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Abstract 

 

Background: Assessment of left ventricular ejection fraction (LVEF) and global longitudinal 

strain (GLS) plays a key role in the diagnosis of cardiac amyloidosis (CA). However, manual 

measurements are time consuming and prone to variability. We aimed to assess whether fully 

automated artificial intelligence (AI) calculation of LVEF and GLS provide similar estimates 

and can identify abnormalities in agreement with conventional manual methods, in patients 

with pre-clinical and clinical CA.  

Methods: We identified 51 patients (age 80±10 years, 53% male) with confirmed CA 

according to guidelines, who underwent echocardiography before and/or at the time of CA 

diagnosis (median (IQR) time between observations 3.87 (1.93, 5.44) yrs). LVEF and GLS 

were quantified from the apical 2- and 4-chamber views using both manual and fully 

automated methods (EchoGo Core 2.0, Ultromics). Inter-technique agreement was assessed 

using linear regression and Bland-Altman analyses and two-way ANOVA. The diagnostic 

accuracy and time for detecting abnormalities (defined as LVEF ≤50% and GLS≥-15.1%, 

respectively) using AI was assessed by comparisons to manual measurements as a reference.  

Results: There were no significant differences in manual and automated LVEF and GLS 

values in either pre-CA (p=0.791 and p=0.105, respectively) or at diagnosis (p=0.463 and 

p=0.722). The two methods showed strong correlation on both the pre-CA (r=0.78 and 

r=0.83) and CA echoes (r=0.74 and r=0.80) for LVEF and GLS, respectively. The sensitivity 

and specificity of AI-derived indices for detecting abnormal LVEF were 83% and 86%, 

respectively, in the pre-CA echo and 70% and 79% at CA diagnosis. The sensitivity and 

specificity of AI-derived indices for detecting abnormal GLS was 82% and 86% in the pre-

CA echo and 100% and 67% at the time of CA diagnosis. There was no significant difference 

in the relationship between LVEF (p=0.99) and GLS (p=0.19) and time to abnormality 

between the two methods.   

Conclusion: Fully automated AI-calculated LVEF and GLS are comparable to manual 

measurements in patients pre-CA and at the time of CA diagnosis. The widespread 

implementation of automated LVEF and GLS may allow for more rapid assessment in 

different disease states with comparable accuracy and reproducibility to manual methods. 

 

Key words: Amyloidosis, Artificial intelligence, ejection fraction, global longitudinal strain, 

deep learning. 
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Introduction 

Cardiac amyloidosis (CA) is a rapidly progressive infiltrative cardiomyopathy, which carries 

a poor prognosis despite disease-modifying therapies (1). The major amyloidosis subtypes 

are acquired monoclonal immunoglobulin light chain amyloidosis (AL) and transthyretin 

(ATTR) amyloidosis, including mutant (ATTRm) and wild-type (ATTRwt), which are 

caused by misfolding of the transthyretin protein. Myocardial involvement occurs from 

extracellular deposition and accumulation of -pleated insoluble fibrillar proteins in the heart, 

leading to ventricular hypertrophy, stiffening and impaired relaxation. As such, CA is often 

categorised as a restrictive cardiomyopathy (2) and commonly progresses to heart failure 

from mechanical, biochemical and electrical dysfunction (3). 

CA is clinically challenging and early detection is extremely important (2). 

Echocardiography is normally the first line imaging tool for the investigation of CA (4), and 

knowledge of echocardiographic features of CA is essential for accurate identification and 

differential diagnosis (5). Previous research has extensively demonstrated the clinical utility 

of 2D and Doppler echocardiography, including global longitudinal strain (GLS) as 

predictors of poor outcome in patients with CA (4,6-13). However, at present, quantifiable 

parameters such as left ventricular (LV) ejection fraction (EF), volume and GLS require 

manual contouring of the LV endocardium, and are subject to significant inter- and intra-

operator variability (14), which can affect the accuracy of making a diagnosis or decisions 

about treatment.  

Artificial intelligence (AI) algorithms can reduce observer variability (15). Recently, an AI 

image-processing pipeline that can automatically analyze echocardiograms was utilized in 

patients with COVID-19 infection (16,17). The platform calculates LV size and systolic 

function, including LVEF and GLS, without requirement for any input from the clinician. In 

the current study, we aimed to assess whether this approach for a fully automated, AI-based 
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calculation of LVEF and GLS can provide similar estimates to conventional methodology 

and identify abnormalities in agreement with manual methods, in patients with pre-clinical 

and clinical CA.  

 

Methods 

AI-algorithm training and validation 

An application developed by Ultromics (EchoGo Core 2.0) was used to provide automatic 

quantification of commonly measured echocardiographic metrics of LV function (Figure 1). 

