
Research Space
Journal article

Machine learning applied to the design and inspection of 

reinforced concrete bridges: Resilient methods and emerging 

applications

Hassanin, H., Fan , W., Chen, Y., Li, J., Sun, Y., Feng, F. and 

Sareh, P.

Accepted version of:

Weiying Fan, Yao Chen, Jiaqiang Li, Yue Sun, Jian Feng, Hany Hassanin, Pooya Sareh,

Machine learning applied to the design and inspection of reinforced concrete bridges: 

Resilient methods and emerging applications,

Structures,

Volume 33,

2021,

Pages 3954-3963,

ISSN 2352-0124,

https://doi.org/10.1016/j.istruc.2021.06.110.

(https://www.sciencedirect.com/science/article/pii/S2352012421006214)

Abstract: Machine learning is one of the key pillars of industry 4.0 that has enabled rapid 

technological advancement through establishing complex connections among 

heterogeneous and highly complex engineering data automatically. Once the machine 

learning model is trained appropriately, it becomes able to effectively predict and make 

decisions. The technology is rapidly evolving and has found numerous applications in 

various branches of engineering due to its preponderance. This study is focused on 
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exploring the recent advances of machine learning and its applications in reinforced 

concrete bridges. It covers a range of different machine learning techniques exploited in 

structural design, construction quality management, bridge engineering, and the 

inspection of reinforced concrete bridges. This review demonstrated that machine 

learning algorithms have established new research directions in bridge engineering, in 

particular for applications such as the form-finding of innovative long-span structures, 

structural reinforcement, and structural optimization.

Keywords: Machine learning; Deep learning; Reinforced concrete bridges; Strength 

prediction; Structural health monitoring



Machine learning applied to the design and inspection of reinforced 

concrete bridges: Resilient methods and emerging applications 

Weiying Fan a, Yao Chen a, ⁎, Jiaqiang Li a, Yue Sun a, Jian Feng a, Hany Hassanin b, Pooya Sareh c 

a Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, and National 

Prestress Engineering Research Center, Southeast University, Nanjing 211189, China 
b School of Engineering, Technology, and Design, Canterbury Christ Church University, Canterbury, CT1 1QU, 

United Kingdom 
c Creative Design Engineering Lab (Cdel), Department of Mechanical, Materials, and Aerospace Engineering, 

School of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom 

 

 

Abstract 

Machine learning is one of the key pillars of industry 4.0 that has enabled rapid technological 

advancement through establishing complex connections among heterogeneous and highly 

complex engineering data automatically. Once the machine learning model is trained 

appropriately, it becomes able to effectively predict and make decisions. The technology is 

rapidly evolving and has found numerous applications in various branches of engineering due 

to its preponderance. This study is focused on exploring the recent advances of machine 

learning and its applications in reinforced concrete bridges. It covers a range of different 

machine learning techniques exploited in structural design, construction quality management, 

bridge engineering, and the inspection of rein- forced concrete bridges. This review 

demonstrated that machine learning algorithms have established new research directions in 

bridge engineering, in particular for applications such as the form-finding of innovative long- 

span structures, structural reinforcement, and structural optimization. 
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1. Introduction 
 

Artificial intelligence (AI), the science and engineering allowing ma- chines to simulate the 

human brain to learn and think, has attracted wide attention from researchers and practitioners 

in various fields [1]. Coupled with the explosion of data, the establishment of Industry 4.0, and 

the continuous progress of computer technology, AI has recently made remarkable 

accomplishments. Machine learning (ML) is a subset of artificial intelligence that has found 

numerous applications in various areas such as image recognition, speech recognition, traffic 

prediction, product recommendations, self-driving cars, spam email detection, virtual personal 

assistants, and smart factories. Statistical data on publications related to ML from 2015 to 2020 

are represented in Fig. 1a. It can be seen from the number of publications that ML has attracted 

a great deal of interest from the scientific community, especially in the fields of computer 

science and engineering. 

There are many advantages of applying ML in reinforced concrete bridges. First, ML is a 

powerful computational tool with superior logical ability in comparison with humans; it is 

capable of replacing tedious manual tasks, which results in lower processing time and 

economic costs. Second, the progress rate of ML has exponential growth, while its competitors 

such as searching and planning algorithms, probabilistic graphical models, and knowledge 

representation and reasoning (KR2) develop at a linear speed. Several reviews on ML for civil 

engineering applications have been recently published, but they are mostly focused on 



reviewing specific areas such as structural health monitoring (SHM) [2–5], construction 

industry [6], and structural engineering [7–9]. Falcone et al. [1] summarized the utilization of 

soft computing methods in structural and earthquake engineering, aiming to explore their 

capabilities and limitations in modeling, simulation, and optimization problems. Azimi et al. 

