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S U M M A R Y

A number of recent studies have applied the cumulative log Gaussian (CLG) modelling tech-

nique to bulk isothermal remanent magnetization (IRM) curves to investigate the coercivity

contributions of different minerals contained within a natural sample. Here, we present a series

of Preisach–Néel models used to investigate how robust the assumption of fitting lognormal

coercivity distributions is in the presence of local interaction fields and thermal relaxation.

Our models indicate that the starting state of the magnetic system, magnetic interaction and

thermal relaxation have a strong influence on the form of IRM curve, meaning that in a sub-

stantial number of cases the lognormal assumption fails and the CLG procedure can produce

misleading interpretations. In some cases the failure of the CLG assumptions produces models

which introduce spurious additional coercivity components into the fitted curve.

Key words: IRM acquisition, Preisach model, rock magnetism.

I N T RO D U C T I O N

The problem of unmixing natural magnetic assemblages into in-

dividual coercivity distributions is complex. Recently, a number of

studies have followed the experimental work of Robertson & France

(1994) and concentrated on fitting bulk acquisition curves of the

isothermal remanent magnetization (IRM) with models that assume

that each coercivity population can be represented by a single log-

normal distribution. A number of techniques have been developed

to perform this unmixing (Stockhausen 1998; Kruiver et al. 2001;

Heslop et al. 2002). Other authors (Egli 2003) have suggested fit-

ting procedures using more adaptable distributions that include ad-

ditional shape parameters such as kurtosis and skewness. In the

previous discussions of cumulative log-Gaussian (CLG) fitting, lit-

tle attention has been given to considering when the fundamental

assumption, that coercivity populations can be represented by log-

normal distributions, could fail. An important point that has only

been addressed in a general way is the effect of magnetic interac-

tions on the IRM acquisition curve and their subsequent influence

on the CLG analysis. Robertson & France (1994) suggested that

magnetic interaction (specifically dipole–dipole interaction) would

affect the spread of individual coercivity distributions, but for min-

erals such as magnetite it was expected that this effect would be

minimal. Kruiver et al. (2001) proposed that the linear additivity of

the different lognormal coercivity components would only hold in

the absence of interactions, whereas Heslop et al. (2002) suggested

that no interactions should be present if CLG analysis was to be

applied successfully.

Additional factors that could influence IRM acquisition are ther-

mal relaxation and the starting state of the magnetic system. These

two points were not addressed in any of the above studies, however

Petrovský et al. (1993) have shown that remanence based measure-

ments performed on synthetic haematites were influenced by starting

state. In addition, Thamm & Hesse (1998) performed calculations

that demonstrated that the remanence acquisition properties of an en-

semble of Stoner–Wohlfarth particles would be strongly controlled

by initial demagnetization processes.

Here, we utilize a Preisach–Néel model for Stoner–Wohlfarth

grains (Spinu & Stancu 1998; Stancu 1998; Spinu et al. 2001;

Borcia et al. 2002) to study the effects that local field interactions,

thermal relaxation, and the starting state of the magnetic system

have on the CLG analysis of a single lognormal coercivity distri-

bution. We investigate deviations from lognormal behaviour, which

can cause the coercivity distribution to be skewed, making mineral

identification less straightforward. Also, a single coercivity distribu-

tion may appear as though it should be modelled with two lognormal

components, supporting the results of Egli (2003).

