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Abstract 
We review evidence that supports the conclusion that people can and do learn in two 

distinct ways – one associative, the other propositional.  No one disputes that we solve 

problems by testing hypotheses and inducing underlying rules, so the issue amounts to 

deciding whether there is evidence that we (and other animals) also rely on a simpler, 

associative system, that detects the frequency of occurrence of different events in our 

environment and the contingencies between them. There is neuroscientific evidence 

that associative learning occurs in at least some animals (e.g., Aplysia californica), so 

it must be the case that associative learning has evolved. Since both associative and 

propositional theories can in principle account for many instances of successful 

learning, the problem is then to show that there are at least some cases where the two 

classes of theory predict different outcomes. We offer a demonstration of cue 

competition effects in humans under incidental conditions as evidence against the 

argument that all such effects are based on cognitive inference. The latter supposition 

would imply that if the necessary information is unavailable to inference then no cue 

competition should occur. We then discuss the case of unblocking by reinforcer 

omission, where associative theory predicts an irrational solution to the problem, and 

consider the phenomenon of the Perruchet effect, in which conscious expectancy and 

conditioned response dissociate. Further discussion makes use of evidence that people 

will sometimes provide one solution to a problem when it is presented to them in 

summary form, and another when they are presented in rapid succession with trial-by 

trial information. We also demonstrate that people trained on a discrimination may 

show a peak shift (predicted by associative theory), but given the time and 

opportunity to detect the relationships between S+ and S-, show rule-based behaviour 

instead. Finally, we conclude by presenting evidence that research on individual 

differences suggests that variation in intelligence and explicit problem solving ability 

are quite unrelated to variation in implicit (associative) learning, and briefly consider 

the computational implications of our argument, by asking how both associative and 

propositional processes can be accommodated within a single framework for 

cognition. 

 

  



Introduction 
In 1994 McLaren, Green and Mackintosh published a paper on "Animal Learning and 

the Implicit/Explicit Distinction" as a chapter in the book "Implicit and Explicit 

Learning of Languages" edited by N.C. Ellis. In it we argued for a dual process 

account of learning in humans, but against the use of awareness as a criterion for 

distinguishing between implicit and explicit learning and memory. Instead, we 

proposed a distinction between associative and cognitive processes, and took a 

comparative stance that equated associative processes across species. We 

characterised associative learning as that which involved the establishment of links 

between representations (and here a representation can be as simple as the activation 

of a specific unit or neurone though often it will correspond to a pattern of activity 

over units), and cognitive processes were seen as allowing the induction and 

application of rules or propositions in a flexible manner not available to associative 

processes. Executive control was cited as possibly the purest example of the 

application of rule-based processing.  We took the view that the cognitive system 

dealt in propositional knowledge and would therefore have beliefs, and reasons for 

those beliefs that could be verbalized, whereas the associative system would extract 

the statistical regularities from experience. Subsequently, Mackintosh (1997), starting 

from a rather different position, also argued for the importance of associative 

processes in human learning.  

 

We are certainly not alone in suggesting that people may have two rather different 

sets of processes for learning and problem solving. Related ideas, albeit couched in 

different terminology, have been proposed by, among others, Evans (2008), 

Kahneman (2003, 2012), Stanovich and West (2000), and in the related area of 

memory by Jacoby (1991). But they have been strongly resisted by some. For 

example, Mitchell, De Houwer and Lovibond (2009) and Lovibond and Shanks 

(2002), have argued that the case for a dual process account is not proven (at best), or 

non-existent (at worst). Both have suggested that all human learning is to be explained 

by a single process propositional account, there being no evidence for associative 

processes. We believe there is a need for proponents of a dual process account of 

human learning to respond to these analyses, and, in particular, to make the case for 

associative learning in humans. Our plan in this paper is to revisit the arguments we 

made in 1994 and 1997, and see how research to date has or has not substantiated the 

analyses we offered then.  In the 1994 paper we discussed Pavlovian conditioning, 

peak shift, and the Overtraining Reversal Effect (ORE) to illustrate the application of 

associative processes, and in the 1997 paper additional evidence from studies of peak 

shift was used to support his argument.  Here we will consider Pavlovian conditioning 

again (this time including the Perruchet effect), look at more recent evidence on peak 

shift and the ORE in humans to see if it parallels that in other animals. We will also 

bring to bear recent research on individual differences that offers a new perspective 

on the dual process debate. In what follows, we construct our argument in terms of 

making the case for associative learning, as the case for propositional learning 

naturally emerges as a counterpoint to this theme. Whilst doing this we are conscious 

of the need to exercise great care in drawing conclusions based on simple parallels 

between the animal and human literature on learning. We take the view that if we 

believe in dual process accounts of learning, then this places a responsibility on us to 

ensure that when we ascribe an effect to associative learning we take some care to 

show that it is not driven by means of rules or propositions. At the end of this paper, 



we conclude with a few thoughts on how associative and propositional processes 

might co-exist and jointly contribute to human learning and behaviour. 

  

The case for association– neural mechanisms 

We start by asking why we might believe that there is such a thing as associative 

learning in animals and humans. The idea of an association as the basis for learning 

has its origins in the writings of philosophers such as Hartley and Hume (even 

Aristotle). Within experimental psychology, its popularity may be because it provides 

a simple and straightforward account of the basic phenomena of Pavlovian and 

instrumental conditioning. This in itself is not a sufficient reason to take it as the 

explanation for these phenomena; if we allow (as we do) that humans can learn by 

forming propositions, why could this not also be the case for other animals? A first 

answer is that it is demonstrably the case that for some animals learning is associative, 

because it has been shown to be so at a neural level. Neuroscientific studies of the 

substrate for learning have shown that in at least one invertebrate, Aplysia californica, 

learning is dependent on link formation.  Kandel and his colleagues have shown in a 

series of papers  (e.g., Hawkins, Abrams, Carew and Kandel, 1983; Hawkins, Carew 

and Kandel, 1986; and see Hawkins, 1989 for a discussion) that learning in Aplysia 

takes place by means of either enhancing or degrading the effectiveness of synaptic 

connections between sensory and motor neurones. Here then, the activities of 

individual neurones are the representations and the synaptic connections between 

them are the links. Aplysia has also been shown to display many of the standard 

classical conditioning phenomena (acquisition, extinction, differential conditioning, 

ability to track contingency, blocking, conditional discrimination; see Hawkins et al, 

1986; Colwill, 1985; Colwill, Absher and Roberts, 1988); thus the case for there being 

an associative basis for this type of learning in at least one animal is very strong 

indeed. Our first point, then, is that associative learning exists. The corollary must be 

that if it exists in Aplysia, it would be very surprising if it did not also exist in other 

animals, and not wholly surprising to find it in the laboratory rat or pigeon, (and 

perhaps even in humans for that matter). The demonstration of the existence of 

associative learning in Aplysia nullifies the single process argument that follows from 

conceding the existence of propositional learning in humans. It would seem that there 

are at least two types of process supporting learning in the world. The question 

becomes whether we are endowed with both of them or not, rather than whether either 

of them exists. 