[2] generated a summary for SHM in deep learning (DL) techniques. It mainly introduces the 

application of DL from the perspective of vision- based SHM, vibration-based SHM, and 

transfer learning. Notably, this work has organized available data sets and DL tools for SHM. 

Dong and Catbas [3] concentrated on the application of two-dimensional computer vision 

functions, where the subject of analysis is the image and the acquisition tool is the camera. 

Based on the development of computer vision in structural health monitoring, it describes local 

damage identification (e.g. cracks, spalling, delamination, and corrosion) and global 

monitoring (e.g. displacement measurement, structural response, and external load input 

measurement). Avci et al. [4] built up a connection between conventional and ML approaches 

to vibration- based structural damage, while Sun [5] dealt with the big data and AI exploited 

for bridge SHM purposes. Based on the parametric and non- parametric classifications of 

vibration data, Avci et al. [4] compared the traditional, ML, and DL methods for measuring 

structural damage. Salehi and Burgueño [9] summarized the current and potential applications 

of pattern recognition, ML, and DL in structural engineering. They concluded that the vast 

majority of applications were concerned with SHM, concrete modeling, and damage 

identification. 

In contrast with the literature mentioned above, this work is mainly focused on the recent 

applications of ML-based techniques in reinforced concrete bridges. As shown in Fig. 1b, 

bridge engineering has branches including survey, design, construction, maintenance, and 

verification of bridges. In this paper, a systematic review is provided considering different 

aspects of bridge engineering. 

The rest of this paper is organized as follows. Section 2 introduces the basic concepts of ML 

and DL. Section 3 describes the application of ML in the structural design of reinforced 

concrete bridges. In section 4, an application of ML in the performance prediction of bridge 

components is presented. Section 5 reviews the application of ML methods in the inspection 

of reinforced concrete bridges, including overall assessment, damage recognition, and crack 

detection. In section 6, we present a discussion about ML methods, followed by a conclusion 

about this review study.  

 

2. Machine learning and deep learning 
 

The relationships among AI, ML, and DL could be clearly expressed by Fig. 1c. It can be 

concluded from the figure that AI includes ML and ML, and DL is a branch of ML. 

 

2.1. Machine learning (ML) 

The main purpose of ML is to teach machines to automatically learn from data samples [4]. 

ML algorithms are divided into two main categories: supervised algorithm and unsupervised 

algorithm. The distinction between them is whether the data sample has an artificially pre- 

pared output. Supervised algorithms train models with artificially labelled data, while 

unsupervised algorithms do not include such a feature [5]. In other words, supervised learning 

strives to narrow the gap between the predicted output and the artificial label for the samples. 

However, for unsupervised learning, the outputs are unknown and rely on the internal rules of 

the data to classify itself. The technology can also be classified into four groups such as 

regression, clustering, and dimensionality reduction. Classification and regression are 

supervised algorithms [5], whereas clustering and dimensionality reduction are unsupervised 

algorithms. In classification, the output results are discrete, whilst in regression the results are 



continuous. The basic steps for building a usable ML model are shown in Fig. 1d. Clarifying 

the problem and initially determining the influencing factors and expected goals is the 

guarantee for the establishment of a good model. Subsequently, it needs to go through a series 

of steps: collecting dataset, performing data preprocessing, building the ML model, training 

the model, evaluating the model, model deployment, and making predictions in sequence. 

Below is a detailed description of ML methods associated with classification, regression, and 

dimensionality reduction which have been utilized in recent research studies. 
 
 

 

Fig. 1. (a) Number of publications on machine learning in different areas of science and 

technology from 2015 to 2020 according to Web of Science. (b) Different re- search areas 

in bridge engineering. (c) Relationships among artificial intelligence (AI), machine 

learning (ML), and deep learning (DL). (d) Basic steps for building a practicable machine 

learning model. 

 

 

 

 



2.1.1. Classification 

Support Vector Machine (SVM) is a typical two-category classifier [7]. The hyperplane with 

the maximum geometric distance is used to separate data in SVM [10]. As for establishing the 

hyperplane, it needs to satisfy [11]: 

 

( ) 1    1 ,i iy w x b i N +  = ,                      (1) 

  

 

where xi denotes the feature vector, yi represents the class it belongs to, w is weight, N is the 

number of samples, and b is bias. 

Artificial neural networks (ANN) are computational models inspired by human brain neurons, 

with basic elements including neurons, layers, and networks [1]. In accordance with the layer 

division, an ANN is composed of an input layer, a hidden layer, and an output layer. A net- 

work containing only an input layer and an output layer is called a single-layer neural network. 

The number of neurons in the input layer and the output layer is dependent on their respective 

data dimensions. The neurons in each layer are passed to the next layer through the weight 

function [12]. The neurons in this layer are connected to each neuron in the previous layer. It 

can be divided into a fully connected layer and a non-fully connected layer. ANN is unique in 

the sense that it can be optimized for both classification and regression tasks. More detailed 

information about ANN is presented in [8]. 