T H E P R E I S A C H – N É E L M O D E L

The classical Preisach model (Preisach 1935; Néel 1954) uti-

lizes populations of hysterons to explain the hysteresis behaviour
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Figure 1. (a) and (b) Elementary Preisach hysteresis loops with switching fields Ha and Hb. The loop in (a) contains no local interaction field, therefore Ha =
− Hb = Hc, whereas the loop in (b) includes a local interaction field, therefore Ha �= −Hb �= Hc. (c) The Preisach plane, all points in the half-plane a ≥ −b

correspond to hysterons with up and down switching fields of Ha and Hb respectively, whilst points in the half-plane b > a represent reversible cycles and

are therefore not important when considering remanences (Dunlop et al. 1990). (c) shows an example of a Preisach distribution function, which represents the

number of hysterons occurring in the different parts of the half-plane. This representation utilizes a different coordinate system (ha, hs) to the (Ha, Hb) system

used in (a) and (b), which requires a 45◦ rotation, i.e. hc = Hc
√

2 = (Ha − Hb)/
√

2 and Hs = hs
√

2 = (Ha + Hb)/
√

2.

of an ensemble of particles. The hysteron is a square hysteresis

loop (Fig. 1a) representing a single-domain particle with uniaxial

anisotropy with a coercivity of ± Hc and possible magnetization

states ± ms. If a local interaction field, Hs, is introduced the hys-

teron becomes asymmetric about the zero field point and has as-

cending and descending switching fields defined as Ha = Hc +
Hs and Hb = −Hc + Hs respectively (Fig. 1b). The distribution

of hysterons, p(Ha, Hb), at any point in the half-plane a ≥ −b

is called the Preisach distribution (Fig. 1c). The magnetization

of the system, M, is then given by the integral over the a ≥ −b

half-plane:

M =
∫

S+
p(Ha, Hb) d Hb d Ha −

∫

S−
p(Ha, Hb) d Hb d Ha (1)

where S+ represents hysterons with a magnetization in the up posi-

tion and S− represents hysterons with a magnetization in the down

position (Hejda et al. 1994). Hysterons located on the a = −b-axis

are non-interacting and a condition of the model is that the Preisach

distribution is symmetrical about this diagonal. Thus, the coerciv-

ity spectrum of the Preisach distribution in the absence of local

interaction fields can be obtained by profiling along a = −b and

the distribution of local interaction fields can be found by profiling

perpendicular to a = −b (Dunlop et al. 1990; Hejda & Zelinka

1990). The traditional interpretation of the Preisach diagram is that

the off-diagonal part of the distribution represents the spectrum of

magnetostatic particle interactions contained within a sample. The

Preisach model is however phenomenological; therefore it is not

possible to define an exact relationship between the local field inter-

actions utilized in the Preisach model and the interactions observed

Figure 2. (a) and (b) Initial magnetic states represented in the Preisach plane. In (a) a virgin state is shown, where all the hysterons in the fourth quadrant have

an equal probability of being magnetized in the positive (light shading) or negative (dark shading) direction. An AC demagnetized state is shown in (b) where

the Preisach plane becomes polarized about the a = −b-axis.

in real systems. An additional form of interaction can be introduced

to the Preisach model in the form of a magnetization-dependent

mean field term, which assumes that to a first-order the magnitude

of interactions is proportional to the magnetization of the system

(Della Torre 1966). For simplicity, we do not consider mean field

interactions in the majority of our models, however, a brief discus-

sion on their influence is given below. Using the Preisach approach

it is possible to simulate a number of starting states for a magnetic

system. In this study we are interested in two main starting states:

(1) The virgin state: all the hysterons in the fourth quadrant of the

Preisach plane (i.e. those capable of carrying a stable remanence)

have an equal probability of being in either the up or the down

magnetization state (Fig. 2a). This is equivalent to a fully thermally

demagnetized system.

(2) The static alternating current (AC) demagnetized state: the

Preisach distribution becomes polarized about the a = −b-axis,

hysterons with a positive (negative) local interaction field are mag-

netized in the down (up) direction (Fig. 2b).