 

At this juncture it is worth stating that the evidence also points to an error-correcting 

form of associative learning in humans and other animals. We have already 

mentioned that Aplysia displays phenomena (e.g. blocking) that are often taken as 

evidence for error-correction. Whilst the basic neural mechanism for learning in 

Aplysia does not, at first sight, seem to be of an error-correcting nature, both Hawkins 

et al (1989) and McLaren (1989) have shown that an assembly of the type of neurones 

found in Aplysia will function as an error-correcting computational system. There can 

be little doubt that the eyeblink response in the rabbit (Thompson, 1965, 1989) is 

controlled by an error-correcting circuit, and there is also evidence from Wolfram 

Schultz's laboratory that neural correlates of prediction error can be found in primates 

(see Schultz, Dayan and Montague, 1997). Behavioral phenomena such as 

superconditioning and over-expectation (see Miller, Barnet and Grahame, 1995 for a 

review) support the case for associative learning in animals being driven by some 

form of error correction. Rescorla and Wagner (1972) have provided the benchmark 



model for associative learning based on error correction, but it is worth mentioning 

that other models such as those of Mackintosh (1975), Pearce and Hall (1980) and 

Pearce and Mackintosh (2010) that are not often thought of as error-correcting do, in 

fact, depend on something akin to that process. Adjustment of associability in these 

models relies on a summed error-term, and this associability parameter controls 

learning (see McLaren and Dickinson, 1990, for a discussion of this issue, and how 

associability might be implemented neurally). Even Pearce's (1987) configural model 

is more error-driven than is commonly considered to be the case: It uses a simple, 

single error term to control learning between a configural CS and US, but the fact that 

it allows generalisation from other trained configurations to contribute to that error 

term effectively allows a summed error term to influence learning. Each of these 

models is able to account for a wide range of the effects found in the associative 

learning literature.  Thus there is considerable evidence, both empirical and 

theoretical, for learning being controlled (or at least influenced) by prediction error.  

 

The case for association– Pavlovian conditioning 

A second reason for believing that animal learning is associative is that it can be 

shown to be irrational in some circumstances, and produce behaviour that is not at all 

what one would expect from a propositional system. It must of course be the case that 

if it is to be adaptive and enable the animal to survive, in most circumstances the 

outcome of associative learning should parallel that to be expected from a rational, 

propositional system.  Thus, the ability to track contingencies (Rescorla, 1967; 

Wasserman, Chatlosh and Neunaber, 1983) is exactly what you would expect from 

either system. The phenomenon of blocking (Kamin, 1968) is also susceptible to 

explanation in associative or propositional terms (see Beckers, Miller, De Houwer and 

Urushihara, 2006, for an example of the propositional approach and Haselgrove, 2010 

for the associative response to their case). We will consider the example of 

overshadowing in more detail here, as this is another example of cue competition 

where both classes of explanation can apply. Overshadowing occurs if two quite 

distinct, equally salient cues, A and B, are trained in compound to predict a US, and 

then responding to either A or B is less than would be seen if that cue had been 

trained in isolation. If one cue, say A, is more salient than B, then it tends to dominate 

learning when they are trained in compound, and relatively little accrues to B (see 

Mackintosh, 1976, for just such an experiment). This result is easily explained by 

associative theories. According to the Rescorla-Wagner model, the two cues, A and B, 

share the associative strength to the outcome between them in proportion to their 

relative salience. Pearce's configural theory arrives at the same result by a different 

route, arguing that learning about AB generalises only imperfectly to A or B, again to 

an extent determined by the relative salience of the cue. Associative theories, then, 

provide good explanations of cue competition phenomena in animals. 

 

Equally, however, there is no doubt that the propositional approach can explain 

overshadowing, by taking the view that the participants in the experiment are using 

cognitive inference based on a heuristic of the type "if there are two cues predicting 

the outcome, then credit for this prediction must be shared between them according to 

their salience". For example, this heuristic can be used to explain the results of allergy 

prediction paradigms such as in Le Pelley and McLaren (2001), where a combination 

of two foods, A and B, predict an allergic reaction in a hypothetical patient, "Mr. X". 

The result is that the ratings for A and B are less than that for control cues trained on 

their own to predict the same outcome. 



 

If the results of such experiments are equally well explained by either associative or 

propositional accounts, how will it be possible to decide between them? In humans, 

one way may be to use procedures that make it unlikely that participants will be able 

to employ their propositional system – which we assume has a limited capacity. Le 

Pelley, Oakeshott and McLaren (2005) argued that using many different trials, 

presented in a random order, each employing some of a large number of stimuli with 

different relationships to the available outcomes, should make it hard for participants 

to keep explicit track of the contingent relationships in the experiment. Earlier, Le 

Pelley and McLaren (2001) were also at pains to use these conditions (high memory 

load due to using many cues and trial by trial presentation) for similar reasons, so it 

seems reasonable to argue that the cue competition effects they observed were 

associative in origin. But in many other cases, where few cues are used and memory 

load is low, the rating given may well owe more to cognitive inference than 

associative learning. One version of this inferential explanation for overshadowing 

requires that the subject, whether animal or human, know which cues predict which 

outcomes, and then uses this information to generate the appropriate behaviour. We 

can characterise this version of the propositional account of overshadowing as reliant 

on explicit memory as well as learning. This inferential explanation of overshadowing 

would be supported by the claim that humans do not show cue competition effects  

under incidental conditions (Jimenez and Vazquez, 2011). Incidental conditions are 

precisely those that make it likely that participants do not have access to the necessary 

explicit cue-outcome information required for cognitive inference to be brought to 

bear and so produce overshadowing. In the absence of such information, no 

overshadowing is to be expected in this version of the propositional account. The 

critical question, therefore, is whether it is right to claim that overshadowing is not 

observed when people are trained under incidental conditions. Our next section offers 

what we believe is the first evidence for cue competition in humans under incidental 

conditions.  