Random forest (RF) is composed of multiple decision tree classifiers [13]. A decision tree (DT) 

consists of a series of nodes, branches, and leaves [13]. The decision tree node stands for a 

property of the measurement, the branch indicates an evaluation output, and the leaf de- notes 

the type to which it belongs [13]. On the ground of identical training data, several independent 

decision trees could be built at the same time, and then the final classified decision could be 

made according to the principle of majority rule by voting. 

2.1.2. Regression 
A linear function can implement linear regression for carrying the relationship between the input (x) 

and the output (y) [14]. The situation with only one independent variable is called a simple regression, 

whereas that with more than one independent variable is called multiple regressions. A formula for 

multiple regressions is given below [15]: 
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Where 
i  is a regression coefficient (𝑖 = 1,2, ⋯ , 𝑛) , 𝜀 means an error, 

ix  stands for one independent 

variable in 𝑥, and 𝑛 is the size of independent variables. 𝑋 can be expressed as [𝑥1, 𝑥2, ⋯ 𝑥𝑛]𝑇. 

Support Vector Regression (SVR) origins from SVM to resolve regression problems. It can be 

expressed by the following equation: 

  

𝑓(𝑥) = ∑ 𝑤𝑘ℎ𝑘(𝑥) + 𝑏𝑚
𝑘=1                                                                                                                                                          (3) 

 

 

where ℎ𝑘(𝑥) denotes a nonlinear mapping function, 𝑤𝑘 represents the corresponding weighting vector, 

and 𝑏 describes the deviation. The values of 𝑤 and 𝑏 are obtained by solving the optimization problem 

through the objective function. 

The common evaluation indicators of regression model include 𝑅2, 𝑅, 𝑀𝐴𝑃𝐸 and 𝑅𝑀𝑆𝐸. The 

values of R  and 
2R  are between 0 and 1. The closer to 1 of the values, the better the model 

becomes. The smaller the value of 𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, the closer the output predicted value to the 

true value. Their respective formulas are as follows:  
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𝑅𝑀𝑆𝐸 = √(1/𝑛) × ∑ (𝑝𝑖 − 𝑦𝑖)2𝑛
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(7) 

 

where 𝑝𝑖 is the predicted value, 𝑦𝑖 refers to the actual value, 𝑝̄ is the average of the predicted 

value, 𝑦̄ is the average of the real value, and 𝑛 is the sample size. 
 

2.1.3. Dimensionality reduction 

Dimensionality reduction is the process of mapping high- dimensional space data to a low-

dimensional space while maintaining its most important characteristics. After this operation, 

the training time of the ML model is usually shortened. Among various methods, principal 

component analysis (PCA) is the most commonly used algorithm for dimensionality reduction. 

It is usually exploited for the exploration and visualization of high-dimensional data sets. 

Besides, it is utilized for data compression and preprocessing. PCA can synthesize correlated 

high-dimensional variables into linearly independent low- dimensional variables called 

principal components. The principal component can retain the information of the original data 

as much as possible. 

 

2.2. Deep learning 

 

The deep learning (DL) algorithm is a multi-layer neural network. Compared with ML, DL has 

a stronger ability to deal with the connections between high-dimensional data; it also adds a 

function to extract features. In light of the function division, the classic networks in DL 

algorithms include multi-layer perception (MLP), convolutional neural networks (CNN), and 

autoencoders. The structure of a typical MLP model is illustrated in Fig. 2 [12]. Unlike ML, 

DL networks can perform classification or regression tasks. 

CNN is a powerful image classification tool. The input layer, convolutional layer, pooling 

layer, fully connected layer, and output layer constitute the CNN. It obtains the features of a 

region, rather than merely a point, through the convolution layer. The pooling layer makes 

selections and operates based on the features extracted from the convolutional layer. 

  

 



 
  

Fig. 2. Layout of a typical multi-layer perception (MLP) model. 

 

3. Structural design of reinforced concrete bridges 
 
In the initial stage of structural design, choosing a proper structural system is of great importance. A 

reasonable structural system is not only a prerequisite to ensure safety and applicability, but is also 

pivotal to achieve the goal of economy. It is typically decided based on the experience and judgment of 

structural engineers. However, people expect to explore more precise connections between bridge 

configuration and basic conditions in the context of the explosion of knowledge. In 2005, Freischlad 

and Schnellenbach-Held [16] proposed a modified fuzzy set for learning structural knowledge to inform 

conceptual structural de- sign. In 2017, Jootoo and Lattanzi [17] used decision tree, Bayes net- work 

(BN), and SVM to predict a rational type for bridges recorded by the National Bridge Inventory 

database. The specific process for selecting the bridge type is shown in Fig. 3. It has turned out that the 

prediction accuracy of a single model for all types of bridges is highly variable and unreliable. 

