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Abstract: Auxetic lattice structures are three-dimensionally designed intricately repeating units with 

multifunctionality in three-dimensional space, especially with the emergence of additive manufac-

turing (AM) technologies. In aerospace applications, these structures have potential for use in high-

performance lightweight components, contributing to enhanced efficiency. This paper investigates 

the design, numerical simulation, manufacturing, and testing of three-dimensional (3D) star-shaped 

lattice structures with tailored mechanical properties. Finite element analysis (FEA) was employed 

to examine the effect of a lattice unit’s vertex angle and strut diameter on the lattice structure’s Pois-

son’s ratio and effective elastic modulus. The strut diameter was altered from 0.2 to 1 mm, while the 

star-shaped vertex angle was adjusted from 15 to 90 degrees. Laser powder bed fusion (LPBF), an 

AM technique, was employed to experimentally fabricate 3D star-shaped honeycomb structures 

made of Ti6Al4V alloy, which were then subjected to compression testing to verify the modelling 

results. The effective elastic modulus was shown to decrease when increasing the vertex angle or 

decreasing the strut diameter, while the Poisson’s ratio had a complex behaviour depending on the 

geometrical characteristics of the structure. By tailoring the unit vertex angle and strut diameter, the 

printed structures exhibited negative, zero, and positive Poisson’s ratios, making them applicable 

across a wide range of aerospace components such as impact absorption systems, aircraft wings, 

fuselage sections, landing gear, and engine mounts. This optimization will support the growing 

demand for lightweight structures across the aerospace sector. 

Keywords: star-shaped lattice structure; auxetic structures; laser powder bed fusion; Poisson’s ratio 

 

1. Introduction 

Materials with zero or negative properties represent a paradigm shift by challenging 

conventions of traditional materials and introducing novel characteristics. Historically, 

properties such as thermal expansion, refractive indices, Poisson’s ratio, permittivity, per-

meability, compressibility, and stiffness have all shown positive values. For an airplane 

subjected to significant temperature variations, materials with negative thermal expan-

sion coefficients present prospects for the development of lightweight components with 

increased thermal stability. Additionally, materials with negative refractive indices may 

have potential for used in designing small, effective antennas that reduce overall weight 

and size while improving radar and communication capabilities. This potential makes 

them suitable for aerospace applications where efficiency, performance, and weight are 

essential considerations [1]. Metamaterials have attracted substantial research attention 

during the past few years as an emerging concept for developing materials with novel 

properties different from those of conventional materials [2]. Metamaterials, or 
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engineered materials, have designed properties that can be tailored to control the values 

of Poisson’s ratio and permeability, permittivity, and refractive index properties, allowing 

achieving negative values through creating designed pores. Auxetic materials, one type of 

metamaterial, were shown to exhibit the very unusual property of becoming wider when 

stretched and narrower when compressed. This property gives a material several benefi-

cial properties, such as increased shear stiffness, increased plane strain fracture toughness, 

increased indentation resistance, and improved acoustic damping properties [3]. Open-

celled porous structure metamaterials called lattice structures provide a special combina-

tion of high functionality and low weight. They facilitate the production of engineered 

components with tailored properties such as high specific strength and high toughness 

[4,5]. The low relative density as well as high surface area of such structures allow their 

use in filters, catalytic convertors, armour, heat exchangers, load-bearing components, bi-

omedical implants, and so on. 

Poisson’s ratio is a fundamental mechanical property that reflects the structural de-

formation being applied perpendicular to the applied force. Typically, most conventional 

materials have positive Poisson’s ratios, which means these materials expand (or contract) 

laterally when subjected to axial compressive (or tensile) stresses. One of the unique prop-

erties of lattice structures is that it allows the control of a material’s Poisson’s ratio to fa-

cilitate the acquisition of negative values, as in auxetic structures [6]. Materials with a neg-

ative Poisson’s ratio, known as “auxetic”, can contract (or expand) laterally when com-

pressed (or stretched) axially [7]. Human tissues such as trabecular bones and specific 

ligaments; liquid crystalline polymers; and egg rack structures are examples of this type 

of structure [8–10]. Auxetic structures were classified into three categories by Kim et al. 

[11] according to the characteristics that produce the auxetic effect: re-entrant, chiral, and 

spinning. 

Additive manufacturing technologies have emerged as an innovative industrial so-

lution in recent decades, expanding to a wide range of applications. This is because of 

their ability to be used in manufacturing complex shapes and customised designs that are 

challenging to achieve using traditional technologies [12,13]. For all AM techniques, cre-

ating three-dimensional structures from a digitally created CAD model is achieved 

through the layer-by-layer printing of materials. One of the most advanced AM processes, 

laser powder bed fusion (LPBF), was developed in the latter half of the 1980s, adhering to 

ASTM F2792 [14]. It is a solid freeform manufacturing process used to create three-dimen-

sional objects via laser scanning a powder bed layer in an inert environment. Using a re-

coater blade, LPBF is used to apply a thin layer of metal powder to a building substrate. 