The starting state of the system is an important consideration in

magnetic studies. IRM component analysis can be performed on ei-

ther the forward IRM acquisition curve or alternatively on the back-

ward direct current (DC) demagnetization curve (when the sample

is taken from positive to negative saturation). Here we will only

consider forward IRM acquisition curves because in the absence of

a mean field term the forward IRM curve from a virgin state in the

Preisach model is equivalent to the DC demagnetization curve (it is

however important to emphasize that this equality would not exist

C© 2004 RAS, GJI, 157, 55–63
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Figure 3. (a) The double-well potential for a Stoner–Wohlfarth grain, based on Spinu & Stancu (1998). The angle between the easy-axis of the grain and the

applied field is given by ψ . Nonlinear thermal critical barriers for Stoner–Wohlfarth grains with their easy axes parallel to the applied field direction using the

interpolation expression of Pfeiffer (1990) are shown in (b) and (c). Light (dark) shading represents hysterons with an up (down) magnetization in the current

model conditions (i.e. as a function of applied field, temperature, and time); regions of the diagram with no shading show the hysterons which do not undergo

relaxation. (b) represents model conditions in zero field and (c) in an applied external field of magnitude H in the (Ha, Hb) coordinate system and h = H
√

2

(this position is unaffected by the interaction field of the hysterons because in all our models we assume that the mean field interaction term is equal to zero).

(d), (e) and (f) show the process of IRM acquisition in the Preisach–Néel model with (d) starting from the virgin state, (e) application of an applied field,

(f) removal of the field and the resulting remanence (IRM) in the up direction.

for natural samples). In the virgin state, half of the hysterons will

be in the up state and half will be in the down state; during IRM

acquisition only the down state hysterons will change their magne-

tization. Because the down state hysterons are distributed randomly

throughout the Preisach distribution, they will provide a full rep-

resentation of the coercivity spectrum and local field interaction

terms during acquisition. The DC demagnetization curve is there-

fore simply an inverted version of the IRM curve with twice the

magnitude.

In this form, the so-called classical Preisach model does not allow

for thermal relaxation of the magnetic system. Here, we adopt the

Preisach–Néel model, which includes thermally induced flips in the

magnetization of the hysterons (Spinu & Stancu 1998; Stancu 1998;

Spinu et al. 2001; Borcia et al. 2002). The double well energy poten-

tial is a function of the grains’ magnetization, coercivity, interaction

field, and the angle of its easy-axis to the applied field (Fig. 3a). This

expression of the grains energy reveals two energy minima (known

as wells), corresponding to the two stable equilibrium orientations

of the magnetization. The energy curve demonstrates that a hys-

teron requires sufficient thermal activation to overcome the critical

energy barriers before relaxation can occur (Stancu 1998) when H is

smaller than the switching field of a hysteron without thermal activa-

tion. Through thermal activation, the system will initially pass over

the lower of the two energy barriers. However, if the level of ther-

mal activation is sufficient to overcome both barriers, the system will

adopt the lower of the two energy states available. As temperature,

or time, is increased more grains will relax into their equilibrium

magnetization state. For specific model conditions of applied field

and temperature it is possible to use the double-well potential to de-

termine which grains will undergo relaxation. The boundaries in the

Preisach plane that separate the relaxing grains from the thermally

stable grains are termed the thermal critical barriers. In our study we

utilize interpolated thermal critical barriers based on the expression

of Pfeiffer (1990) for Stoner–Wohlfarth grains (Stoner & Wohlfarth

1948) with their easy-axis not necessarily aligned with the applied

field, H :

ht =
hc

2

Hk

Hc(ψ)

(

1 ±
h − hs

hc

)g(ψ)

(2)

with

g(ψ) = 0.86 + 1.14
Hc(ψ)

Hk

(3)

and

Hc(ψ) = Hk(sin2/3 ψ + cos2/3 ψ)−3/2 (4)

where ψ is the angle between the easy-axis of the grain and the

applied field; Hk is the anisotropy field and hc is the critical field

at which the magnetization of the grain will switch in the (hc, hs)

coordinate system. For specific conditions a critical ht (a function

of temperature and time) is set enabling ht to be calculated for each

grain to determine whether it will relax within the given conditions

of the measurement process. As ht increases, the thermal critical

barrier separating relaxing and stable grains propagates further into

the Preisach plane along an axis that is determined by the magnitude

of h (cf. Figs 3b and c). Figs 3(d), (e) and (f) show the process of

IRM acquisition starting from a virgin state. After application and

removal of the applied field, h, a region of the fourth quadrant of the

diagram becomes magnetized in the up state forming an IRM.