When calculating the reinforcement ratio of components, Charalampakis and Papanikolaou [18] applied 

ANNs to bridge piers. Due to different cross-sectional geometries (e.g., rectangle, circle, solid, and 

hollow) and arrangements of the steel bars, they created various ANN net- works. It was shown that w 

can be produced given only some basic parameters such as normalized geometric parameters of the 

section, normalized axial load, and normalized bending moments. The results demonstrated that the 

method is both efficient and stable, implying that it may be possible in the future to solve this problem 

with only one net- work, which would bring great convenience to users. Only a few studies have tried 

to exploit ML in the structural design of concrete bridges, and the results are, in general, not satisfactory. 

There are few cases of using ML to calculate the reinforcement ratio of bridge components. 

Furthermore, intelligent algorithms have a better chance of being accepted in comparison with ML 

methods in learning the structural knowledge of concrete bridges. 

 
Fig. 3. Process of applying a trained model to choosing the bridge type. 



4. Construction quality management of reinforced concrete bridges 
 

Cost control, time management, and quality supervision are three key areas of project 

management. Similarly, ML is beneficial for quality assurance and scheduled management of 

reinforced concrete bridges. For example, Bilal and Oyedele [19] provided a detailed guide to 

the use of ML methods in the construction industry. In order to demonstrate it clearly, the study 

used profit rate estimation as an example, providing guidance for researchers who intend to use 

ML to solve practical problems. Tixier et al. [20] used RF and Stochastic Gradient Tree 

Boosting (SGTB) to forecast injury type, energy type, and body part. These examples 

demonstrate the power of ML in construction management. This section consists of three parts 

in relation to the quality supervision of concrete bridges: (1) strength prediction of building 

materials, (2) strength and failure mode prediction of bridge components, and (3) scour depth 

prediction of bridge piers. 
 

4.1. Strength prediction of materials 
 

It is well-known that concrete and steel are irreplaceable materials of civil engineering. 

Moreover, their quality management is closely related to engineering safety. When the strength 

of concrete or steel does not meet the design requirements, the structures or components will 

not be able to bear the set load value which may lead to local or global failure. Concretes 

holding various attributes are gradually developed, but the experimental study of concrete 

strength is still laborious. Be- cause a highly accurate prediction of concrete compressive 

strength (CS) needs to go through a series of complex procedures (i.e. proportioning test, 

specimen making, curing, and strength testing experiments), an ML approach might be a more 

efficient choice. Yu et al. [21] applied SVM, optimized by the enhanced cat swarm 

optimization, to predict the compressive strength of high-performance concrete. Chou et al. 

[22] reviewed some applications of ML to high-performance concrete, concluding that the 

performance of the ensemble model is better than the individual one. Nguyen et al. [23] 

proposed a DNN model with high-order neurons for foamed concrete. Sensitivity analyses 

revealed that density, and water-to-cement and sand-to-cement ratios, are important factors 

influencing CS. Moreover, the correlation coefficient of the constructed model exceeded 0.99. 

The ensemble of SVRs in a different input subspace was introduced to solve the correlation 

between the elastic modulus and compressive strength of concrete [24]. The RMS and mean 

absolute percentage error were less than 0.3 and 5% respectively, which were outstanding 

results. Naser and Uppala [25] studied the residual strength of a series of building materials 

after a fire with an integrated model. They first used ANN to predict the mechanical properties 

of the material at a specified cooling temperature. Then the GA algorithm was used to derive 

the expression of reduction coefficients for these properties. The results showed that the 

coefficient of determination for the integrated model was greater than 99. 

In relation to the properties of soil and rock, Chou and Ngo [26] showed that the combination 

of LSSR and SVT predicted the shear strength of fiber-reinforced soil more precisely than the 

baseline LSSVR and experience methods. ML was also used to predict soil compaction in [27]. 

Asadi et al. [28] proposed three diverse functional expressions for predicting the overall rock 

strength obtained by the genetic algorithm. Their results revealed that approaches based on 

genetic algorithm and the rock classification method produced better results with the best 

coefficient of correlation (R2) of 0.9398. Pham et al. [29] concluded that the Backpropagation 

Multi-layer Perceptron (Bp-MLP) Neural Network is the most accurate model to predict soil 

consolidation coefficient after verifying five ML methods. 

Concerning the prediction of steel properties, ML was used as a method for predicting the 

fatigue performance of steel [30], with an illustrative cyclic stress–strain curve given in Fig. 4. 



Shiraiwa et al. [31] trained a learning model to directly predict fatigue strength from the 

collected data set. Wang et al. [32] proved that the ML model trained with certain data has 

better performance in testing the tensile proper- ties of low activation ferrite steel than the 

traditional model. Xiong et al. [33] employed five algorithms to predict the mechanical 

properties of steel and demonstrated that forest had the best performance with a correlation 

coefficient of 0.9725. The strength prediction of materials or components by ML is based on 

the fact that theory (Balshin’s, Feret’s, and Power's models [23]; EN1992-4 and ACI318 [34]) 

has been developed to a certain degree. 