The powder is then melted, and a liquid melt pool is created by the laser beam scanning 

the predetermined path of the CAD model. After cooling, the molten pool turns into a 

layer of the component. Once the substrate’s height is reduced by one layer, the procedure 

is restarted and carried out again until the component is fully printed [15,16]. The devel-

opment of lattice structures with intricate internal porosity and voids intended to exhibit 

certain mechanical and physical characteristics has been made possible by the advent of 

LPBF, which is widely used in the manufacturing of 2D, 2.5D, and 3D lattice structures, 

including zero-Poisson’s ratio (ZPR) and auxetic materials, due to their special deformation 

properties [17,18]. 

Zadeh et al. [19] developed a 2D lattice structure dubbed Fish Cells, which was shown 

to have a Poisson’s ratio of zero, and suggested that it can be efficiently employed for skin 

morphing. In another study, Gong et al. proposed a 3D zero-Poisson’s ratio lattice struc-

tures that showed lightweight and out-of-plane rigidity [20]. Negative-Poisson’s ratio or 

auxetic structures have also been studied since they are designed to have superior energy 

absorption capabilities, making them useful for impact protection and vibration dampen-

ing. Recent research has also found that various human body sections, including muscle, 

ligament, vascular, and skin tissues, exhibit negative Poisson’s ratios [11]. The re-entrant 

structure, in both 2D and 3D configurations, is one of the most well-established auxetic 

structure types. This structure has been shown to have important characteristics for 
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several applications, including impact-resistant materials, flexible electronics, and bio-

medical implants [21,22]. 

Yang et al. [22] created 3D re-entrant auxetic structures based on their original 2D 

geometries and investigated their compressive properties and Poisson’ ratios as the ge-

ometry of the unit cell changed. The authors found that considerable variations in effective 

modulus and compressive strength were exhibited when the structures were compressed 

in different directions. In another study, Rad et al. [23] created 3D star structures that can 

have a negative Poisson’s ratio in all directions if the unit cell design parameters are kept 

within a certain range. They found that the Poisson’s ratio and elastic modulus were cor-

related with the design parameters but limited in range variabilities since they only in-

cluded one type of unit cell. By combining various unit cell types, structures with a wide 

variety of Poisson’s ratios and compressive characteristics ranges might be achieved. 

Several other research works have also been presented. Strek et al. [24] reported that 

there was a significant influence of Poisson’s ratio on contact pressure between a half-

cylinder elastic body and a clamped plate. Mrozek et al. [25] showed that the dynamic 

behaviour of an auxetic material could also be enhanced by adjusting the geometric pa-

rameter of its structure. In addition, the results obtained by Bilski et al. [26] demonstrated 

a strong correlation between the geometry of 2D lattice structures and the resulting Pois-

son’s ratio. 

The reviewed research has shown that 3D auxetic materials exhibit promising capa-

bilities. However, there is a gap in research regarding structural designs capable of main-

taining their negative Poisson’s properties under varying loading directions. There is a 

need to find a structure that exhibits true auxetic behaviour in all three orthogonal axes. 

Therefore, the goal of this study is to introduce a 3D star-shaped lattice structure with 

isotropic mechanical properties. The developed star-shaped lattice structure was charac-

terised using finite element analysis, as well as mechanical testing, to explore the effect of 

vertex angle (θ) and strut diameter (D) on the Poisson’s ratio (ν) and the effective elastic 

modulus (E/E*) of the structure, where E and E* are the elastic moduli of a structure and 

its building material, respectively. The effective elastic modulus ratio represents the rela-

tive stiffness of the star-shaped lattice structure relative to the solid material when it has 

full density. 

2. Methodology 

Figure 1 depicts the flow chart used to evaluate the mechanical characteristics of the 

star-shaped lattice structure. Initially, the geometrical parameters, specifically the vertex 

angle and strut diameter, were specified. CAD drawings were then created using these 

parameters. Next, geometric models of the samples were generated, and their mechanical 

characteristics were evaluated using finite element analysis (FEA). Finally, the FEA find-

ings were evaluated against experimental data. In addition, this process included two 

feedback loops: one to evaluate the minimum representative volume element (RVE) and 

another to perform mesh sensitivity analysis. 
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Figure 1. Flow chart of the methodology applied for the assessment of the mechanical properties of 

star-shaped structures. 

2.1. Star-Shaped Design 

The methods used to evaluate the mechanical properties of the star-shaped lattice 

structure are described below, beginning with the design of the structure. Lattice struc-

tures are designed with repeated and joined unit cells with a specific geometric arrange-

ment. For a 3D star-shaped lattice structure, the unit cell is made up of struts or beams 

arranged in a star-like shape. Each strut extends outward from a centre point, like a star 

or an asterisk. The repeated struts meet at various locations, resulting in a network of 

linked units that create the lattice structure, as shown in Figure 2a. 

As indicated above, this design focused on varying two essential geometrical param-

eters, namely, the vertex angle (θ) and the strut diameter (D), as shown in Figure 2b. Each 

unit cell is 14 × 14 × 14 mm3. The two parameters were investigated in the ranges of 15 to 

90° for the vertex angle (six identical levels) and 0.2 to 1.0 mm for the strut diameter (nine 

equal levels). Ti6Al4V alloy was chosen for use in the star-shaped lattice structure due to 

its outstanding mechanical strength, lightweight nature, and excellent corrosion re-

sistance. This alloy is commonly utilised in aerospace, automotive, and biomedical appli-

cations, making it a dependable material for engineering constructions that require high 

performance and endurance. 
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Figure 2. (a) lattice structure; (b) design parameters; (c) before compression; (d) after compression. 