 

Cue competition in an incidental learning paradigm 

We have already indicated that demonstrations of overshadowing using the allergy 

prediction paradigm, whilst robust, are susceptible to the complaint that they may be 

propositionally driven rather than associatively mediated. A second issue is that the 

stimuli that serve as the CSs in these experiments may be too similar in kind, in that 

they are both foods. The analogy would be to an animal experiment in which the 

overshadowing was demonstrated to two tones of different pitch, rather than a tone 

and a light. The former might give rise to concerns that the two tones when played 

together interacted in some way so as to change their stimulus quality, and that this 

interaction was lost when presented individually, so that the reduction in rating that 

occurred on test could be explained by some change in the perceived stimulus. Clearly 

no such process would apply when the stimuli were trained alone. It would be better if 

the two CSs were different in kind so that this type of potential confound could be 

avoided.  Our two classes of cue were chosen to have quite distinct characteristics to 

avoid this problem. We employed a basic SRT paradigm similar to that of 

Willingham, Nissen and Bullemer (1989), in which there were two circles that defined 

two stimulus locations, left and right. At the start of a trial the circles are outlines, 

then one of them fills, and the corresponding key has to be pressed. Unknown to the 

participants, in those groups that were given sequential information, there was a 2/3 

chance of a trial being predicted by the two preceding trials. The rule was that if the 



two preceding trials were both the same, then the next trial was likely to be a left, 

whereas if they were different, it was likely to be a right, with these response 

assignments counterbalanced across participants. Thus, the first type of cue was 

provided by the sequence of locations that occurred / responses required. The second 

cue type was provided by a colored square that flashed up just before the circle filled 

in, presented at fixation between the two circles. Participants for whom color 

information was relevant had a 3/4 chance that the color would predict the response 

location on half the trials. On the other half of trials different colors were used that 

were not predictive and so could be used as color control trials. We settled on these 

parameters for the tasks as a result of extensive piloting and prior work, to ensure that 

both the sequential information and the color information were capable of supporting 

learning under incidental conditions (see Jones and McLaren, 2009 for more on the 

sequences, and Yeates, Jones, Wills, Aitken and McLaren, 2012, 2013 for details on 

the colour task). Table 1 gives the details of stimulus construction for each group. 

 

Table 1 about here please 

 

Group Dual had both sequence and color information programmed in. Group Color 

had the same type of color information as Group Dual, and Group Sequence had the 

same type of sequence information as Group Dual. Group Sequence were still shown 

a colored square just before the response location was indicated, but the color bore no 

relation to that location; equally Group Color experienced sequences of trials in just 

the same way as Group Dual, but there was no predictive relationship between them. 

 

Another point worth raising in this context is that in all the experiments (that we are 

aware of) on overshadowing in humans that come close to meeting our first two 

conditions, the comparison has been between CSs trained in compound and tested 

individually, and a group or groups trained with the individual CSs and then tested. 

The problem with this procedure is that one group experiences a major change from 

training to test (the compound group) whereas the other does not. This, on its own, 

may be enough to depress responding in the compound group if they come to believe 

that circumstances have changed and deliberately and strategically alter their 

responses as a consequence (something that seems intuitively less likely to be the case 

in a rat or a pigeon). Note that this is not the same as a generalization decrement 

account of overshadowing that would, for example, follow from Pearce's (1987) 

configural model. It is rather an appeal to a strategic decision based on changing 

circumstances during the course of the experiment, and we avoided this in our design 

by making sure that the transition from training to test was unsignalled and unlikely to 

be noticeable. Thus, all groups experienced a fast-paced sequence of trials cued by a 

colored square during both training and test, the only difference being the 

contingencies that applied during test (when all contingencies were 50:50, and 

sequence and color information were uncorrelated for all groups). 

 

Figure 1 about here please 

 

Figure 1 shows the test results for sequence learning (left panels) and color learning 

(right panels) on test. The data shown in Figure 1 are the mean difference between 

trained and untrained sequences or colors in RTs (top) and errors (bottom) for each of 

the three groups. Higher scores indicate more learning (chance is zero), and, starting 

with the panels shown left, it is clear that both the Sequence and Dual groups showed 



good evidence of sequence learning, whereas there was little evidence of sequence 

learning in the Color group (as should be the case). Given that the test phase was, in 

effect, an extinction treatment, the evidence for sustained performance on the basis of 

what had been learned during training in Group Sequence and Group Dual is 

noteworthy and implies strong learning of the sequence information available during 

training. We conclude that Group Dual learned something about the sequence 

structure in addition to whatever it learned about the ability of the colors to predict the 

next response location. We now turn to the difference scores obtained by comparing 

performance for the predictive colors with the control colors for RTs and errors on 

test and shown on the right of the figure. Unsurprisingly, Group Sequence shows no 

evidence of having learned anything about the colors on test (there was nothing to 

learn). Group Dual also shows no evidence of learning about the colors either on the 

RT or the error measure, but Group Color's RT performance is significant, and is 

significantly better than that of the other two groups. 

 

It would appear, then, that the Dual group learned about the sequences, but did not 

learn the color information available to them, even though Group Color shows that 

this was eminently possible. This is what would be expected if the sequence cues had 

overshadowed the color cues in the Dual group (but not vice-versa). Thus, it is 

possible to demonstrate cue competition effects in humans trained under incidental 

conditions, and the parallel with animals learning under similar conditions would 

seem to have some validity. Were the participants in this experiment aware of the 

sequence or color rules (if so, this would undermine our results as evidence that cue 

competition effects can occur when the basis for cognitive inference is unavailable to 

participants)? Previous experiments and pilot work suggest that this should not be the 

case, and post-experiment interviews established that participants were unable to give 

any accurate information about the sequences, or say which colors were predictive. 

Crucially, there was no difference between Dual and Color groups in terms of their 

ability to guess which colors were predictive (44% and 45% respectively), and both 

values are numerically below chance (50%).   Equally, there was no reliable 

difference in the proportion of participants asserting that the sequences were random 

(using a conservative criterion in scoring this) in any of the Color, Dual or Sequence 

groups (50%, 57% and 70%), although numerically the Sequence group was actually 

more likely to think that their sequences were random. Given this, we can now reject 

the argument that cue competition in humans is only observed under intentional 

learning conditions, and its corollary that this is because it relies on cognitive 

inference to manifest. It certainly does not seem to be the case that explicit cognitive 

inference is required to generate overshadowing in humans. 