M O D E L L I N G P RO C E D U R E

For each model, a Preisach distribution of 104 hysterons was gen-

erated whose properties were controlled by a joint probability

C© 2004 RAS, GJI, 157, 55–63



58 D. Heslop, G. McIntosh and M. J. Dekkers

distribution function in the (hc, hs) coordinate system, with log-

normally distributed critical fields and normally distributed local

interaction fields according to the equation:

p(hc, hs) =
1

2πsssc

exp

[

−
log(hc − hc)2

2s2
c

]

· exp

[

−
h2

s

2s2
s

]

(5)

where hc is the mean of the distribution of critical fields, sc is

the standard deviation of log coercivities and ss is the standard

deviation of the distribution of local interaction fields (with zero

mean). This distribution was adopted for reasons of simplicity how-

ever, recent results from first-order reversal curve (FORC) anal-

ysis has shown that many other distributions can be present in

natural samples (Roberts et al. 2000), and theoretical investiga-

tions indicate that in an ensemble of randomly orientated, randomly

distributed magnetic moments, the magnetostatic interactions

will follow a Cauchy distribution (Shcherbakov & Shcherbakova

1975).

Recent models have considered the possibility that the form of

the Preisach distribution can change as a function of the magnetic

state of the sample, for example the variable variance Preisach-

Néel model which employs a link between the number of super-

paramagnetic particles in the system and the variance of the inter-

action field distribution (Borcia & Spinu 2002). For simplicity we

consider the form of Preisach distribution utilized in our models to

be independent of the state of the magnetic system.

For all the models the same distribution of critical fields was used

with hc = 15 mT and sc = 0.1. Individual models were executed for

a specific relaxation term (Ht, where ht = Ht
√

2). The procedure of

each model initially involved defining the magnetization directions

of the hysterons to give the desired starting state. IRM acquisition

was simulated in 1 mT increments to a saturation field: in this case a

field of 40 mT was found to be sufficient to reach a saturation state

in all the models and a typical IRM curve would take ca 30 s to

calculate. Each applied field increment consisted of two modelling

steps, application of the field and then assessment of the remanent

magnetization in a zero field. It would be possible to model the

acquisition procedure with different Ht values for the in-field and

measurement steps of the model (which would provide a more real-

istic representation of the real laboratory situation), however, since

these values would be equipment/operator dependent, Ht was as-

sumed to be identical for the in-field and zero field (measurement)

parts of the model.

R E S U LT S

First, we present the results of two collections of models for both

virgin and AC demagnetized states:

(1) Simulating thermal relaxation in non-interacting particle sys-

tems.

(2) Simulating interacting particle systems with zero thermal ac-

tivation.

The resulting IRM curves were analysed using a two-component

CLG model fitted using the expectation-maximization approach

of Heslop et al. (2002). In this modelling experiment, the IRM

curve should consist of a single coercivity component. There-

fore, the relative proportion of a potentially present second CLG

component required to obtain a good fit of the model to the

data is taken as a measure of the deviation of the curve from

lognormality.

A N O N - I N T E R A C T I N G M O D E L W I T H

T H E R M A L R E L A X AT I O N

In the first set of models we remove the local field interaction

term, i.e. ss = 0 mT, in order that all the hysterons lie on the a =
−b-diagonal, and investigate the effects of thermal relaxation on the

CLG analysis with 0 ≤ Ht ≤ 2.5. To provide an impression of what

Ht means in terms of which grains will relax in the given models,

the value can be related to non-interacting grains aligned in zero

applied field by the following equation (cf. Stancu 1998):

Hk

2
= Ht (6)