2.2. Calculation of Elastic Modulus and Poisson’s Ratio 

The stress–strain data obtained from the FEA simulations were used to compute the 

elastic modulus (E) of the star-shaped lattice structures. The slope of the stress–strain 

curve within the linear elastic zone was used to compute the elastic modulus by dividing 

the change in stress (Δσ) by the change in strain (Δε), as shown in Equation (1): 

𝐸 =
∆𝜎

∆𝜖
 (1) 

The elastic modulus, Poisson’s ratio, and yield strength of the Ti6Al4V alloy are 113.8 

GPa, 0.342, and 1000 MPa, respectively [27–29]. In this study, the effective elastic modulus 

of the structure was calculated by dividing its elastic modulus by that of the solid Ti6Al4V 

alloy. The Poisson’s ratio (v) was determined by first computing the average displacement 

of the ends of the laterally projecting struts. Then, the transverse strain 𝜖𝑡  corresponding 

to this displacement was divided by the longitudinal contraction strain 𝜖𝑙 in the direction 

of the stretching force to obtain the Poisson’s ratio (see Equation (2)). Figure 2c,d show 

graphical representations of the determination of the elastic modulus and Poisson’s ratio, 

respectively. 

𝜈 =
−𝜖𝑡
𝜖𝑙

 (2) 
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2.3. Numerical Modelling 

The geometry of the star-shaped lattice structure was created in Solidworks 2018 

(Dassault Systems, Velizy-Vilacoublau, France), as shown in Figure 2. A total of 54 sam-

ples with different strut diameters and vertex angles were designed to investigate the ef-

fects of the geometrical parameters of the star-shaped lattice structures under investiga-

tion on their mechanical properties. Next, the samples were imported into Abaqus 2017 

(Dassault Systemes, Velizy-Vilacoublau, France) for finite element analysis. The minimal 

representative volume element (RVE) of the star-shaped lattice structure was determined 

through an initial investigation in order to save the computation time of the FEA [30]. The 

FEA was performed with models that ranged in unit cell count from 1 × 1 × 1 (one single 

unit cell) to a maximum of 5 × 5 × 5 (125 unit cells). After assessing the convergence of the 

FEA results, the lowest number of unit cells that adequately represent the model was iden-

tified. 

Because of the symmetry of the model, the top and bottom faces of the model were 

constrained by reference points in the loading direction (z-axis). Applying a 2.1 mm dis-

placement, or 5% strain, to the top reference point allowed the creation of a star-shaped 

lattice structure. Here, 5% strain was chosen to allow us to apply significant deformation 

to enable an assessment of how the structure responds while avoiding excessive defor-

mation that might compromise its integrity. An extra point was selected and constrained 

in the x direction to ensure sufficient restriction of the deformation of the model (see Fig-

ure 3a). It is worth noting that the above boundary conditions are appropriate for the cur-

rent small and finite number of unit cells. For a large or infinite number of unit cells, it is 

appropriate to apply periodic boundary conditions. Periodic boundary conditions offer 

several advantages as they allow for the modelling of infinite periodic lattice structures; 

this makes it easier to comprehend the mechanical properties and scaling behaviour of 

lattice structures in large dimensions. Periodic boundary conditions eliminate border in-

teractions and edge effects that may arise in small samples, making the lattice structure’s 

behaviour uniform. 

Finally, a mesh sensitivity analysis was performed to ensure that the results converged 

with the allocated number of elements, aiming to achieve a result variation lower than 0.1%. 

To compare and assess the simulation results with various mesh sizes, the element size 

range was set to 0.33d to 0.5d of the strut diameters. An optimal element size was identified 

by investigating the convergence of the results and the computing time (see Figure 3b). 

 

Figure 3. (a) Boundary conditions; (b) an example of the meshing. 

2.4. Experimental 

 
(a) (b) 

Fixed BCs  

Compression (5%) strain  
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Three star-shaped lattice structures with various strut diameters and vertex angles 

were printed in order to verify the computational model results. The chosen designs had 

the following geometrical parameters: θ = 75 and D = 0.5 mm, θ = 50° and D = 0.5 mm, and 

θ = 40° and D = 0.5 mm. Ti6Al4V gas-atomized titanium alloy powder with a particle size 

of d50 = 40 μm was provided by TLS Technik GmbH (Bitterfeld-Wolfen, Germany). Char-

acterization of the particle size distribution of the Ti6Al4V powder was carried out accord-

ing to the ASTM B822 standard [31] using a laser diffraction analyser (Microtrac, Microtrac 

Retsch GmbH, Haan, Germany). The powder was found to have good flowability, as 

shown by its Hausner ratio of 1.16. The 3D star-shaped lattice structures were then fabri-

cated using the Renishaw RenAM 500 M LPBF system (Renishaw plc, Wot ton-under-

Edge, UK). The LPBF process was carried out within an argon environment in the building 

unit using a Renishaw machine with an oxygen concentration less than 0.1% and standard 

process parameters for Ti6Al4V consisting of 200 W of laser power, a 1200 mm/s scanning 

speed, and a layer thickness 0.02 mm for. 