 

Irrational cue competition effects 

Further evidence against a propositional account of human learning might be provided 

by an experiment that passed what we shall term the "participant-as-experimenter 

test
1
". The essence of this is to imagine what the reaction of participants would be if, 

instead of running them in the experiment, you were simply to describe its design to 

them. In many cases, of course, you would expect the same result from both 

procedures. For example, when you describe a blocking design to people, they will 

                                                
1
  The " participant-as-experimenter test" is based on a conversation with David Shanks in 1990. We 

imagine what the reaction of a participant will be if, instead of running them in the experiment, we 

were to describe its design to them. Shanks pointed out to IPLM that in many cases you would expect 

the same result from both procedures. 



suggest a blocking type result as the most likely outcome, and give reasons why this 

would be so. If the design is "A+ followed by AB+" then they will likely say that the 

pre-training to A means that when A and B occur in compound A already predicts the 

outcome so B is redundant and consequently they will give it less credit or be less 

confident about attributing the outcome to B. In order to differentiate between 

associative and propositional accounts and pass our test the experiment has to be such 

as to produce divergent results under these two conditions (i.e. actually experiencing 

the contingencies in the experiment or being asked to predict the results from the 

design). Are there more complex cue competition designs that can create problems for 

the propositional account by passing the participant-as-experimenter test? One 

possibility is unblocking (Dickinson, Hall and Mackintosh, 1976, Dickinson and 

Mackintosh, 1979). The design of the first of these experiments is shown in Table 2.  

 

Table 2 about here please 

 

After training rats that A predicts a shock (A-Sh), and then that AB predicts two 

shocks, one after the other (AB-Sh-Sh), testing B now reveals good conditioning 

compared to a blocking control group (A-Sh-Sh, AB-Sh-Sh). This may not seem 

surprising, as the total amount of US experienced has increased in the experimental 

group, but the same effect can also be obtained if initial training with A-Sh-Sh is 

followed by AB-Sh. This experimental group also shows stronger conditioning to B 

compared to a control group experiencing A-Sh followed by AB-Sh. In these 

circumstances the unblocking effect is not so easily explained by the propositional 

approach, which would tend to reason that if A and B in compound are followed by 

one less shock than A on its own, then clearly B is responsible. Thus, rational 

inference would suggest that B should, if anything, become an inhibitor for shock, and 

certainly not show an unblocking effect. It is hard to see how a propositional account 

would have predicted this result, but the Mackintosh (1975) theory did, and was the 

inspiration for this experiment. McLaren and Dickinson (1990) discuss the neural 

mechanisms needed to produce this result and conclude that an associability 

parameter of the type envisaged in Mackintosh (1975) that is specific to both the CS 

and to the type of outcome it is paired with is required. It is worth noting that Le 

Pelley, Oakeshott and McLaren (2005) have produced an analogous result in humans 

using an allergy prediction paradigm. They also demonstrated that if humans were 

given the design in a manner similar to that shown in Table 2 so that cognitive 

inference was engaged, then no unblocking was observed in the condition analogous 

to Dickinson et al's experiment. Thus, where participants were able to use the 

propositional system to solve the problem, they did not show an irrational unblocking 

effect (as we would expect), but where they had to rely on associative processes, they 

did.  Another set of experiments that support this thesis using a similar manipulation 

(though this time with second order retrospective revaluation as the effect in question) 

can be found in McLaren, Forrest and McLaren (2012). 

 

The Perruchet effect 

Our final example taken from simple Pavlovian conditioning is the Perruchet effect 

(Perruchet, 1985) in which conscious expectancy dissociates from conditioned 

responding in humans in a partial reinforcement procedure. The original 

demonstration used an air puff paradigm, and has been replicated with additional 

controls by Weidemann, Tangen, Lovibond and Mitchell, 2009), but here we will 

focus on a recent demonstration by McAndrew, Jones, McLaren and McLaren (2012) 



that used an electrodermal paradigm. In their procedure these authors paired a single 

visual CS with an electrodermal shock 50% of the time. As a consequence, there were 

times when a run of CS presentations would be followed by shock, and times when a 

run of extinction trials would occur. On each trial they recorded the skin conductance 

response (SCR) to the CS, and also asked participants to rate their expectancy (during 

the CS presentation) of a shock occurring on that trial (if it did occur – it would occur 

in the last 500 msec of the CS). The results were clear: expectancy of shock increased 

over a run of extinction trials and decreased over a run of reinforced trials. But the 

SCR (i.e. the CR to the CS) showed the opposite pattern, decreasing over a run of 

extinction trials and increasing over a run of reinforced trials. This SCR pattern is 

exactly what associative theory would predict, and cannot easily be explained by the 

expectancy data: if learning is due to the formation of a proposition that the CS is 

followed by shock, a stronger expectation should result in a stronger CR. Lovibond 

and Shanks (2002) have suggested that this is the explanation for differential 

conditioning using these electrodermal procedures, so to deny this would undermine 

their explanation for a large corpus of data on differential electrodermal conditioning. 

We are left with the conclusion that dual processes are needed to explain this effect, 

associative processes for the SCR pattern and propositional processes to generate the 

expectancy ratings. Mitchell et al (2009) have conceded that this phenomenon is one 

of the best pieces of evidence for a dual process account of learning. 

 

The case for association– discrimination learning 

The Overtraining Reversal Effect 

Experiments on discrimination learning provide further examples of phenomena not 

predicted by a propositional analysis. If rats are trained and then reversed on a visual 

discrimination problem (A+, B-, followed by B+, A-), they typically learn the reversal 

more rapidly if overtrained on the initial discrimination – the so-called overtraining 

reversal effect (ORE). It is difficult to see how a rational analysis could predict that 

additional training on a discrimination would actually make it easier to reverse that 

discrimination. The ORE is a well-established effect in animal learning (see 

Mackintosh, 1969; Sutherland and Mackintosh, 1971), and a version of it has been 

demonstrated in humans by Suret and McLaren (2003). They used a dimension 

(actually four of them) constructed by morphing from one face (face 1) to another 

(face 11) in 10 stages. The dimension used is illustrated at the bottom of Figure 2. It 

was essentially a transfer along a continuum (TAC, see Lawrence, 1952) experiment 

in which pre-training on an easy problem (morph 3 vs. 9) facilitated later learning of a 

hard problem (morph 5 vs. 7). Suret and McLaren showed (see graph in Figure 2) that 

extended (but not relatively brief) pre-training on 3 vs. 9 facilitated learning of 5 vs. 7 

even when the response assignments were reversed at transfer (i.e. 3+ vs. 9- was 

followed by 5- vs. 7+). Learning in this condition was superior to that observed when 

participants were trained on 5 vs. 7 for the same total amount of time.  