 

 
 

Fig. 4. An illustrative cyclic stress–strain curve for steel. 

 

4.2. Strength and failure mode prediction of bridge components 

 

Concrete beams, plates, and columns (or piers) are crucial components in beam bridges. They 

are typically brittle and can easily lead to sudden structural collapse. Therefore, it is essential 

to predict the strength of concrete components accurately. When dealing with a large project, 

it is time-consuming to calculate the strengths of all the components relying on the traditional 

method. So far, a large number of ML models, such as the neural network, support vector 

regression, and mixed intelligence models have been validated to perform better than 

traditional calculation methods. However, given that no optimal model has been developed yet, 

researchers are constantly exploring possible improved models. 

There are several studies on applying ML for the prediction of the shear strength of concrete 

beams. The EMARS model, built by Cheng and Cao [35], was able to run automatically 

without manual intervention and achieved accurate estimation under different parameter set- 

tings. The method proposed by Chou et al. requires a specific ability to optimize computer 

programs and set the initial scope of SFA. Chou et al. 

[15] compared the reported model in [36] with other integrated artificial intelligence models, 

confirming the superiority of the hybrid artificial intelligence model. In order to predict the 

ultra-shear strength of steel fiber reinforced concrete beams, Ly et al. [37] integrated a neural 

network and an optimization algorithm. Table 1 lists a summary of methods employed to 

predict the strength of the beam. Fig. 5 [35] shows the input parameters of the beam. It can be 

observed that input parameters change with the alternation of materials and geometric 

specifications. Expectedly, single ML algorithms cannot satisfactorily undertake multiple and 

complex regression tasks. To overcome the drawback of using a single model, researchers 

gradually begin to explore the functions of hybrid and integrated models. 

 

 

 



 Table 1 Information on the shear strength of reinforced concrete beam 
Element Input parameters Output 

parameters 

Model Evaluation index of test dataset 

Deep beam a/d, ps, fc, L/d, fyh, ph, pv, d/b, fyv V EMARS [35] 

BPNN    [35] 

BPFNN  [35] 

R2  = 0.973    MAPE = 5.670% 

R2 = 0.846   MAPE = 8.816% 

R2  = 0.954    MAPE = 5.566% 

R2  = 0.896    MAPE = 14.108% 

Beam bw, d, a/d, pw, f, ag  

a, b, d, fc, prt, fry, pst,

 

b, d, a/d, fc, pFPR, fsy, EF 

V 

V 

 

V 

Hybrid  model [15] R  = 0.977        MAPE  = 21.386% 

R = 0.994        MAPE = 6.588% 

R = 0.992         MAPE = 13.914% 

Steel fiber 

reinforced 

beam 

H, lspan, a, p, fc, F, fy, a/d, lf  /df, 

av/d, daggmax, Vf, ftenfiber, bw,       

d, av 

 

Vu NN-FFA [37] 

(Hybrid model) 

R = 0.965 – 

R = 0.979 

Deep beam d/bw, fc, fyh, fyv, a/d, L/d, ρ, ρh, ρv V NN-RCGA 

[37](Hybrid model) 

LS-SVR + SFA 

[36](Hybrid model) 

R = 0.9876 MAPE = 4.48% 

Note: The bold font represents the important factors, and the normal font represents factors with limited effect on the shear strength of the 

beam. 

 

 

 

Fig. 5. Parameters of the beam. 

  

 

  



 
 

 

In addition, the failure modes of structural members have been studied using ML approaches. 

In 2019, Mangalathu and Jeon [12] utilized ML techniques to explore the failure patterns of 

circular reinforced concrete columns. After verification, the recognition accuracy of ANN in 

the crown of learning models was as high as 91%. The failure mode of beam-column joints 

was explored [10]; this was a binary classification mission with an accuracy of 81%. However, 

the common shortcoming of such models is that environmental factors or noise are not 

considered. More often than not, the models’ performance is compromised when the data 

sample in the training set is increased or decreased by an input element. In 1997, Skibniewski 

et al. [38] implemented the constructability analysis of precast beams based on ML. where they 

considered three constructability decisions (poor, good, and excellent). 

As for others, Hwang et al. [39] used the neural network to modify the length and strength 

formulas of the tension steel lap joint. ANN was also exploited to evaluate the interface strength 

between concrete and corroded rebar [40]. Garcia-Sanchez et al. [41] assessed the bearing 

performance of critical components in a viaduct. Furthermore, SVM was employed to 



investigate the uniaxial compressive strength of jet grouting columns [42]. 

 

4.3. Scour depth prediction of bridge piers 

The scouring of piers affects the service life and safety of the bridge. The scour depth is a key 

factor influencing the bridge foundation depth in the river [43]. Although empirical formulas 

for calculating scour depth are proposed, the error is relatively large due to ignoring the 

complexity of reality. As a result, ML has been gradually recognized as an alternative strategy. 