First, to identify a heart cycle, the operator selected a contoured image clip for each view at 

end-diastolic (ED) and end-systolic (ES) frames. Then, the auto-viewer classifier (AVC) tool 

automatically identified the required views from an echocardiogram input. The AVC 

convolutional neural network (CNN) consists of 10 two-dimensional (2D) convolutional 

layers for extracting image features. Each convolution uses a 3x3 kernel and it is followed by 

batch normalization and a rectified linear unit activation function. After every two 

convolutions, the feature map is down-sampled by a factor of 2 using a max pooling layer. 

Dropout was used for reducing overfitting and applied to the last convolutional layer as well 

as the last fully connected layer. The output of the fully connected layer was fed into a 

Softmax layer to represent probabilities of the different echocardiographic views. The 

prediction probability of a video was calculated by taking the mean of probabilities from all 

its frames. Each echocardiogram video was predicted as one of the classification classes 

based on the highest Softmax probability.  

The AVC was then trained to identify apical-2-chamber (A2C), apical-3-chamber (A3C) and 

apical-4-chamber (A4C) views using 27334, 27932, 27004 frames, respectively, and then 

validated on an independent dataset of 8178, 8662 and 8397 frames, respectively. Validation 

accuracy was 0.95, 0.96 and 1.00 for the A2C, A3C and A4C views, respectively. 
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The LV segmentation method employed in all auto-contouring models is based on contour 

points regression. The LV segmentation method directly outputs the likelihood of 2D 

coordinates of the contour landmark points. Images are passed through a 2D U-Net model, 

that learns abstract representations of the given input. The output of the U-Net is treated as 

histograms of the location-likelihood of the segmentation landmark points. These histograms 

are subsequently passed through a differentiable spatial to numerical transform (DSNT) that 

converts the histograms into 2D coordinates that correspond to the contour points. The auto-

contouring framework was developed using a CNN, which was trained using labelled data of 

contours of the endocardial border, manually drawn by experienced echocardiographers. The 

AVC was trained to contour A2C, A3C and A4C views using 3064, 4822, 4059 ED or ES 

frames (respectively) and validated on an independent dataset of 728, 862 and 985 ED or ES 

frames (respectively). Validation coefficients were 0.892, 0833 and 0.912 for the A2C, A3C 

and A4C views, respectively. 

 

Study Population 

We retrospectively studied 51 patients (age 80±10 years, 53% male) with confirmed CA (AL 

21.6%, ATTR 70.6%,  undefined 7.8%) according to current guidelines (18), who underwent 

transthoracic echocardiography (TTE) pre-CA diagnosis and/or at the time of CA diagnosis 

and had complete data for both AI and manual measurements for at least one timepoint for 

LVEF and/or GLS (Table 1). Once the CA diagnosis had been made, we identified patients 

who had undergone a TTE study prior to this diagnosis, and included these patients in our 

analysis, as the “pre-CA diagnosis” echo (median [IQR] time between studies 3.87 [1.93, 

5.44] years). Basic clinical information and DICOM cardiac ultrasound images were 

collected from the PACS systems, deidentified, and transferred via a web-based system 

(Ultromics, Oxford, UK) for central analysis by a core group lead by the principal 

investigators. Image transfer was facilitated by a two-step anonymization process to a cloud-
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based image analysis software. The study was approved by the University of Chicago 

institutional review board. 

 

Image Analysis 

Analysis was performed through commercially available AI algorithms based on machine 

learning (Ultromics, EchoGo Core 2.0), which generated an initial LV EF, end-systolic and 

end-diastolic volumes (LVESV and LVEDV, respectively), and GLS. Automated measures 

were compared against conventional manual measurements, which were performed by 

certified echocardiographers from the principal investigator’s core laboratory, blinded to any 

clinical data and the results of the automated analysis. All LV volume and EF measurements 

were performed using endocardial tracings and the biplane method of disks (modified 

Simpson's rule) (19). Only cases with acceptable-quality LV views were included, defined as 

lack of apical foreshortening with adequate visualization of all segments in the apical 4-

chamber (4CH) view. From the initial cohort of 59 studies, 8 were excluded due to 

inadequate image quality. Longitudinal strain was calculated as the average of all available 

segments from the 4CH and 2-chamber (2CH) views, since a long-axis view was not obtained 

in the vast majority of cases (Figure 2). Cutoffs for mildly, moderately, and severely reduced 

LVEF were determined by the 2015 American Society of Echocardiography (ASE)/European 

Association of Cardiovascular Imaging (EACVI) guidelines for cardiac chamber 

quantification (19). Normal GLS was defined as <–19%, mildly abnormal GLS was defined 

as >–19% and <–15%, and severely abnormal GLS was defined as >–15% (20).  