 

Figure 2 about here please 

 

 

This result also passes the participant-as-experimenter test referred to earlier.  We 

acknowledge that a basic transfer along a continuum experiment, where training is on 

the easy problem and then participants are transferred to the hard problem (without 

reversal of the response assignments) seems like a plausible method for enhancing 

acquisition of the hard discrimination (and indeed both humans and other animals 



show such an effect). This makes it hard to distinguish between an associative and a 

propositional account with this design, because human participants at least may have 

become aware of the experimental design, and will simply deliver the expected (by 

them) result. But, when the intuition based on the design is not reflected in the 

behavioral result, then the case for a propositional explanation is weakened. The 

reversal version of this experiment involves a design in which the intuition is that 

extended training will make learning the reversal harder for the participant, which 

turns out not to be the case, and so passes our test. It is not easy to see how this could 

be predicted on a propositional basis. For example, it might be argued that extra 

training on the original 3+ vs. 9- discrimination helped participants learn and 

remember the trained stimuli and the required responses. Because this was the case, 

they then found it easier to a) transfer to 5 vs 7 because they could see that 5 was 

more like 3 and 7 more like 9, and b) swap the response mappings. But Suret and 

McLaren (2003) were able to demonstrate transfer from easy to hard (without 

reversing the response mappings) after standard (not extended) training, training that 

was ineffective in producing rapid reversal. Thus, based on these data and this 

analysis, participants were already able to equate 5 with 3 and 7 with 9 perfectly well, 

leaving their inability to reverse the mapping from stimulus to response as something 

of a mystery. An associative account explains why these two sets of results can be 

obtained, by postulating that only overtraining allows the associability of the trained 

cues to get to the point where it will be maintained during reversal, and so deliver an 

advantage for the easy condition.  
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Transposition and Peak Shift 

 Our next example illustrating the need to posit associative as opposed to cognitive 

processes in learning comes from consideration of peak shift and the related 

phenomenon of transposition. Transposition was first studied by Kohler (1917), who 

trained animals to select the brighter of two stimuli, and then tested them with their 

original S+ and an even brighter stimulus (the gray rectangles depicted in Figure 3, 

they would be trained on those labelled + and -, then tested on + vs. the rectangle on 

its immediate left). He took their choice of the even brighter stimulus on this test as 

evidence that they had solved the initial discrimination by responding to the 

relationship (brighter, darker) between S+ and S-, rather than to their absolute values. 

Spence (1937), however, showed how interacting gradients of generalization round 

S+ and S- could in principle predict transposition (see Figure 3), and the 

demonstration of a peak shift in pigeons by Hanson (1957), seemed to prove the 

plausibility of Spence’s analysis. Figure 3 illustrates this point. Spence argued that 

training on an S+ and S- created two gradients, one of excitation shown as solid black 

in the figure, one of inhibition shown in gray. These gradients could correspond to the 

two rectangles labelled as + and – in the figure if we wished to apply this analysis to 

Kohler's experiment, or to the corresponding positions on a color continuum if we 

wished to apply it to Hanson's experiment. Responding is governed by the resultant 

gradient obtained by subtracting inhibition from excitation. Because the difference 

between the two gradients is maximal for a luminance or color that is (in this 

diagram) to the left of S+ (i.e. a point on the continuum not at S+ and further away 



from S- than S+), then we would expect maximal responding here as in Hanson's 

experiment, and the brighter stimulus to be chosen over S+ as in Kohler's. 

 

The critical difference between transposition due to relational learning and the peak 

shift is that, as can be seen in Figure 3, Spence’s interacting gradients predict that 

although responding may be greater to a stimulus just beyond S+ than to S+ itself, if 

you move further away from the original S+ and S-, responding will eventually fall 

off, with the consequence that responding will be greater to the stimulus closer to S+ 

than to the further stimulus. Relational learning might predict some eventual decline 

in responding as you move further away from the training stimuli, but it could never 

predict this reversal. Wills and Mackintosh (1999) were able to show that their 

pigeons’ and people’s behaviour followed the pattern predicted by Spence's analysis. 

 

Table 3 about here please 

 

Wills and Mackintosh (1998) used an artificial dimension (see Table 3) in which the 

constituent parts (icons) were constrained to behave according to the principles of 

Blough's (1975) elemental theory, to demonstrate peak shift. Thus, after training on 

the S+ and S- designated in Table 3, they were able to demonstrate that responding to 

Near+ was greater than to S+, but that it had declined by the time Far+ was reached. 

Their success in doing this constitutes an existence proof that the theory is capable of 

generating a peak shift, and makes plausible the assertion that peak shift on a natural 

dimension is due to this type of representation coupled with associative learning. It is 

difficult to give an account of these results based on any kind of propositional 

analysis, because the stimuli simply do not easily lend themselves to rule induction. In 

a similar vein researchers have also used face dimensions (like those used above for 

ORE effects) to demonstrate peak shift in humans (McLaren and Mackintosh, 2002; 

Lewis and Johnson, 1999; Spetch, Cheng and Clifford, 2004).  

 

The evidence that discrimination between two values on a dimension can be either 

associatively-mediated or rule-based has accumulated since our discussion in 1994 

and 1997. Jones and McLaren (1999), using patches of green colour which varied 

along a dimension of brightness, showed that relatively short training led to 

discrimination that produced the typical peak shift pattern in humans, whereas 

lengthier training resulted in behaviour indicative of rule use: i.e. increasingly 

accurate performance with increasing distance from the decision boundary. They also 

showed that the participants producing this pattern were aware of the rule in play 

(they could explain the response mappings required for light vs. dark shades of 

green), whereas those producing peak shift were not. We have recently replicated this 

result using a technique based on that employed in Livesey and McLaren (2009), 

whereby participants are classified as rule users or not by means of a post-

experimental interview.  It seems reasonable to assume that if participants have 

recognised this simple rule they would be able to verbalise it (and many participants 

did). Figure 4 shows the results of applying this technique with the stimuli originally 

used by Jones and McLaren (1999). 

 

  

Figure 4 about here please 

 

 



Overall performance on this task was relatively poor as can be seen from the graph 

(the training stimuli were very hard to discriminate), but the performance of rule users 

was respectable, and significantly better than that of those participants who did not 

induce the rule. The rule users showed a monotonically increasing trend from the 

Training stimuli (which are fairly similar to one another) to the Near stimuli (which 

are further from the decision criterion for light vs. dark and so less confusable), and 

then again to the Far stimuli (which are quite bright and quite dark respectively). 