It is recommended that the combination of empirical model and data-driven model be 

used to predict the critical scour depth of bridge piers. A new model superior to 

conventional models was presented by Kim et al [44]: 
 

         (10) 
 

 

where   is estimated scour depth, denotes approaching flow   depth, represents pier width, is 

median grain size, is sediment gradation coefficient, and is Froude number. This formula was 

ac- quired from two field datasets. When the datasets are expanded, this formula can be 

optimized. Sharafi et al. [45] compared SVM models with various kernel functions, among 

which the polynomial kernel function model performed best. In addition to the influencing 

factors of Eq. (10), this work adds the ratio of pier length to flow depth. Cheng et al. [43] 

Developed an integrated model of Radial Basis Function Neural Network (RBFNN) and 

Artificial Bee Colony (ABC). ABC can automatically search for the best parameters suitable 

for RBFNN to ensure the superiority of the proposed model. In this work, the developed model 

considered single-pier bridges only. In order to improve the accuracy of predicting local scour 

depth for complex bridge piers, Bui et al. [46] combined two ensemble models, i.e. the reduced 

error pruning tree and the random subspace. The parameters of the pier influencing the local 

scour depth are shown in Fig. 6 [46]. It is verified that the position, thickness, and width of the 

pier cap are important factors affecting the local scour depth. Compared with empirical 

formulas and existing ML models, this method wins with a correlation coefficient of 0.95. 

Although the above models have the same output parameters, the input conditions are varied. 

Some models take the main influencing fac- tors obtained through sensitivity analysis. Models 

with the direct in- putting of all the variables related to scour depth are also available. In short, 

the choice of input parameters depends on specific issues. It can be concluded from the work 

of Kim et al [44] that combining intelligent algorithms is helpful for the development of fairly 

concise mathematical expressions. 

  

 

Fig. 6. Parameters used by the machine learning model for the bridge pier: (a) upstream view; (b) 

side view; (c) plan view. 

 
 



5. Inspection of reinforced concrete bridges 
 

Structural health monitoring (SHM) duties are composed of health track, condition assessment, 

and defect classification [3]. The process of SHM can prevent specific potential threats and 

save maintenance costs. In recent years, numerous scholars have drawn support from the 

computational capabilities and image processing functionalities of ML to detect the health 

status of engineering structures, especially bridge structures. Section 5 focuses on studies 

related to the overall assessment, damage recognition, and crack monitoring of concrete 

bridges. 

 

5.1. Overall assessment 
 

Besides being applied on the material and component level, ML is also successfully used in the 

overall assessment of concrete bridges, including safety analysis, reliability evaluation, and 

bearing capacity calculation. 

In the context of risk and safety assessment, an ML model, a hybrid of BN and normal Cloud, 

was developed for risk assessment [47]. The proposed model simultaneously conveys the 

possibility of risk and the degree of indeterminacy in data. Obtaining the fragility curve is, 

generally, a complicated process, so some studies have used ML to simplify it. Liao et al. [48] 

used the least squares support vectors to evaluate the safety analysis of an immersive bridge in 

Taiwan against scouring and earthquakes. They used peak ground motion, water level, and 

scouring depth to predict the displacement ductility demand of the bridge. The results showed 

that the new model reduces the computational burden and still retains its validity. Concerning 

bearing capacity prediction, Alipour et al. [13] introduced a novel method through DT/RF to 

explore the inherent relation between bridge properties and their carrying capacity status. 
Quantifying the damage possibility is the object of structural reliability analysis [49]. The failure 

probability 𝜌𝑓 of structure [50] can be calculated by: 

𝜌𝑓 = ∫ 𝐼𝑔(𝑥)≤0(𝑥)𝑓𝑋(𝑥)𝑑𝑥 (11) 

𝐼𝑔(𝑥)≤0(𝑥) = {
1   𝑔(𝑥) ≤ 0
0  𝑔(𝑥) > 0

 (12) 

 

where x  is n-dimensional input vector, ( )Xf x  means joint probability density function of x , 

and ( )g x  indicates the formula of failure domain. Under the pressure of enormous calculation 

and strong dependence on calculation efficiency as well as accuracy, machine learning also 

moves into the frontier of reliability analysis. As early as 1996, ANN combined with Monte 

Carlo Simulation was used for reliability analysis [51]. Subsequently, reliability analyses using 

ANN were reviewed in-depth [52,53]. Cheng and Lu [50] proposed the integration of various 

models using active learning. Owing to the large size of the candidate specimen, this algorithm 

needed magnanimous running time. To address this issue, Xiang et al. [49] put forward an 

active learning method that integrated DL and weighted sampling. 