Therefore, grains that meet the above conditions with Hk ≤ 5

mT would undergo relaxation in the models that utilize Ht at its

maximum value of 2.5. Using the approximation given by Dunlop

& Özdemir (1997) to find the blocking volume of a grain (VB) at a

temperature T :

VB ≈
50kT

µ0 Ms HK

(7)

We find that at room temperature grains which are aligned with the

applied field and have a diameter < ∼50 nm will undergo relaxation

when Ht is at its maximum value of 2.5. Figs 4(a) and (b) show the

two end-members for samples with a virgin starting state. For the

non-interacting, non-relaxing model the calculated IRM curve is

almost identical to the pre-defined coercivity distribution, and this

curve should be fitted with a single component CLG model (the

second component shown in the figure makes less than a 2 per cent

contribution to the bulk model). At the alternative extreme when

Ht is set to 2.5, a very different IRM curve is produced. First, the

curve does not coincide with the coercivity distribution because as

expected for a relaxing system it is shifted to lower coercivities.

Secondly, it is necessary to fit a two-component CLG model to the

curve to obtain a good fit. When the model is set to a fully AC

demagnetized starting state a similar pattern is observed to that for

the virgin samples (Figs 4c and d). For the AC demagnetized non-

relaxing model a single lognormal component is observed in the

IRM curve (in this case the fitted second component makes less

than a 0.5 per cent contribution to the bulk model), which provides

a close match to the defined coercivity distribution. A shift to lower

coercivities is again seen for the relaxing model and the necessity

for a two-component CLG model is clear.

As a proxy for the deviation from lognormal behaviour we have

plotted the proportion the dominant component makes to the bulk

two-component CLG model for the IRM curves as the effect of ther-

mal relaxation is increased (Fig. 4e). For virgin samples it appears

that the deviation from a single-component model is approximately

linear with respect to thermal relaxation. For the AC demagnetized

system a different pattern is observed where a single component

dominates until Ht = ∼0.75, then the contribution decreases lin-

early with increasing Ht. This behaviour is expected within the con-

ditions of the model and the scatter of the points about the central

trend is believed to be mainly due to the expectation-maximization

fitting routine which can produce quite variable results for multi-

component systems where major and minor components are almost

completely overlapping. When considering thermal activation the

hysterons that will relax most readily are those with the lowest co-

ercivity and include a negative local interaction field. However, in

the AC demagnetized state these hysterons are already magnetized

in the up direction and the lowest energy state available to them

is also in the positive direction, so their direction of magnetization

C© 2004 RAS, GJI, 157, 55–63
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Figure 4. CLG models for a non-interacting, thermally relaxing system.

Data points from the modelled IRM curve and the predefined coercivity

distribution are shown as filled circles and a dashed line respectively. The

two fitted CLG components are shown as shaded regions and the bulk model

is displayed as a full line. Plots (a) and (b) show the CLG models for models

starting from a virgin state with Ht of 0 and 2.5 respectively. (c) and (d) show

the same models started from a AC demagnetized state. In (e) the relative

contribution of the dominant component in the CLG models is taken as a

good approximation for the deviation of the IRM curve from a lognormal

distribution. Linear trend lines and correlation coefficients are given for the

portions of plot where relative contribution of the dominant component is

decreasing.

remains unaffected by thermal activation. It is only once thermal

relaxation has passed a certain threshold, that the hysterons with

positive local interaction fields are affected and thermal activation

is actually observed, in this case once Ht ≥ ∼0.75. In the virgin

state the hysterons have no preferred magnetization direction so

the low-coercivity grains with negative local interaction fields can

initially be magnetized in the down direction and then readily flip

their magnetization under low-level thermal activation. This princi-

pally explains the difference in the behaviour observed for different

starting states in Fig. 4.

This collection of models demonstrates some important points.