These people stated that the rule was "left key for dark green, right key for bright 

green" (or v.v. as this was counterbalanced), and it is reasonable to assume that this 

knowledge was responsible for their superior performance and the transposition effect 

they demonstrated.  To explain the monotonic trend, we simply have to point out that 

distinguishing between bright and dark greens becomes progressively easier the 

brighter and darker they are. The non-rule users showed a quite different pattern. 

Their overall performance was poor, with only performance on the Near stimuli being 

significantly above chance. Performance on these stimuli was reliably superior to that 

on either the Far or Training stimuli. Thus these participants exhibited a classic peak 

shift, which we take as a sign of associative processing, by analogy with the pattern of 

responding obtained with pigeons in similar tasks. Livesey and McLaren (2009) were 

able to track the transition from associatively-mediated performance as indexed by 

peak shift, to rule-based performance in their studies, and our results confirm the 

correlation between knowing the rule that applies to the discrimination and the pattern 

of responding obtained on the task itself (which seems best explained by propositional 

processing in the rule use case and associative processes in the other). A propositional 

theorist might offer the thought that some other rule is being used by those we classify 

as non-rule users, one that is not picked up by our questionnaire. If this is the case, we 

have been unable to find any evidence for any consistent verbal response (or any 

response at all) from these participants, which is somewhat surprising given the 

consistency of report available from those we classify as rule users if the same 

propositional system is deemed to be at work in both groups. 

 

Aitken (1996) relied on a different technique to dissociate peak shift from relational 

transposition in human participants. The difficult discrimination required was one 

between short, fat wedge-shaped stimuli and long thin ones. When these stimuli were 

presented one at a time with ample time for responding, and feedback given after 

every trial, testing with stimuli progressively further removed from the training 

stimuli revealed progressively more accurate performance, with no sign of any decline 

with the furthest stimuli, let alone any reversal. He took this as evidence of 

transposition and relational learning. In order to demonstrate a peak shift, the 

procedure was completely changed. On each trial, one of two circles on the screen 

was briefly illuminated, and the participants’ task was to respond as rapidly as 

possible to the illuminated circle. A variety of different stimuli were also shown on 

the screen on every trial, most of them wholly irrelevant to the task at hand. But on 

some trials, one of these stimuli was either a short, fat wedge or a long, thin wedge, 

and these reliably predicted which circle would be illuminated at the end of the trial. 

That participants had learned about these contingencies was evident from the fact that 

their reaction times on these trials were faster than on those when there was no 

predictive stimulus present, but only a very few participants were able to articulate 

these contingencies when asked after the experiment. When tested with stimuli 

progressively further away from the wedges used in training, the ‘unaware’ 

participants showed a classic peak shift – initially responding more accurately to test 



stimuli not too far away from the training stimuli, but significantly less accurately as 

the test stimuli moved even further away. This decline in performance to the furthest 

stimuli was not seen in the small number of participants who were able to articulate 

the contingencies during the course of training on the initial discrimination.   

 

The fact that Jones and McLaren (1999) and Aitken (1996) used quite different 

procedures to produce either a peak shift or relational transposition is important, for it 

surely makes any artifactual explanation of their results markedly less plausible. We 

conclude that these data on discrimination, and other data like them, support the case 

for two dissociable sets of processes involved in learning, one associative, the other 

rule-based.  

 

The case for association - individual differences 

For our final domain of evidence we consider studies of a correlational nature that 

exploit the natural variation in human abilities. If we take an IQ score as a (no doubt 

imperfect) measure of how well someone thinks, reasons or solves complex problems 

using rule-based processes, then we know that people differ quite widely in the 

‘efficiency’ of their propositional system(s). A final potential way of decoupling an 

associative from a propositional system would be to see if people also differed in the 

efficiency of their associative learning, but this was quite independent of their IQ.  

 

IQ scores are at least moderately correlated with a surprisingly wide variety of other 

measures of human performance – at least some of which might reasonably be 

thought to depend on an associative system. Although, for example, Jensen (1998) 

argued that there was only a very modest correlation between measures of IQ and 

paired associate learning, and although some studies have indeed supported Jensen’s 

claim, others have not. Alexander and Smales (1997) reported a correlation of .56 

between a composite measure of paired associate learning and verbal IQ, while 

Williams and Pearlberg (2006) have also reported correlations of about .50 between 

one verbal learning task and IQ. 

 

It will come as no surprise that we should suggest that a ‘purer’ measure of the 

associative system might be provided by incidental learning tasks. Reber, Walkenfeld 

and Hernstadt (1991) were the first to demonstrate that performance on one implicit 

learning task, artificial grammar learning, was unrelated to IQ. They reported a 

correlation of only .25 (ns) between artificial grammar learning and WAIS IQ in a 

sample of 20 college students, but at the same time a correlation of .69 between IQ 

and an explicit series completion task. The two correlations were significantly 

different. Reber et al.’s results were replicated by McGeorge, et al. (1997) in a larger 

study of over 100 adults ranging in age from 18 to 77. They reported correlations of 

.12 and .67 between WAIS IQ and artificial grammar and series completion tasks 

respectively.   

 

Performance on a second incidental learning task, the serial reaction time task, has 

also shown a negligible correlation with IQ. In a study of over 400 schoolchildren 

Feldman, Kerr and Streissguth (1995) reported a correlation of .05 with WISC IQ, and 

similar results have been reported by Unsworth and Engle (2005), and Kaufman et al 

(2010). 

 



Correlations between incidental learning and IQ have been small – but not usually 

zero, and in at least one or two studies have indeed been significant: for example, 

Danner et al. (2011) reported a significant correlation of .32 between artificial 

grammar learning and measures of fluid intelligence in a sample of 173 adults – 

although this compared with a correlation of .86 between the same IQ measures and a 

problem solving task. Salthouse et al (1999) also found a significant correlation 

between serial reaction time and IQ. 

 

One explanation of this is that explicit cognition may sometimes contribute to 

performance on a nominally ‘implicit’ task (just as it surely contributes to ordinary 

paired associate learning). Thus in the serial reaction time task, one measure of 

learning is that participants’ reaction times are faster to the sequence they have been 

trained on than to a novel sequence. But another measure is to ask them to predict 

what the next item will be. Feldman et al. (1995) found that although the former 

measure did not correlate with IQ (see above), the latter did (r = .28). 