The building direction of the 3D star-shaped lattice structures had to be optimally 

oriented at ideal angles to avoid producing horizontal and shallow-angle printed struts, 

which could lead to overhanging problems and weak adhesion with the substrate during 

printing [32]. The designs were rotated 45° about the y-axis and then 45° about the x-axis 

in order to achieve the best building orientation (Figure 4a). To further support the over-

hung struts, internal supports needed to be placed (Figure 4b). Nevertheless, because the 

locations of these supports were difficult to access, their removal was found difficult. As a 

result, the supports were made much thinner than the original struts in order to address 

this issue and facilitate the removal process. Zwick/Roell (Zwick Roell Group, Zwick 

GmbH, Ulm, Germany) universal testing equipment was utilised to assess the compres-

sion properties of the fabricated samples, using a compression rate of 1 mm/min, and the 

results were used to calculate the Poisson’s ratios and effective elastic moduli of the as-

fabricated samples. To guarantee a uniform distribution of the compressive force through-

out the test, the structures were positioned at the middle of the loading plate. 

 
Figure 4. (a) Printing position of the structure; (b) structure with internal support added. 

3. Results and Discussion 

(a) 
(b) 
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3.1. Modelling 

The results of the preliminary simulations used to calculate the lowest representative 

volume element are shown in Figure 5. This figure shows the effect of the star-shaped 

lattice structure unit cells on both the Poisson’s ratio and effective elastic modulus. For 

both properties, it was observed that convergence started when the design of the lattice 

structure had at least 8 unit cells (2 × 2 × 2). Based on these results, it was decided that the 

design of the star-shaped lattice structures considered in this study, both computationally 

and experimentally, should have 27 unit cells 3 × 3 × 3. Figure 6 shows an FEA example of 

this setup before and after compression, demonstrating typical negative-Poisson’s ratio 

behaviour. In this figure, u represents deformation under compression, while u1 indicates 

deformation in the x-direction. 

  
(a) (b) 

Figure 5. Convergence of simulation results against the number of unit cells for (a) effective elastic 

modulus and (b) Poisson’s ratio. 

 

Figure 6. Compression of the 3 × 3 × 3 model in FEA (a) before compression and (b) after compres-

sion. 

Table 1 and Figure 7 show the mesh sensitivity analysis findings for the 3D star-

shaped lattice model with a vertex angle of 75° and a strut diameter of 0.5 mm. The FEA 

simulation results for both the Poisson’s ratio and the effective elastic modulus began to 

converge when the element size was about 0.17 mm (which is about one-third of the strut 
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diameter). This indicates that more mesh refinement beyond this stage would not have 

any meaningful effects on the accuracy or precision of the simulation results while simul-

taneously consuming more computing processing time. As a result, the element size of 

the FEA models was determined to be one-third of the strut diameter. 

Table 1. Mesh sensitivity analysis on a model with (θ = 75°, D = 0.5 mm). 

Element Size (mm) Number of Elements Poisson’s Ratio 
Effective Elastic  

Modulus (×10−5) 

0.25 130,984 0.1623 2.432 

0.23 137,271 0.1622 2.432 

0.21 198,777 0.1617 2.426 

0.19 230,337 0.1614 2.422 

0.167 295,819 0.1606 2.412 

0.15 362,941 0.1606 2.411 

 

Figure 7. The mesh convergence behaviour results for a model with (θ = 75°, D = 0.5mm). 

The FEA results, listed in Table 2 and shown graphically in Figure 8, show a clear 

trend in which the effective elastic moduli drop as the vertex angle increases or strut di-

ameter decreases. This shows that if the vertex angle increases or the strut diameter de-

creases, the lattice structure’s stiffness decreases. Furthermore, the relationship between 

Poisson’s ratio and strut diameter varies depending on the vertex angle. For star-shaped 

lattice structures with vertex angles greater than 60°, there is an inverse relationship be-

tween the Poisson’s ratio and the strut diameter. In contrast, lattice structures with vertex 

angles less than 60° exhibit a direct relationship. In general, star-shaped lattice structures 

with smaller angles have lower Poisson’s ratios, except for those for which D = 1 mm, 

which showed a minor reduction in Poisson’s ratio as the vertex angle increased. This is 

because in designs with large strut diameters but small vertex angles, the centre hollow 

area becomes too constrained to allow the horizontal struts to contract until 5% strain is 

reached. As a result, the struts attached to the same vertex come into complete contact 

with one another, leading to a material’s yielding. 

Table 2. Simulation results regarding the star-shaped lattice structure. 