First, the magnetic starting state plays an important role in deter-

mining the IRM acquisition curve and therefore also the final CLG

model. Secondly, even under the strictest criterion for the application

of a CLG model (i.e. complete absence of magnetic interactions),

thermal relaxation can cause both shifts in the coercivity distribution

to lower values and deform the curve so that it appears to require a

two-component CLG model to provide a robust fit. A similar result

showing the time-dependency of IRMs in single-domain magnetites

was obtained experimentally by Worm (1999), who found that for

low fields the IRM produced in a sample held in field for 10 s was

approximately three times greater than for the same sample held in

field for 0.01 s. This was in contrast to higher field measurements

where there was a negligible difference in the IRMs produced by the

short and long field applications. This demonstrates the region of the

coercivity spectrum that contains soft grains will be more strongly

affected by thermal relaxation and this would produce the pattern of

negative skewness that is observed in our models. A number of pre-

vious studies that have performed CLG analysis upon IRM curves

obtained from natural samples have utilized two model components

to fit a negatively skew distributions of the type obtained in our

models using a single relaxing coercivity component (Eyre 1996;

Kruiver & Passier 2001; Heslop et al. 2002).

L O C A L F I E L D I N T E R A C T I O N W I T H

Z E RO T H E R M A L R E L A X AT I O N

To study the effect of local field interaction on the CLG models we

present a collection of models with 0 ≤ ss ≤ 5 mT for both virgin

and AC demagnetized initial states. Although this interaction field

may appear high with respect to the coercivity distribution (repre-

senting 1
3

of the mean coercivity) we select this value for a number

of reasons. First, it represents an end-member value and lower in-

teraction fields will also be considered. Secondly, recent evidence

obtained from FORC diagrams demonstrates that many natural sam-

ples may have interaction fields with a magnitude up to one third

of their mean coercivity [if the interaction is interpreted as exist-

ing between single-domain particles, Roberts et al. (2000)]. Finally,

for a collection of homogeneously dispersed, randomly orientated

single-domain grains Shcherbakov & Shcherbakova (1975) showed

that the probability distribution of the interaction fields, Hs , is given

by the Cauchy distribution:

p(Hs) =
1

πb
[

1 +
(

Hs−H0

b

)2
] (8)

where H 0 is the demagnetizing field (zero in the presented model),

and b = 8π 2 M rs/9
√

3 (where M rs is equal to the product of the mean

magnetic moment of the grains and their volume concentration, i.e.

the saturation remanence of the particles in the absence of interac-

tions). For a system of Stoner–Wohlfarth grains, M rs is given by

Ms/2 and at a typical magnetite volume concentration for a natural

sample (1 per cent) we obtain µ0b = 15.3 mT. In this case the b term

is the scale parameter of the Cauchy distribution and is considered

to represent the typical strength of the local interaction field. This

would indicate that for single-domain (SD) magnetite assemblages

at concentrations typical of natural samples local field interactions

C© 2004 RAS, GJI, 157, 55–63
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Figure 5. CLG models for a non-relaxing system that includes local inter-

action field terms. The plots are the same format as that used in Fig. 4 with

ss values of 0 and 5 mT.

can be present which are substantially greater than those utilized in

our ss = 5 mT model.

For the end-member model with ss = 0 mT an IRM curve is

produced in the virgin system which is essentially identical to the

predefined coercivity distribution (Fig. 5a). In practise this curve

would be fitted with a single CLG component (here the shown sec-

ond component makes <5 per cent contribution). For ss = 5 mT

the distribution is clearly no longer lognormal and a substantial sec-

ond component is required to fit data (Fig. 5b). This diagram shows

that upon the introduction of interaction fields, the IRM acquisition

curve for an assemblage of grains with a virgin starting state be-

comes negatively skewed and is shifted towards lower coercivities

(i.e. it becomes softer).