 

A better test of our argument might be to compare performance on various ‘implicit’ 

tasks under standard incidental instructions and under ‘explicit’ instructions, when 

participants are told in advance that the letter strings or sequence of stimuli have been 

constructed in accordance with a set of rules and that it is their job to detect these 

underlying rules, with hints on how to go about this. In a study of some 400 German 

schoolchildren, Gebauer and Mackintosh (2007) reported nonsignificant correlations 

ranging from .07 to .11 between different components of IQ and performance under 

incidental instructions, while under explicit instructions the now significant 

correlations ranged from .23 to .37.  In a rather smaller study, Yang and Li (2012) 

observed a correlation of .56 between working memory and artificial grammar 

learning under explicit instructions, but no correlation under incidental instructions. 

 

There have been a few exceptions, but the weight of the evidence strongly suggests 

that differences in incidental learning are at best only weakly related to conventional 

measures of intelligence – and certainly less strongly related than are measures of 

explicit problem solving. Given that experimental psychologists tend to be somewhat 

skeptical of correlational evidence, it is worth reinforcing our argument by appealing 

to neuroscience as well.  It has long been known from functional imaging studies that 

explicit and implicit learning engage different regions of the brain, the former 

resulting in activation of medial temporal regions, the latter striatal-frontal circuits 

(see, for example, Cohen,  Eichenbaum, Deacedo and Corkin, 1985; Knowlton, 

Mangels and Squire, 1996; for a recent review, see Dennis and Cabeza, 2011). 

Moreover, in performance on any task there is a negative relationship between the 

activation of one system and of the other (Poldrack and Packard, 2003). It seems clear 

that there are two relatively distinct systems in the human brain, one engaged by 

implicit tasks, the other by explicit tasks. 

 

We would argue, of course, that these findings support the conclusion that there is an 

important distinction between implicit (which we define as associative) and explicit 

(cognitive, rule-based) learning. But is implicit learning merely something observed 

under artificial laboratory conditions, or does it contribute to the way people actually 

learn about and adapt to the world?  In the domain of individual differences in 

intelligence, Sternberg and his colleagues have been arguing for many years that 

standard IQ tests fail to capture individual differences in ‘practical intelligence’, 



which is based on ‘tacit knowledge’ of the world, informal, implicit procedural. If 

Sternberg is right, implicitly acquired knowledge is of wide importance. 

 

One problem with this suggestion is that different implicit learning tasks are clearly 

measuring, at least in part, rather distinct abilities or skills.  Gebauer and Mackintosh 

(2007) found only weak correlations between artificial grammar learning, serial 

reaction time, and process control tasks. By giving a wider variety of tasks and a 

number of different measures of each, however, Gebauer (2003) was able to show 

some small but significant relations between different tasks. German schoolchildren 

(N= 195) were given different measures of IQ, as well as different artificial grammar 

and process control tasks, and a serial reaction time task. A preliminary factor 

analysis yielded distinguishable factors for each of these tests, but a second order 

analysis yielded two superordinate factors: the IQ tests and an explicit problem 

solving task loaded onto one factor, while the artificial grammar and process control 

tasks loaded onto the second (serial reaction time loaded onto both). There was, 

therefore, good evidence for distinct explicit and implicit factors. 

 

The study also obtained information on the students’ grades for Mathematics and 

English (a foreign language for German students). The correlations between the 

Explicit and Implicit second-order factor scores, and Maths and English grades are 

shown in Table 4. As can be seen, IQ correlated modestly and significantly with both 

Maths and English, while the correlation between the Implicit factor and English (but 

not Maths) was of the same order of magnitude. The correlation of the Implicit factor 

with English remained significant when Explicit factor scores were partialled out; that 

with Maths did not.  
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In a study of English 6
th

 form students, Kaufman et al (2010) also reported significant 

correlations between implicit learning and GCSE grades in French and German 

(GCSE are public exams taken at age 16 in English schools).  Implicit learning was 

measured by a probabilistic serial reaction time task, and scores on this task correlated 

.27 with the students’ French grades, and .29 with their German grades. These 

correlations were unaffected by controlling for students’ scores on IQ tests, a working 

memory task, and explicit associative learning. 

 

As Kaufman (2011) has reviewed, there is good evidence that scores on laboratory-

based implicit learning tasks do seem to predict other things of importance. For our 

purposes, the important message is that such tasks seem to engage an associative 

system that is independent of the cognitive, rule-based system that people 

undoubtedly possess. 

 

Cognition and association  

The case for associative processing in animals is extremely strong. We feel that there 

is strong evidence for this type of processing in humans as well, but at the same time 

would want to acknowledge that there is equally strong evidence for rule-based 

processes in humans. A number of questions quite naturally arise from these two 

propositions. What do we mean by allowing two distinctly different types of 

processing? Are we implying separate systems running independently side-by-side? 



How do propositional and associative processes interact? In this section we address 

these questions to the extent to which we are currently in a position to do so, and point 

towards the research that is needed to make progress on these issues. 

 

Many theorists have made the simplifying assumption that what we term associative 

and propositional processes run in parallel and in an independent fashion with both 

contributing to behavior. An example here would be Jacoby's distinction between 

automatic and intentional influences on memory as operationalized in the Process 

Dissociation Procedure (Jacoby, 1991). We have taken this approach with respect to 

learning in the past (e.g. the SARAH model in Spiegel and McLaren, 2003) and it has 

proven useful (e.g. in allowing us to explain the quite remarkable parallels between 

predictions made by the SRN and human sequence learning in Spiegel and McLaren, 

2006; whilst still allowing us to explain the quite different pattern of results generated 

by rule-based generalization in Spiegel and McLaren, 2003), but ultimately we would 

concede that this state of affairs is very unlikely to reflect reality. Instead, our view is 

better expressed by asserting that cognition is controlled association. By this we mean 

that associative processes are fundamental – and when low levels of control are in 

play then their operation is transparent and their associative nature obvious. Our view 

is that more cognitive and ultimately rule-based symbolic processing is made possible 

by employing associative processes within a complex recurrent architecture (the 

simplest possible example of this would be the SRN, Elman, 1990) that can be 

controlled (i.e. parameterised and modulated) on the fly (examples of this would be 

the APECS SRN, Jones, Le Pelley and McLaren, 2002; and the RASRN, Yeates et al., 

2013). From this perspective, our distinction between Cognitive and Associative 

processes is more akin to a continuum, with associative and propositional processes as 

the endpoints of this continuum and the degree of control the factor that varies across 

it. Another perspective afforded by this approach emphasises the scale at which 

computation is considered, in that locally our model of cognition is inevitably 

associative, but globally symbolic processes emerge from the model. More detail on 

this approach to the dual system account of learning and cognitive control can be 

found in a paper currently in preparation by Verbruggen, McLaren and Chambers 

(available on request). 