Θ (°) D (CAD) (mm) 𝜈 𝐸/𝐸∗ Θ (°) D (CAD) (mm) 𝜈 𝐸/𝐸∗ 

15 0.2 −0.798 1.06 × 10-6 60 0.6 0.086 5.49 × 10-5 

30 0.2 −0.379 8.01 × 10-7 75 0.6 0.157 5.22 × 10-5 
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45 0.2 −0.09 6.71 × 10-7 90 0.6 0.198 5.23 × 10-5 

60 0.2 0.069 6.08 × 10-7 15 0.7 −0.329 3.26 × 10-4 

75 0.2 0.16 5.98 × 10-7 30 0.7 −0.169 1.57 × 10-4 

90 0.2 0.212 6.06 × 10-7 45 0.7 −0.028 1.19 × 10-4 

15 0.3 −0.713 6.17 × 10-6 60 0.7 0.089 1.04 × 10-4 

30 0.3 −0.341 4.23 × 10-6 75 0.7 0.153 9.82 × 10-5 

45 0.3 −0.077 3.51 × 10-6 90 0.7 0.192 9.82 × 10-5 

60 0.3 0.075 3.20 × 10-6 15 0.8 −0.22 6.30 × 10-4 

75 0.3 0.166 3.09 × 10-6 30 0.8 −0.136 2.81 × 10-4 

90 0.3 0.21 3.12 × 10-6 45 0.8 −0.02 2.09 × 10-4 

15 0.4 −0.637 2.27 × 10-5 60 0.8 0.091 1.81 × 10-4 

30 0.4 −0.295 1.43 × 10-5 75 0.8 0.148 1.70 × 10-4 

45 0.4 −0.063 1.14 × 10-5 90 0.8 0.186 1.70 × 10-4 

60 0.4 0.079 1.03 × 10-5 15 0.9 −0.126 1.13 × 10-3 

75 0.4 0.164 9.91 × 10-6 30 0.9 −0.108 4.70 × 10-4 

90 0.4 0.208 1.00 × 10-5 45 0.9 −0.014 3.43 × 10-4 

15 0.5 −0.551 6.45 × 10-5 60 0.9 0.089 2.95 × 10-4 

30 0.5 −0.246 3.70 × 10-5 75 0.9 0.144 2.76 × 10-4 

45 0.5 −0.049 2.91 × 10-5 90 0.9 0.181 2.75 × 10-4 

60 0.5 0.083 2.58 × 10-5 15 1 −0.067 1.89 × 10-3 

75 0.5 0.161 2.47 × 10-5 30 1 −0.081 7.46 × 10-4 

90 0.5 0.204 2.49 × 10-5 45 1 −0.007 5.37 × 10-4 

15 0.6 −0.399 1.55 × 10-4 60 1 0.086 4.58 × 10-4 

30 0.6 −0.203 8.10 × 10-5 75 1 0.141 4.27 × 10-4 

45 0.6 −0.039 6.24 × 10-5 90 1 0.176 4.23 × 10-4 

 

 

Figure 8. Plots of (a) Poisson’s ratio and (b) effective elastic modulus against vertex angle for differ-

ent strut diameters. 

Least squares fitting, which is a mathematical procedure used for finding the best-

fitting curve to a given set of points by minimizing the sum of the squares of the offsets of 

the points from the curve, was applied to analyse the data presented in Table 2. In this 

way, the relationship between the design parameters (strut diameter and vertex angle) 

and the Poisson’s ratio and effective elastic modulus of the star-shaped lattice structure 

were determined. The coefficient of correlation (R2) is used to describe model fit in regres-

sion analysis. Based on the model fitting, the fourth-degree polynomial function was 

found to be the most suitable model for both properties. Equations (3) and (4) provide the 

general empirical formulae that express the Poisson’s ratio as well as the effective elastic 

modulus, respectively, in terms of the strut diameter and vertex angle: 
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𝜈 = 𝑓(𝜃, 𝐷) = 𝑎00 + 𝑎10𝜃 + 𝑎01𝐷 + 𝑎20𝜃2 + 𝑎11𝜃𝐷 + 𝑎02𝐷2 + 𝑎30𝜃3 + 𝑎21𝜃2𝐷 

+𝑎12𝜃𝐷2 + 𝑎03𝐷3 + 𝑎40𝜃4 + 𝑎31𝜃3𝐷 + 𝑎22𝜃2𝐷2 + 𝑎13𝜃𝐷3 + 𝑎04𝐷4 
(3) 

𝐸/𝐸∗ = 𝑔(𝜃, 𝐷) = 𝑏00 + 𝑏10𝜃 + 𝑏01𝐷 + 𝑏20𝜃2 + 𝑏11𝜃𝐷 + 𝑏02𝐷2 + 𝑏30𝜃3 + 𝑏21𝜃2𝐷 

+𝑏12𝜃𝐷2 + 𝑏03𝐷3 + 𝑏40𝜃4 + 𝑏31𝜃3𝐷 + 𝑏22𝜃2𝐷2 + 𝑏13𝜃𝐷3 + 𝑏04𝐷4 
(4) 

where the model coefficients, 𝑎𝑖𝑗 and 𝑏𝑖𝑗, are provided in Table 3 and were determined by an 

examination of the data using the least-squares fitting method. The coefficient of determi-

nation (R2) values for various polynomial orders were examined, and we ultimately chose a 

fourth-order polynomial model as it was more accurate compared to those of lower orders. 

The fits in the current investigation showed strong R2 values for the effective elastic modulus 

and Poisson’s ratio, amounting to 0.9875 and 0.9992, respectively. These values show a very 

high goodness of fit. Figures 8 and 9 show charts displaying these fitted functions for the 

Poisson’s ratio and effective elastic modulus as a function of the strut diameter and vertex 

angle. 

