Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC)

Journal article


Huh, S., Shetty, A., Ahmed, S., Lee, D. and Kim, S. 2016. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC). Journal of Clinical Orthopaedics and Trauma. 7 (3), pp. 153-156. https://doi.org/10.1016/j.jcot.2016.05.004
AuthorsHuh, S., Shetty, A., Ahmed, S., Lee, D. and Kim, S.
Abstract

Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-
staged arthroscopic procedure. This method combines a modified microfracture technique with theapplication of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat
articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis.

KeywordsKnee arthroscopy; cartilage; chondral defect; arthrosis; bone marrow aspirate concentrate
Year2016
JournalJournal of Clinical Orthopaedics and Trauma
Journal citation7 (3), pp. 153-156
PublisherElsevier
ISSN0976-5662
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jcot.2016.05.004
Publication dates
Online16 Jun 2016
Publication process dates
Deposited19 Mar 2019
Accepted11 May 2016
Output statusPublished
Permalink -

https://repository.canterbury.ac.uk/item/88z11/autologous-bone-marrow-mesenchymal-cell-induced-chondrogenesis-mcic

  • 113
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Oxidized LDL accelerates cartilage destruction and inflammatory chondrocyte death in osteoarthritis by disrupting the TFEB-regulated autophagy-lysosome pathway
Lee, J., Kim, Y., Jhun, J., Na, H., Um, In Gyu, Choi, J., Woo, J., Kim, S., Shetty, A., Kim, S. and Cho, M. 2024. Oxidized LDL accelerates cartilage destruction and inflammatory chondrocyte death in osteoarthritis by disrupting the TFEB-regulated autophagy-lysosome pathway. Immune Network. 24 (3). https://doi.org/10.4110/in.2024.24.e15
Autologous collagen-induced chondrogenesis: From bench to clinical development
Chun, You Seung, Kim, Seon Ae, Kim, Yun Hwan, Lee, Joong Hoon, Shetty, Asode Ananthram and Kim, S. 2023. Autologous collagen-induced chondrogenesis: From bench to clinical development. Medicina (Kaunas, Lithuania). 59 (3), p. 530. https://doi.org/10.3390/medicina59030530
Cartilage regeneration using human umbilical cord blood derived mesenchymal stem cells: A systematic review and meta-analysis
Lee, D., Kim, Seon Ae, Song, Jun-Seob, Shetty, Asode Ananthram, Kim, Bo-Hyoung and Kim, S. 2022. Cartilage regeneration using human umbilical cord blood derived mesenchymal stem cells: A systematic review and meta-analysis. Medicina (Kaunas, Lithuania). 58 (12), p. 1801. https://doi.org/10.3390/medicina58121801
A combination of surgical and chemical induction in a rabbit model for osteoarthritis of the knee
Go, Eun Jeong, Kim, Seon Ae, Cho, Mi-La, Lee, Kwan Soo, Shetty, Asode Ananthram and Kim, S. 2022. A combination of surgical and chemical induction in a rabbit model for osteoarthritis of the knee. Tissue Engineering and Regenerative Medicine. https://doi.org/10.1007/s13770-022-00488-8
Use of injectable acellular dermal matrix combined with negative pressure wound therapy in open diabetic foot amputation
Ahn, Jiyong, Park, Ho Youn, Shetty, Asode Ananthram and Hwang, Wonha 2022. Use of injectable acellular dermal matrix combined with negative pressure wound therapy in open diabetic foot amputation. Journal of Wound Care. 31 (4), pp. 310-320. https://doi.org/10.12968/jowc.2022.31.4.310
Cell therapy for osteonecrosis of femoral head and joint preservation
Chun, You Seung, Lee, Dong Hwan, Won, Tae Gu, Kim, Chan Sik, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Cell therapy for osteonecrosis of femoral head and joint preservation. Journal of Clinical Orthopaedics and Trauma. 24, p. 101713. https://doi.org/10.1016/j.jcot.2021.101713
Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis
Vaish, Abhishek, Shanmugasundaram, Saseendar, Kim, Seon Ae, Lee, Dong-Hwan, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Biological reconstruction of the joint: Concepts of articular cartilage regeneration and their scientific basis. Journal of Clinical Orthopaedics and Trauma. 24, p. 101718. https://doi.org/10.1016/j.jcot.2021.101718
Characterization of wild-type and STAT3 signaling-suppressed mesenchymal stem cells obtained from hemovac blood concentrates.
Lee, Dong Hwan, Kim, Seon Ae, Go, Eun Jeong, Yoon, Chi Young, Cho, Mi-La, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Characterization of wild-type and STAT3 signaling-suppressed mesenchymal stem cells obtained from hemovac blood concentrates. Annals of Translational Medicine. 9 (16), p. 1284. https://doi.org/10.21037/atm-21-791
Improved healing of rabbit patellar tendon defects after an atelocollagen injection
Kim, Duck Kyu, Ahn, Jiyong, Kim, Seon Ae, Go, Eun Jeong, Lee, Dong Hwan, Park, Seung Chan, Shetty, Asode Ananthram and Kim, Seok Jung 2021. Improved healing of rabbit patellar tendon defects after an atelocollagen injection. The American Journal of Sports Medicine. 49 (11), pp. 2924-2932. https://doi.org/10.1177/03635465211030508
Comparative characterization of mesenchymal progenitor cells from osteoarthritic and rheumatoid arthritic human articular cartilage
Bm, A., Rao, S., Shetty, S., Shetty, A., Shetty, S., Kim, S. and Mohana Kumar, B. 2021. Comparative characterization of mesenchymal progenitor cells from osteoarthritic and rheumatoid arthritic human articular cartilage. Cytotherapy. 23 (5), p. S56. https://doi.org/10.1016/S1465324921003467
Preliminary results of high fibular osteotomy (HFO) and cartilage regeneration procedure for medial compartment osteoarthritis of knee with varus deformity
Jaheer, H., Shetty, A., Choi, N., Kim, K., Thirumal, S., Song, J., Kim, K., Chun, Y. and Kim, S. 2019. Preliminary results of high fibular osteotomy (HFO) and cartilage regeneration procedure for medial compartment osteoarthritis of knee with varus deformity. Regenerative Therapy. 10, pp. 112-117. https://doi.org/10.1016/j.reth.2019.02.001
A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology.
Shetty, A., Kim, S., Ahmed, S., Trattnig, S., Kim, S. and Jang, H. 2018. A cost-effective cell- and matrix-based minimally invasive single-stage chondroregenerative technique developed with validated vertical translation methodology. The Annals of the Royal College of Surgeons of England. 100 (3), pp. 240-246. https://doi.org/10.1308/rcsann.2017.0223
Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrows aspirate concentrate
Park, H., Shetty, A., Kim, J., Kim, Y., Jang, J., Choi, N., Lee, J. and Kim, S. 2017. Enhancement of healing of long tubular bone defects in rabbits using a mixture of atelocollagen gel and bone marrows aspirate concentrate. Cells Tissues Organs. 203 (6), pp. 339-352. https://doi.org/10.1159/000455829
Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique
Shetty, A., Kim, S., Shetty, V., Jang, J., Huh, S. and Lee, D. 2016. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique. Journal of Clinical Orthopaedics and Trauma. 7 (3), pp. 164-169. https://doi.org/10.1016/j.jcot.2016.05.003