 

Statistical Analysis 

Paired t-tests were performed to compare differences in measurements between manual and 

AI methods at the pre-CA timepoint and at CA diagnosis. Bland-Altman analysis was 

conducted to compare methods at each time point. Pearson’s correlation coefficients were 
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used to establish the strength of relationship between measurements by the two methods. 

Two-way ANOVA was used to compare the change in measurement from pre-CA to 

diagnosis across methods.  

 

The measurements of LV EF and GLS were dichotomized using cut-offs of EF<50% and 

GLS>-15.1%. Sensitivity and specificity of AI measurements were calculated at each 

matched timepoint using the manual measurements as the reference standard.  

The longitudinal dichotomized data were used to determine whether there was an association 

between the method of measurement and the “time to event”, which was defined as the time 

between seeing a value indicative of CA in the early timepoint and the official diagnosis. 

Kaplan-Meier curves and log-rank tests were used to compare these times to event. 

 

Results 

There was no significant difference in LV EF measurements pre-CA (57.012.6 vs 

57.310.8, p=0.791) and at the time of CA diagnosis (46.516.1 vs 45.212.6, p=0.463) 

between manual and AI derived values, respectively. There was also no significant difference 

between the change in LV EF from pre-CA to CA diagnosis (8.020.4 vs. 9.418.8; p=0.603) 

for manual and AI derived measures, respectively. Bland-Altman analysis showed that 91.4% 

of pairs fall within the limits of agreement pre-CA and 100% of pairs fall within the limits of 

agreement at time of diagnosis (Figure 3A-B). Manual and AI derived measures of LVEF 

demonstrated good correlations for both the pre-CA (r=0.78) and CA echo (r=0.74) (Figure 

4). Using the manual measurements as the reference standard, the sensitivity and specificity 

of AI-derived indices for detecting abnormal LVEF were 83%, and 86% in the pre-CA echo, 

and 70% and 79% at the time of CA diagnosis, respectively. When looking at the time 
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between pre-CA measurements and diagnosis, there was no significant difference in the time 

to abnormality between the two methods (p=0.990).   

There was no significant difference in GLS values of pre-CA (-17.75.0 vs -16.94.6, 

p=0.105) and at the time of CA diagnosis (-12.74.5 vs -12.94.7, p=0.722) between manual 

and AI derived measurements, respectively. Bland-Altman analysis shows that 91.9% of 

pairs fall within the limits of agreement pre-CA and 96.1% of pairs fall within the limits of 

agreement at the time of diagnosis (Figure 5 A-B). There was also no significant difference 

between the change in GLS from pre-CA to CA diagnosis (-2.96.3 vs. -2.37.0; p=0.548) 

for manual and AI derived measures, respectively. Manual and AI derived measures of GLS 

demonstrated strong correlations for both the pre-CA (r=0.83) and CA echo (r=0.80) (Figure 

6). Using the manual measurements as the reference standard, the sensitivity and specificity 

of AI-derived indices for detecting abnormal GLS were 82%, and 86% in the pre-CA echo, 

and 100% and 67% at the time of CA diagnosis, respectively.  

When looking at the time between pre-CA measurements and diagnosis, there was no 

significant difference in the time to abnormality between the two methods (p=0.192).   

 

Discussion 

This study demonstrated that quantitative, automated measurements of LVEF and GLS are 

highly accurate, and allow sensitive and specific detection of abnormalities, when compared 

to the conventional manual analysis, in patients undergoing echocardiographic assessment 

pre-CA diagnosis and at the time of CA diagnosis. The hypothesis and rationale for choosing 

2 separate time points, was that use of the AI algorithm in these patients could allow the 

detection of CA related abnormalities even before the diagnosis was made according to 

current recommendations. This novel approach could have the potential of providing 
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clinicians with automated quantification of LV function and mechanics, that could help raise 

suspicion for CA in a pre-clinical scenario, ultimately leading to the diagnosis at earlier 

stages of the disease. Our results demonstrate that AI-calculated LVEF and GLS can be 

highly complementary to clinical practice, by producing representative data across 

longitudinal observations without additional time, resources, or expertise from the clinician. 

Previous research has detailed that conventional echocardiographic parameters have low 

accuracy in the diagnosis of CA, mostly driven by poor sensitivity (12). Nevertheless, GLS 

and patterns of myocardial deformation demonstrated higher sensitivity and specificity for 

the detection of CA. Indeed, Pagourelias et al. (12) demonstrated that the LVEF/GLS ratio 

was the best discriminator for CA, even in challenging subgroups. However, our LVEF/GLS 

ratio demonstrated poor sensitivity (25%) with good specificity (90%), suggesting that it 

could possibly be used to rule in potential amyloidosis cases. 