Table 3. Values of the coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 in Equations (3) and (4). 

i j 𝑎𝑖𝑗 𝑏𝑖𝑗 i j 𝑎𝑖𝑗 𝑏𝑖𝑗 

0 0 3.27 × 10−2 7.6 × 10-5 1 2 1.298 × 10-3 (m−2 rad−1) −7.533 × 10-5 (m−2 rad−1) 

1 0 2.13 × 10−1 (rad−1) 6.38 × 10-5 (rad−1) 0 3 −3.355 × 10-3 (m−3) 4.169 × 10-5 (m−3) 

0 1 1.6 × 10−2 (m−1) 5.12 × 10-5 (m−1) 4 0 6.975 × 10-3 (rad−4) 3.301 × 10-5 (rad−4) 

2 0 −8.36 × 10−2 (rad−2) −5.61 × 10-5(rad−2) 3 1 −2.248 × 10-2 (m−1 rad−3) −6.300 × 10-5 (m−1 rad−3) 

1 1 −5.34 × 10−2 (m−1 rad−1) 4.15 × 10-5 (m−1 rad−1) 2 2 1.438 × 10-3 (m−2 rad−2) 6.290 × 10-5 (m−2 rad−2) 

0 2 −6.56 × 10−3 (m−2) 4.81 × 10-5 (m−2) 1 3 5.909 × 10-3 (m−3 rad−1) −2.915 × 10-5 (m−3 rad−1) 

3 0 1.61 × 10-4 (rad−3) −5.26 × 10-5 (rad−3) 0 4 3.473 × 10-4 (m−4) 7.007 × 10-6 (m−4) 

2 1 5.09 × 10−2 (m−1 rad−2) 9.54 × 10-5 (m−1 rad−2)     

 

Figure 9. Plot of the fitted function for the Poisson’s ratio of the structure against vertex angle and 

strut diameter. 

Figure 9 clearly illustrates the effects of the two studied parameters on the Poisson’s 

ratio of the structure. With the reduction in the strut diameter, the negative Poisson’s ratio 

becomes greater. This was evident for the star-shaped lattice structures with vertex angles 

less than 60°. For structures with larger vertex angles, the effect was inconspicuous. This 

is an indication that the Poisson’s ratio values became more sensitive to the change in strut 

dimeter for the lattice structures with relatively small vertex angles, which could 
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potentially be taken advantage of in engineering designs. Furthermore, as shown in Fig-

ure 10, the influence of the design parameters on the effective elastic modulus is obvious. 

It is clear that the effective modulus of the structure increases as the strut diameter in-

creases and/or the vertex angle decreases. This demonstrates that it is possible to control 

the star-shaped lattice structure’s stiffness through adjusting its design parameters. 

 
Figure 10. Plot of the fitted function for the effective elastic modulus of the structure against vertex 

angle and strut diameter. 

3.2. Experimental 

To validate the FEA results, three structures with different unit cell dimensions were 

evaluated after being additively built using the LPBF process. The vertex angles and strut 

dimeters of the structures were θ = 75° and D = 0.5 mm; θ = 50° and D = 0.5 mm; and θ = 

40° and D = 0.5 mm. These parameters were specifically designed to produce star-shaped 

lattice structures with, correspondingly, positive, zero, and negative Poisson’s ratios. Af-

terward, these star-shaped lattice structure designs were 3D-printed and compressed. An 

example of the star-shaped lattice structures made of Ti6Al4V that was produced for this 

investigation is shown in Figure 11a. In the initial experiments, the samples had already 

experienced some compressions with mild displacements delivered from different direc-

tions during the support removal process. However, when using star-shaped lattice struc-

tures with thinner interior supports, the supports were successfully snapped out of place 

without damaging or compressing the lattice structures (Figure 11b). The samples were 

then examined after excluding the impact of the supports. 
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(a) (b) 

Figure 11. (a) A sample of the Ti6Al4V LPBF-fabricated star-shaped lattice structures in this study. 

(b) Internal support failure observed during compression testing. 

The compressive stress–strain diagrams for various star-shaped lattice configurations 

were created using the force and displacement data obtained from the compression experi-

ments performed on three different star-shaped lattice structures with variable geometrical 

parameters, as shown in Figure 12. In order to enable a comparative evaluation of the me-

chanical properties of the star-shaped lattice structures, the FEA compression test results for 

the same three star-shaped lattice designs were also overlaid on the stress–strain diagrams 

in Figure 12. The purpose of this comparison was to validate the FEA results and confirm 

the precision of the designs produced using the FEA model. For lattices with a strut diame-

ter of 0.5 mm and vertex angles of 50° and 75°, a strong agreement between the FEA and 

experimental data was observed. In contrast, the FEA predictions and the experimental re-

sults for the star-shaped lattice structure with a vertex angle of 40° and a strut diameter of 

0.5 mm showed a deviation of about 10%. The close agreement between the experimental 

and simulation results indicates the accuracy of the model in estimating the properties of 

the star-shaped honeycomb structures investigated in this study. 