Mangalathu [54] used random forest and a strip-based method to predict the vulnerability curve 

of a specific bridge, which was demonstrated by a case study of a multi-span concrete bridge 

in California. The difference from others is that Wang et al. [55] sorts the various factors 

affecting the condition of the bridge firstly to eliminate the influence of noise and then 

evaluates the condition of the bridge, resulting in a remark- able accuracy of 99%. 

Many cases concerning overall assessment for concrete bridges were reported above, but most 

of them treat it as a classification task. That is to say, the structural condition is roughly divided 

into certain categories. With the progressive advancements of ML technology, it is anticipated 

that specific failure probabilities or damage factors would be- come predictable in the future. 



5.2. Damage recognition 
 

Bridge damage detection is generally carried out based on dynamic data. SVM is used to 

monitor the damage of long-span cable-stayed bridges [56]. In order to improve its 

performance, three different feature extraction techniques were introduced, with the results 

showing that this method is superior to traditional SVM. However, Dang  et al. [57] considered 

a DL model to avoid the trouble of feature extraction. More rigorously, Kostic et al. [58] and 

Chalouhi et al. [59] considered the effect of temperature on bridge damage. Unusually, static 

data has also been adapted to monitor the bridge. Li and Sun [60] recommended simulating the 

continuous deflection of a bridge based on CNN sensor monitoring. Then, the corresponding 

response was generated according to the deflection, and finally, the bridge damage was 

classified into four categories (complete, 1/2, 4/1, 3/4). The proposal was tested on a scaled 

model of a bridge, and the accuracy of this system reached as high as 96.9%. Karanci and Betti 

[61] pointed out that temperature, relative humidity, pH, and Cl- concentration are important 

factors affecting the corrosion of bridge cables. Liu and Zhang [62] proposed to use the CNN 

model to predict the condition rating of the bridge components in the next stage based on 

historical data. Relying on the standards of NBI, the condition rating is divided into ten 

categories. The study selected 24 historical data as input, including geographic region, structure 

configuration, and condition rating. Figueiredo et al. [63] proposed a hybrid model for the 

damage detection of a real bridge. The finite element model simulated the response data of the 

bridge under operating and vibration environments. The data used as supplementary samples 

to train the ML model to detect damage. This method eliminates the in- fluence of operation 

and environmental vibration. Li et al. [64] used the one-dimensional CNN algorithm to predict 

the damage state of long- span cable-stayed bridges and achieved an accuracy of 96.9%. A 

schematic representation of the bridge is shown in Fig. 7. The continuous deflection data, used 

for training the model, were obtained with the help of a scale-down bridge model, a metal pad 

(simulating structural deformation), and a fiber optic gyroscope. Four damage states were de- 

fined as follows: complete, damage at 1/4, 1/2, or 3/4 of the main span. In 2020, Assaad and 

El-adaway [65] compared the performance of ANN and KNN in predicting concrete bridge 

deck deterioration conditions. Chen et al. [66] researched the influence of conductive 

gussasphalt mixture on the corrosion of bridge steel plate; this work was accomplished through 

a powerful learning machine optimized by a genetic algorithm. Deng et al. [67] used SVM to 

simulate the relationship between fatigue damage and traffic load for the Nanxi suspension 

bridge hangers. The fatigue damage was calculated by a finite element model, and the traffic 

load was computed through data of Weigh-in-Motion (WIM) sensors. 

For bridge structures, ML is used for crack and damage identification. The samples used for 

training the model are either from a real bridge structure or a dataset compiled by NBI. A vast 

majority of re- search studies use the NBI bridge database system established by the United 

States. However, geographical environments and design specifications could affect the results 

of such studies. It is anticipated that other countries would establish similar database systems 

for the intelligent monitoring of bridges in their territories. 

 
 



 
 

Fig. 7. Schematic representation of a long-span cable-stayed bridge. 

  

 

 

5.3. Concrete crack detection and visualization 
 

Cracks affect the mechanical function, endurance, serviceability [68], and durability of 

concrete and concrete structures [14]. Traditional crack detection is a subjective [69], time-

consuming, and expensive task carried out by human inspectors [68,70]. Consequently, 

numerous DL utilization cases have been introduced for the crack detection of concrete 

structures. 

With the rise and prosperity of computer vision technology, convolutional layers have played 

an increasingly important role in image recognition. Slonski and Tekieli [70] used R-CNN to 

locate multiple cracks on the concrete surface. When two cracks had a connecting part, the test 

result was not ideal. In order to accurately classify transverse cracks, longitudinal cracks, and 

crocodile cracks, Deng et al. [71] introduced deformation rules in the convolutional layer and 

the pooled layer of R-CNN. Wang et al. [72] provided a deeply supervised object detector 

identifying the initial position of a fatigue crack. Voronoi diagram was pointed out to predict 

crack shapes and orientations through existing cracks [13], which provided an opportunity to 

take preventive measures. Chen et al. [73] introduced weight share in CNN to speed up the 

training process of crack identification and location. However, the method cannot identify the 

cracks in the background with a similar colour to the cracks. Kim [68] focused on the 

classification and location of cracks on concrete surfaces that have noises with similar 

characteristics to cracks. To reduce the influence of noise, Li et al. [74] simultaneously 

exploited a fully convolutional network and a naive Bayes data fusion (NB-FCN) model to 

recognize the cracks of a concrete bridge. 

