoperative scores was detected in male and female patients without any sexual differences.

Conclusion: High fibular osteotomy and mesenchymal cell induced chondrogenesis can be considered as a good treatment option for medial compartment osteoarthritis of knee with varus deformity.

KeywordsHigh fibular osteotomy; osteoarthritis; varus deformity; knee; mesenchymal cell induced chondrogenesis (MCIC)
Year2019
JournalRegenerative Therapy
Journal citation10, pp. 112-117
PublisherElsevier
ISSN2352-3204
Digital Object Identifier (DOI)https://doi.org/10.1016/j.reth.2019.02.001
Publication dates
Online22 Feb 2019
Publication process dates
Deposited19 Mar 2019
Accepted03 Feb 2019
Accepted author manuscript
Output statusPublished
Additional information

Open Access. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Permalink -

https://repository.canterbury.ac.uk/item/88z17/preliminary-results-of-high-fibular-osteotomy-hfo-and-cartilage-regeneration-procedure-for-medial-compartment-osteoarthritis-of-knee-with-varus-deformity

Download files


Accepted author manuscript
  • 53
    total views
  • 131
    total downloads
  • 0
    views this month
  • 7
    downloads this month

Export as

Related outputs

Autologous collagen-induced chondrogenesis: From bench to clinical development
Chun, You Seung, Kim, Seon Ae, Kim, Yun Hwan, Lee, Joong Hoon, Shetty, Asode Ananthram and Kim, S. 2023. Autologous collagen-induced chondrogenesis: From bench to clinical development. Medicina (Kaunas, Lithuania). 59 (3), p. 530. https://doi.org/10.3390/medicina59030530
Cartilage regeneration using human umbilical cord blood derived mesenchymal stem cells: A systematic review and meta-analysis
Lee, D., Kim, Seon Ae, Song, Jun-Seob, Shetty, Asode Ananthram, Kim, Bo-Hyoung and Kim, S. 2022. Cartilage regeneration using human umbilical cord blood derived mesenchymal stem cells: A systematic review and meta-analysis. Medicina (Kaunas, Lithuania). 58 (12), p. 1801. https://doi.org/10.3390/medicina58121801
A combination of surgical and chemical induction in a rabbit model for osteoarthritis of the knee
Go, Eun Jeong, Kim, Seon Ae, Cho, Mi-La, Lee, Kwan Soo, Shetty, Asode Ananthram and Kim, S. 2022. A combination of surgical and chemical induction in a rabbit model for osteoarthritis of the knee. Tissue Engineering and Regenerative Medicine. https://doi.org/10.1007/s13770-022-00488-8
Use of injectable acellular dermal matrix combined with negative pressure wound therapy in open diabetic foot amputation
Ahn, Jiyong, Park, Ho Youn, Shetty, Asode Ananthram and Hwang, Wonha 2022. Use of injectable acellular dermal matrix combined with negative pressure wound therapy in open diabetic foot amputation. Journal of Wound Care. 31 (4), pp. 310-320. https://doi.org/10.12968/jowc.2022.31.4.310
Cell therapy for osteonecrosis of femoral head and joint preservation
Chun, You Seung, Lee, Dong Hwan, Won, Tae Gu, Kim, Chan Sik, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Cell therapy for osteonecrosis of femoral head and joint preservation. Journal of Clinical Orthopaedics and Trauma. 24, p. 101713. https://doi.org/10.1016/j.jcot.2021.101713
Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis
Vaish, Abhishek, Shanmugasundaram, Saseendar, Kim, Seon Ae, Lee, Dong-Hwan, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis. Journal of Clinical Orthopaedics and Trauma. 24, p. 101718. https://doi.org/10.1016/j.jcot.2021.101718
Characterization of wild-type and STAT3 signaling-suppressed mesenchymal stem cells obtained from hemovac blood concentrates.
Lee, Dong Hwan, Kim, Seon Ae, Go, Eun Jeong, Yoon, Chi Young, Cho, Mi-La, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Characterization of wild-type and STAT3 signaling-suppressed mesenchymal stem cells obtained from hemovac blood concentrates. Annals of Translational Medicine. 9 (16), p. 1284. https://doi.org/10.21037/atm-21-791
Improved healing of rabbit patellar tendon defects after an atelocollagen injection
Kim, Duck Kyu, Ahn, Jiyong, Kim, Seon Ae, Go, Eun Jeong, Lee, Dong Hwan, Park, Seung Chan, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Improved healing of rabbit patellar tendon defects after an atelocollagen injection. The American Journal of Sports Medicine. 49 (11), pp. 2924-2932. https://doi.org/10.1177/03635465211030508
Comparative characterization of mesenchymal progenitor cells from osteoarthritic and rheumatoid arthritic human articular cartilage
Bm, A., Rao, S., Shetty, S., Shetty, A., Shetty, S., Kim, S. and Mohana Kumar, B. 2021. Comparative characterization of mesenchymal progenitor cells from osteoarthritic and rheumatoid arthritic human articular cartilage. Cytotherapy. 23 (5), p. S56. https://doi.org/10.1016/S1465324921003467
A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology.
Shetty, A., Kim, S., Ahmed, S., Trattnig, S., Kim, S. and Jang, H. 2018. A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology. The Annals of the Royal College of Surgeons of England. 100 (3), pp. 240-246. https://doi.org/10.1308/rcsann.2017.0223
Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrows aspirate concentrate
Park, H., Shetty, A., Kim, J., Kim, Y., Jang, J., Choi, N., Lee, J. and Kim, S. 2017. Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrows aspirate concentrate. Cells Tissues Organs. 203 (6), pp. 339-352. https://doi.org/10.1159/000455829
Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC)
Huh, S., Shetty, A., Ahmed, S., Lee, D. and Kim, S. 2016. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC). Journal of Clinical Orthopaedics and Trauma. 7 (3), pp. 153-156. https://doi.org/10.1016/j.jcot.2016.05.004
Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique
Shetty, A., Kim, S., Shetty, V., Jang, J., Huh, S. and Lee, D. 2016. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique. Journal of Clinical Orthopaedics and Trauma. 7 (3), pp. 164-169. https://doi.org/10.1016/j.jcot.2016.05.003