For the static AC demagnetized starting state a different pattern is

observed in the ss = 5 mT model (Fig. 5d). Here, the distribution

has become very slightly negatively skewed but has shifted to higher

coercivities. This shift can be explained using Preisach theory. As

previously discussed, in the AC demagnetized state the Preisach dis-

tribution is polarized about the a = −b-axis with only the hysterons

with positive local interaction fields i.e. a > −b magnetized in a

down state. It is the flipping of the magnetization of these hysterons

that will produce the forward IRM acquisition and because they

all have positive mean field terms they will produce a curve that

is shifted to higher coercivities. The extent of the skewness of the

distribution is also less in the AC demagnetized state than the virgin

state, again this can be explained by Preisach theory. In log space

the shift in coercivity resulting from the introduction of a local in-

teraction field will be greater for a negative interaction field than for

a positive interaction field of the same magnitude.

When considering the behaviour of all the models in this group,

the pattern that emerges as a consequence of interaction is one of ap-

parent two-component models (Fig. 5e), which is similar to that for

non-interacting models with thermal relaxation included (Fig. 4e).

For the virgin starting state the decrease of the contribution is ap-

proximately linear with respect to increasing ss, whereas for the AC

demagnetized starting state the decrease is only observed after ss >

∼3.0 mT.

VA RY I N G L O C A L I N T E R A C T I O N

F I E L D A N D T H E R M A L R E L A X AT I O N

Models that include both interaction and relaxation give results that

are a combination of the behaviour of the models discussed above.

To analyse the IRM curves produced by the various models we used

two different methods. First, the difference between the modelled

IRM curve and the cumulative distribution function of the prede-

fined coercivity distribution was assessed using the sum of squared

residuals. Secondly, the area under the curve of the first derivative

of the IRM in the log10 space was populated with 104 random num-

bers to provide a sample that could be used in the Lilliefors test

(Conover 1980). The Lilliefors test assesses the goodness of fit of a

normal distribution of unspecified mean and standard deviation to

Figure 6. Investigation of the Lilliefors test for skewed distributions. The

Lilliefors test statistic was calculated for distributions with different levels

of skewness and it was found that a sample of 104 points could be considered

(at the 5 per cent significance level) as being normally distributed if the test

statistic was ≤ 0.014.
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Figure 7. Maps of the properties of IRM curves as a function of local interaction fields and thermal relaxation terms. (a) and (b) show the results of the

Lilliefors test for virgin and AC demagnetized samples, the thick dashed line shows the cut-off value of the test statistic (0.014). Above this value the distribution

is assumed to be not normally distributed at the 5 per cent level. Plots (c) and (d) assess the difference between the IRM acquisition curve and the predefined

coercivity distribution using the sum of squared residuals. This demonstrates that for some samples which pass the Lilliefors test and could therefore be modelled

with a single CLG component, the resulting fit would differ greatly from the actual coercivity distribution of the magnetic assemblage.

the data. The test compares the empirical distribution of the mod-

elled IRM curve with a normal distribution having the same mean

and standard deviation. Here we use the value of the test statistic

to assess the normality of the IRM curve. For comparison the test

statistic was calculated for a number of skew-normal distributions

(Azzalini 1985). Numerically we determined that a sample of 104

random numbers taken from a skew-normal distribution would fail

the Lilliefors test (at the 5 per cent significance level, Fig. 6) when

the test statistic rose above ca 0.014, corresponding to values of

skewness greater than ±0.155.

The results of the models demonstrate the importance of the start-

ing state of the magnetic system on subsequent IRM acquisition. For

the virgin starting state, only a small proportion of the models pass

the Lilliefors test for normality (Fig. 7a) demonstrating that the

assumption of lognormality fails for most states of local field inter-

action and thermal relaxation. Starting from the AC demagnetized

state a much smaller range of values are found and a greater pro-

portion of the models pass the Lilliefors test (Fig. 7b). The reason

for this difference is the same as that discussed earlier: in the AC

demagnetized state only hysterons with positive local interaction

fields are involved in the acquisition procedure, whereas hysterons

with both negative and positive local interaction fields are included

in the virgin state resulting in a greater skewing of the coercivity

distribution in log space.