The crack identification problem, on which this work focuses, be- longs to surface crack 

detection and identification, while there is little exploration of crack depth and crack 

development. The methods of automatic crack recognition are mostly based on the principle of 

vision, where CNN is a common tool. Difficulties in the process of crack identification include 

distinguishing between background and cracks (especially backgrounds with texture), 

identification of crack boundaries, and noise that can easily be mistaken for cracks. Therefore, 

many re- searchers focus on solving these difficulties to improve recognition ac- curacy. CNN 

can not only process image information, but also complex relationships among multi-

dimensional data. 

 

 



 
Fig. 8. Machine learning algorithms used in the investigated references. 

 

 

6. Discussion 
 

ML can fulfill simple classification or regression tasks, as well as various complex tasks. The 

ML model contains only one output and a one- dimensional input. Illustrated as a complex task 

in [20], the input of the model is 2D or 3D, and the output has multiple categories with sub- 

categories. Compared with DL, ML has a significant disadvantage in that it needs to look for 

feature values. Therefore, when the influencing factors are not clear, the sensitivity analysis 

task needs to be carried out first. 

Among all the introduced methods, ANN can perform classification and regression tasks 

effectively. It can establish linear or non-linear relationships among independent and dependent 

variables, but its expression is implicit. There are very few researchers who use the weights, 

deviations, and activation functions of trained neurons to derive similar formulas because this 

is a time-consuming and labor-intensive task. ML algorithms such as VM, RT, RF, and SVR, 

have fewer hyper-parameters, making it easy to determine the optimal parameters adapted to 

the problem. CNN can not only process image information, but also establish a connection 

between high-dimensional dependent and independent variables. Fig. 8 summarizes the ML 

algorithms used in the references considered in this study. If there are multiple ML methods in 

one reference, we selected the one with the best performance. It can be seen that the ANN 

algorithm is commonly used in concrete bridges. In the field of inspection of concrete bridges, 

the CNN model is more popular. In order to improve the accuracy of the ML model, more 

hybrid/integrated models have been emerging. Compared with traditional methods, ML has 

higher accuracy and computational efficiency, which makes it of broad application prospects. 

For problems that are just starting to use ML techniques, the common single model above can 

be used. For relatively mature re- search, using hybrid or integrated models is recommended. 

In general, the utilization of ML algorithms for the design and inspection of con- crete bridges 

has not been particularly extensive and has not reached a mature point; therefore, there is still 

much room for development and improvement. For example, ML has the potential for 

symmetry recognition to improve the speed and accuracy of symmetry detection analysis [75]. 

De Luca et al. [76] used CNNs to predict the symmetry of a 2D black and white picture. 

Similarly, ML algorithms possess the latent capacity in additional research directions, such as 

form-finding of novel origami structures. Chen et al. [77] provided a method to compute the 

optimal configurations of origami structures with degree-4 vertices. In this process, the particle 

swarm optimization algorithm improves the accuracy and efficiency of the calculation. They 



respectively provide implications for the use of ML in symmetry detection and form-finding 

of structures in the future. 

 

7. Conclusions 
 

This study summarized the applications of machine learning (ML) in reinforced concrete 

bridges, from design to inspection. It demonstrates that ML has great computing power and 

image processing capability for dealing with different aspects of reinforced concrete bridges. 

Once an ML model is trained, the prediction efficiency is significantly high. It surpasses the 

speed of traditional structural damage recognition and strength prediction methods, realizing 

nearly real-time performance. Overall, the exploitation of ML to predict the strength of 

concrete and bridge members is relatively mature, whilst its use in structural design is currently 

limited. In crack studies, ML techniques can locate crack lo- cations, measure crack size, and 

make damage judgments. In order to better integrate ML into practical applications, researchers 

are constantly improving the structure and training methods of ML models. 

Nevertheless, compared with traditional methods, ML has some limitations. Mathematical or 

ML models are often proposed for a particular category or a specific problem. Once the 

problem is slightly changed, the model will no longer be applicable. For example, the column's 

failure mode considers a circular section [12], but does not adopt the square section, torus 

section, or I-shaped section. After the cross- sectional shape is taken into consideration, it will 

face low accuracy and becomes an inapplicable model. 

In general, the utilization of the ML algorithm in the bridge engineering domain has not reached 

a mature point. In addition to the ap- plications described in this article, ML can also be used 

in the form- finding of innovative long-span structures, structural reinforcement, and structural 

optimization. 
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