The results of the current work could be a confirmation of earlier findings reported 

by Yang et al. [22], who studied the relationship between the geometrical design parame-

ters and mechanical properties of 3D re-entrant-lattice auxetic structures. The cited au-

thors reported that there were significant effects of the structural dimensions and the re-

entrant angle on the Poisson’s ratio and Young’s modulus of the structure. In addition, it 

was suggested that when the number of unit cells is greater than or equal to three, the 

effect of size on the accuracy of the results can effectively be neglected, which was also 

confirmed in the current work. This is particularly useful for many practical design appli-

cations in which the number of unit cells is restricted due to overall component size. 

Similar conclusions were also reported by Rad et al. [23] during their study of the 

factors controlling the mechanical properties of star-shaped lattice cellular structures. The 

authors indicated that varying the wall lengths, cell wall thickness, and angle of the struc-

ture’s topology would provide the designer with more degrees of freedom with which to 

control the stiffness and Poisson’s ratio of these cellular structures. 
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Figure 12. Comparison of the equivalent stress–strain curves from experiment and simulation of the 

star-shaped lattice structures with the following parameters: (a) θ = 40°, D = 0.5 mm; (b) θ = 50°, D 

= 0.5 mm; (c) θ = 75°, D = 0.5 mm. 

3.3. Error Analysis 

A comparison with experimental data was made to assess the accuracy of the FEA-

predicted mechanical properties of the printed star-shaped lattice structures. The effective 

elastic modulus and Poisson’s ratio experimental data for the three printed structures are 

summarised in Table 4. For each of the three designs, three structures were printed and 

subjected to a compression test. To assess the simulation error, the modelling results for 

the three lattice structures were also included and compared with the experimental find-

ings. Among the three studied lattice structures, the effective elastic moduli (𝐸/𝐸∗) derived 

from the finite element analysis demonstrated an acceptable dependability, with a maxi-

mum error of 4.08%. 

Regarding the Poisson’s ratio (𝜈), star-shaped lattice structures with the indicated pa-

rameters ((θ = 75°, D = 0.5 mm), (θ = 50°, D = 0.5 mm), and (θ = 40°, D = 0.5 mm)) were 

shown to exhibit negative, zero, and positive Poisson’s ratios, respectively. The simulation 

inaccuracy was, nonetheless, comparatively notable. There are several possible explana-

tions for this divergence. Initially, there may have been a degree of error added since the 

use of the mechanical characteristics of the Ti6Al4V alloy in the simulation was based on 

literature research rather than experimental testing. Although data found in the literature 

is frequently trustworthy, differing production techniques and alloy compositions might 

result in differences in material quality. Additionally, the mechanical properties of the 
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star-shaped lattice structures may have been impacted by manufacturing flaws that are 

frequently encountered throughout the LPBF process. Furthermore, because of the geo-

metric complexity of the star-shaped lattice structures, it was difficult to completely avoid 

shallow angles in certain struts even with careful rotation during the printing process. 

This could lead to imperfections in the printed structures that could result in weaker con-

nections and reduced overall structural integrity, which could then lead to mechanical prop-

erties that are lower than expected. 

The loading conditions during testing are another possible cause of the observed de-

viation. The force transmission along these contacting struts may not be completely verti-

cal since there are only nine thin struts that make direct contact with the top or bottom 

surfaces of the testing equipment. As a result, during the compression test, there could 

have been some bending or misalignment. This implies that the star-shaped lattice struc-

tures might not have been compressed into an ideal upright position, which would lead 

to less accurate stress–strain correlations. Face plates on the top and bottom surfaces could 

be added as a potential solution to this issue. This would be especially useful for models 

with a higher number of unit cells. The stability of the structures under compressive 

stresses would be improved as a result. 

Table 4. Errors of the simulation results compared to those from the experiment. 

θ (°) D (mm) Properties Experiment 1 Experiment 2 Experiment 3 Average Simulation Error (%) 

40 0.5 𝜈 −0.114 −0.123 −0.133 −0.123 −0.108 12.20 

40 0.5 𝐸/𝐸∗ (×10−5) 2.955 3.112 3.008 3.038 3.116 2.57 

50 0.5 𝜈 0 0.004 0.005 0.005 0.003 31.70 

50 0.5 𝐸/𝐸∗ (×10−5) 2.772 2.926 2.903 2.867 2.750 4.08 

75 0.5 𝜈 0.143 0.114 0.138 0.132 0.161 21.97 

75 0.5 𝐸/𝐸∗ (×10−5) 2.447 2.431 2.552 2.477 2.380 3.92 

3.4. Hybrid Unit Cells 

The purpose of this study is to determine how the strut diameter and vertex angle 

affect the Poisson’s ratio and effective elastic moduli of a star-shaped lattice structure. This 

suggests that each mechanical property has a single design solution that corresponds to 

particular values of the design parameters. This is a result of the fact that only two varia-

bles were examined. However, when taking into account other mechanical properties, a 

more thorough analysis with several variables would be needed. The star-shaped lattice 

structure configuration is an important factor to include. The star-shaped lattice structure, 

for instance, can be made up of several unit cell types. Every unit cell type has different 

design parameters that make distinct contributions to the structure’s overall mechanical 

properties. Furthermore, changes in the number of struts or geometric arrangements can 

effectively broaden the range of the structure’s mechanical characteristics. 