Recently, Cohen et al. (4) demonstrated the importance of GLS in the assessment of CA. 

Baseline GLS was an independent predictor of survival (above standard biomarkers) and a 

change in GLS of -2.0% at 12 and 24-months following clinical intervention improved long-

term survival. These results have significant clinical implications, particularly surrounding 

the importance of accurate and reliable measures of cardiac imaging parameters, since CA 

patients usually undergo serial echocardiographic assessments. In current practice, LVEF and 

GLS is manually contoured and wide variation in inter- and intra-observer variability has 

been reported. Indeed, an inter-observer variability of 5.4% to 8.6% and intra-observer 

variability of 4.9% to 7.3% has been reported for GLS, which is lower than that reported for 

LVEF (21). This level of variation in manual contouring, which in clinical practice, often 

exceeds the reported values, may have implications for patients, especially surrounding the 

clinically relevant change of -2.0% in GLS (4).  
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Interestingly, despite the strong correlation between manual and AI derived measures of GLS 

in both the pre-CA and CA studies, this parameter showed a lower specificity at the time of 

diagnosis (67%) than at the pre-CA time (86%). The reason of these findings is unclear but 

might be related to differences in image quality between the studies. Moreover, the small 

sample size, the unavailability of adequate A3C views to include in the LV GLS analysis and 

the retrospective nature of this study should be taken into consideration when interpreting our 

findings. 

The AI pipeline performs automated measures of LVEF and GLS and compares to manual 

measures performed at a center of excellence. This workflow also offers additional 

advantages over current practice, such as the elimination of training to perform GLS and 

LVEF measures, a reduction in the time needed to perform these measures routinely, and the 

inter-vendor variability (21).  

 

Conclusion 

AI-calculated LVEF and GLS are accurate in both pre-clinical CA and the time of CA 

diagnosis. The widespread implementation of automated LVEF and GLS may allow for more 

rapid assessment in different disease states with comparable accuracy to manual methods. 
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Table 1. Basic demographic data of 51 study patients who had complete data for both AI and manual 

measurements for at least one time point for LVEF and/or GLS (n = 51 patients) 

 

 

 

 

 

 

 

 

 

 

 

AL-CA: immunoglobulin light chain cardiac amyloidosis; ATTR: Transthyretin cardiac amyloidosis; 

ATTR-wt: wild type - transthyretin cardiac amyloidosis; SD: standard deviation; BSA: body surface 

area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 N (%) 

Gender (Male) 27 (51) 

 

Type of CA 

AL-CA 11 (21.6) 

ATTR + ATTR-wt 36 (70.6) 

Undefined 4 (7.8) 

Race 
Black/African American 45 (88.2) 

White 7 (11.8) 

 Mean ± SD 

Age (years) 80.2 ± 9.7 

Height (cm) 171 ± 10.3 

Weight (kg) 73.5 ± 16.2 

BSA at diagnosis (kg/m2) 1.99 ± 0.24 
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Figure legends  

 

Figure 1. AI-algorithm training workflow. 

AI: artificial-intelligence. 

 

Figure 2. Illustrative example comparing LV EF and LVGLS analysis performed with manual 

tracings and AI derived measurements. 

LV EF: left ventricular ejection fraction, LVGLS: left ventricular global longitudinal strain, AI: artificial-

intelligence. 

 

Figure 3. Bland-Altman analysis showing the agreement between manual and AI-derived LVEF 

measurements at A) early timepoint and B) diagnosis timepoint.   

AI: artificial-intelligence, LVEF: left ventricular ejection fraction 

 

Figure 4. Correlation analysis between manual and AI LVEF measurements at early timepoint and 

diagnosis timepoint. 

AI: artificial-intelligence, LVEF: left ventricular ejection fraction, r= Pearson Correlation Coefficient 

 

Figure 5. Bland-Altman analysis showing the agreement between manual and AI-derived LV GLS 

measurements at A) early timepoint and B) diagnosis timepoint.   

AI: artificial-intelligence, LVGLS: left ventricular global longitudinal strain 

 

Figure 6. Correlation analysis between manual and AI LVGLS measurements at early timepoint and 

diagnosis timepoint. 

AI: artificial-intelligence, LVGLS: left ventricular global longitudinal strain, r= Pearson Correlation 

Coefficient 

 

 

 

 

 

 

 

 

 

 

 

 