 

What does our position predict as to the nature of the interactions between 

propositional and associative processes? Clearly this becomes a matter of specifying 

the degree of control involved in any given behavior and then inferring from that the 

extent to which learning or performance will seem, to the researcher, to be governed 

by associative or rule-based processes. One corollary of our position is that 

associative learning will always occur – but whether it is expressed in a simple form 

is quite a different matter. Given that the degree of control exerted will vary from task 

to task, we cannot say that propositional processes will always be involved in any 

learning episode, but it seems likely that, to the extent that sufficient control is in play 

to engage this mode of processing, then the expression of any simple associative 

learning will be either masked or suppressed. The prediction, then, is that associative 

processing will be automatic and "run in the background" even when more controlled, 

propositional processes dominate, but that the converse will not be the case. The idea 

that the expression of any associative learning might depend on the degree of 

cognitive control is consistent with the arguments made by Jones and McLaren (2009) 

on the basis of their investigation of sequence learning in humans. 



Conclusions 

It will come as no surprise to the reader to learn that we believe that the case for dual 

systems supporting learning in humans is strong, and that the evidence accumulated 

since 1994 increasingly points in this direction. To our mind, there can be little doubt 

that much (if not all) of learning in infra-humans is associatively based, though we 

would not rule out at least the precursors of symbolic thought in some species (e.g. 

chimpanzees). We realize that this conclusion is somewhat at variance with that of 

recent reviews (e.g. Mitchell et al, 2009) that argue for propositional processes and 

against associations as a mechanism for learning in humans, but we would argue that 

these treatments do not adequately deal with the dual-process position. As a critique 

of pure associationism they are entirely convincing, but once we grant the existence of 

propositional processes in humans, the arguments deployed in these reviews lose a 

great deal of their force. Proving that people can learn propositionally is not sufficient 

to prove that they never learn associatively. 

 

But we would like to go a step further by way of conclusion, and point out that the 

best way forward now is to start from the standpoint of a dual-process account of 

learning, and to design experiments explicitly geared to investigating the interaction 

between the two systems instead of spending our time trying to adduce evidence for 

one system or the other. We believe that this will lead to the discovery of novel 

phenomena, a better understanding of human and animal learning and the relationship 

between them, and quite naturally result in the provision of all the evidence anyone 

could want for a dual-process account. It would be a mistake to continue fighting old 

battles if we wish to make progress in understanding human and animal learning, 

memory, and cognition. 
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Table and Figure Legends 

 

Table 1: This shows the construction of the stimulus sequences and contingencies 

for the three groups in an idealised form to convey the relationship between the 

groups. S1-S8 are the sequences that were concatenated to construct blocks, and 

the mapping between responses and colors is shown for each sequence. Sequences 

and mappings were randomised / counterbalanced where appropriate. The letters (X, 

Y) stand for left/right responses, and the numbers (1, 2, 3, 4) for colors. Stimuli 

shown in bold are those changed with respect to Group Color. In Group Color, colors 

1 and 2 are predictive, and 3 and 4 act as controls. All eight sequence triplets are 

shown that were used to construct the pseudorandom trial order. In Group Sequence 

no color is predictive, but only four sequence triplets are used so that e.g., XX is 

typically followed by X. In Group Dual colors 1 and 2 are once again predictive, and 

so are the sequences. 

 

Table 2: The design used in Dickinson et al (1976). T=tone, L=light, Sh=shock. The 

subjects in this experiment were rats. 

 

Table 3: The table shows how icon stimuli are used to construct a stimulus dimension 

resulting in a stimulus of the type shown in the top left corner of the table. 

 

Table 4: Correlations between Maths and English grades with second-order factor 

scores. See text for details. 

 

Figure 1: The top panels display the mean differences in RT (msec) and their 

standard error analysed by sequence (left panel: untrained sequences–trained 

sequences), and by color (right panel: untrained colors–trained colors). The 

corresponding mean error differences and their standard errors are shown 

underneath. 

 

Figure 2: The morphed face dimension used in Suret and McLarenʼs (2003) 

experiment is shown at the bottom of the figure, and the results (mean and standard 

error) are shown above this continuum. Group Hard were trained on 5+ vs. 7- 

throughout, Group Easy Reversed on 3- vs. 9+ then transferred to 5+ vs. 7- 

(response assignments were counterbalanced across subjects). Note that analysis 

was by means of non-parametric tests that confirmed that performance on these two 

graphs differed significantly. 

 

Figure 3: This figure gives a version of Spence's (1937) account of transposition (and 

peak shift) in terms of interacting excitatory and inhibitory generalization gradients. 

The black solid line is the excitatory gradient and the gray one the inhibitory gradient. 

The dotted line is the resultant. The dimensions shown at the bottom illustrate how 

this analysis could be applied to luminance or color as in Hanson's (1957) study. 

 

Figure 4: Test performance (means and standard errors) on the Training (T), Near 

(N) and Far (F) stimuli on the lighter/darker shades of green dimension split by rule 

use vs. non-rule use. Note that 0=chance for these scores which collapse across 

right and left responses, 1=perfect classification and -1=perfect responding with the 

wrong response assignments.  



Table 1 

 

GROUP S1 S2 S3 S4 S5 S6 S7 S8 

COLOR XXX 

4 3 1 

XXY 

2 4 2 

XYX 

3 2 1 

XYY 

3 3 2 

YXX 

1 4 1 

YXY 

4 1 2 

YYX 

4 3 1 

YYY 

3 4 2 

SEQUENCE XXX 

4 3 1 

XXX 

2 4 2 

XYY 

3 2 1 

XYY 

3 3 2 

YXY 

1 4 1 

YXY 

4 1 2 

YYX 

4 3 1 

YYX 

3 4 2 

DUAL XXX 

4 3 1 

XXX 

2 4 1 

XYY 

3 2 2 

XYY 

3 3 2 

YXY 

1 4 2 

YXY 

4 1 2 

YYX 

4 3 1 

YYX 

3 4 1 

 

 

 

  



 

 

Table 2 

  

Group Phase 1 Phase 2 Test 

S-S T - Sh TL - Sh L 

S-D T - Sh TL – Sh-Sh L 

D-S T – Sh-Sh TL - Sh L 

D-D T – Sh-Sh TL – Sh-Sh L 



 

Table 3 

 

 

 

 

  



 

Table 4 

 

Subject / 

Factor 

Maths English 

Explicit-IQ 0.30 0.26 

Implicit 0.14 0.26 
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