Additive manufacturing can be used to tailor designs and modify unit cell arrange-

ment, which can result in a variety of mechanical behaviours that affect stiffness, strength, 

and ductility. Therefore, it becomes essential to investigate the consequences of consider-

ing various lattice configurations, including variations in unit cell shape, arrangement, 

and size, in order to completely program, control, and optimise the mechanical perfor-

mance of star-shaped lattice structures. For instance, merging two types of unit cells 

within a 3 × 3 × 3 (27 unit cells) structure can result in up to 14 distinct configurations while 

retaining isotropy (see Figure 13). As demonstrated, the following design configurations 

can be realised (as shown in Figure 13) if there are two distinct unit cell designs, A and B, 

which would be represented by the blue and white blocks, respectively, where there are 

3 × 3 × 3 unit cells (27 units): 

1. A unit cell of the A type in the centre of the cube (a structure consisting of 1 unit cell 

of type A and 26 unit cells of type B)—Figure 13a, Hybrid 1; 
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2. Unit cells of the A type at the centres of the faces (a structure consisting of 6 unit cells 

of the A type and 21 unit cells of the B type)—Figure 13b, Hybrid 2; 

3. Unit cells of the A type at the centres of the faces and the cube (a structure consisting 

of 7 unit cells of the A type and 20 unit cells of the B type)—Figure 13b, Hybrid 3; 

4. Unit cells of the A type at the vertices (a structure consisting of 8 unit cells of the A 

type and 19 unit cells of the B type)—Figure 13c, Hybrid 4; 

5. Unit cells of the A type at the vertices and the centre of the cube (a structure consisting 

of 9 unit cells of the A type and 18 unit cells of the B type)—Figure 13c, Hybrid 5; 

6. Unit cells of the A type in the middle of the edges (a structure consisting of 12 unit 

cells of the A type and 15 unit cells of the B type)—Figure 13d, Hybrid 6; 

7. Unit cells of the A type in the middle of the edges and at the centre of the cube (a 

structure consisting of 13 unit cells of the A type and 14 unit cells of the B type)—

Figure 13d, Hybrid 7. 

It should be noted that if the white and blue blocks were swapped for the identical 

configurations shown above, there would be an additional seven possible combinations. 

In order to demonstrate the possibility of customising the mechanical properties of a 

star-shaped lattice structure made up of two different unit cells, the fifth configuration 

was chosen from the available alternatives (see Figure 13c). 

    
(a) (b) (c) (d) 

Figure 13. Possible arrangements of a 3 × 3 × 3 star-shaped lattice structure consisting of two differ-

ent types of unit cells symbolized by the white and blue cubes. (a) Hybrid 1 (b) Hybrid 2,3 (c) Hybrid 

5 (d) Hybrid 6,7. 

The strut length of the two unit cells (the blue and white blocks in Figure 13c) was 

0.5 mm, while the vertex angles was changed from 15 to 75°. The simulation results of the 

derived Poisson’s ratio and effective elastic modulus versus the vertex angle of the blue 

block for a range of values of the vertex angle of the white block are shown in Figure 14a,b. 

These findings suggest the possibility of tailoring the mechanical properties of star-

shaped lattice structures by including unit cells of various sizes and configurations within 

the same structure. This would make it possible to construct star-shaped lattice structures 

with unique characteristics that are appropriate for use in a variety of industries, including 

the automotive, aerospace, defence, and medical sectors. 
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(a) (b) 

Figure 14. (a) Poisson’s ratio and (b) effective elastic modulus of the structures consisting of unit 

cells with a constant strut diameter of 0.5 mm but with two different angles. 

4. Conclusions 

This study investigated the development of a 3D star-shaped lattice structure fabri-

cated from Ti6Al4V alloy and studied the impact of two key unit cell design parameters, 

namely, the vertex angle and strut diameter, on this structure’s compressive properties, 

particularly its effective elastic modulus and Poisson’s ratio. To clarify this relationship, 

experimental investigations and numerical simulations were conducted for a range of lat-

tice structures designs. The star-shaped vertex angle was altered from 15 to 90 degrees, 

whereas the strut diameter was varied from 0.2 to 1 mm. This resulted in a wide variety 

of effective elastic moduli that ranged from 6 × 10−7 to 1.1 × 10−3. Furthermore, variations 

in the unit cell dimensions resulted in fluctuations in the Poisson’s ratio within the range 

of −0.8 to 0.2. Generally, the value of the vertex angle was shown to determine the Pois-

son’s ratio’s sign and behaviour (i.e., positive, zero, or negative). On the other hand, 

changing the strut diameter reduced this effect. The FEA results were validated against 

the additively manufactured titanium structures when subjected to compressive tests. De-

spite slight modelling errors in some cases, likely attributed to manufacturing defects and 

testing techniques, the FEA model demonstrated validity and therefore can be effectively 

applied to assess and predict the mechanical properties of star-shaped lattice structures. 

The FEA models also indicated that it was possible to provide better control and increased 

customization of the mechanical properties of the lattice structures by hybridizing them 

in a single structure. This could be achieved by combining two or more unit cells of dif-

ferent design parameters into a single design, allowing the structure to effectively meet 

specific requirements for various applications. 
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