These results are complemented by the sum of squared resid-

uals (SSR), (Figs 7c and d), which were calculated to assess the
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Figure 8. Preliminary investigation of the influence of a mean field interaction term (α) on the form of the IRM curves produced by the Preisach–Néel model.

All three models require a two-component fit and the skewness of the distribution is clearly influenced by α, with reduced skewness for a negative term and

increased negative skewness for a positive term.

difference between the modelled IRM curve (i.e. the measured co-

ercivity distribution) and the true coercivity distribution (defined in

the Preisach–Néel model). Where SSR values are larger, the mea-

sured coercivity distributions shows a greater deviation from the

true coercivity distribution. By comparing these values to the val-

ues for the Lilliefors test it is found that in some regions where the

measured coercivity distribution is lognormal, therefore appearing

to meet the criterion of CLG fitting, the values of the coercivities

are substantially different to those of the true distribution. As with

the Lilliefors test, the starting state of the magnetic system plays an

important role in controlling how closely the resulting IRM curve

matches the coercivity distribution of the Preisach model.

Here, we also took the opportunity to perform a preliminary inves-

tigation into the influence of the introduction of a mean field term,

α, into our models (Della Torre 1966). This term is magnetization-

dependent and is used to calculate an effective field with which the

system is magnetized according to:

Heff = H + αM (9)

We compared the skewness of three IRM acquisition curves starting

from a virgin state with no thermal activation, local field interactions

of ss = 5 mT and values of α of −0.01, 0.00 and 0.01 (Fig. 8).

All three of the curves are negatively skewed and require a two-

component interpretation to produce an adequate fit of the Gaussian

model to the data points. This demonstrates that if the influence

of a mean field term is significant in natural magnetic materials, it

becomes one more complicating factor in the CLG interpretation of

remanence curves.

D I S C U S S I O N A N D C O N C L U S I O N S

Up until now there has been no consensus concerning the crite-

rion under which CLG analysis can be successfully applied to IRM

acquisition curves (Heslop et al. 2002; Egli 2003). Here we have

analysed the effects of thermal relaxation and magnetic interaction

in some detail with the help of the Preisach approach. Deviations

from lognormality can be rather substantial.

The influence of the starting state is essential: the AC demagne-

tized state should be preferred. In this respect all IRM curves we

have analysed so far (Kruiver & Passier 2001; Heslop et al. 2002;

Kruiver et al. 2002; van Oorschot et al. 2002; Grygar et al. 2003;

Kruiver et al. 2003) were in the AC demagnetized starting state, for-

tunately the state where the lognormality criterion is least violated.

The use of the AC demagnetized starting state for IRM acquisition

appears to be an attractive option, however, consideration must be

given to the AC demagnetization procedure itself (e.g. single axis

versus three axial, static sample versus tumbling sample, field de-

cay rates etc.). It is clear that the starting state is a function of the

procedure employed and would therefore not be consistent between

alternating field (AF) procedures. Measuring a backfield curve from

a state of positive saturation may lead to greater deviations from log-

normality, however, the starting state can be ensured and should be

independent of experimental set-up etc.

Thermal relaxation and magnetic interaction result in negatively

skewed distributions. This indicates that positively skewed distribu-

tions should be interpreted along the lines of mixed mineralogy. As

interaction and relaxation increase, the models shift in coercivity

and in many cases require two lognormal components if a close fit

of the model to the data is to be achieved.

CLG modelling is a useful rock-magnetic reconnaissance tool

that provides a first-principles-approach investigation of magnetic

mineralogy. It is important, however, to beware of the risk of over-

interpretation of a CLG model because it appears the assumption of

lognormality will not always hold. For materials that contain well

separated coercivity distributions CLG will provide useful rock-

magnetic information, however, strongly overlapping distributions
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or very minor components must be treated with caution. One further

possibility is to measure the IRM curves at a variety of temperatures

and compare the CLG models to investigate the thermal relaxation

properties of a sample.

For simplicity our models utilized assemblages of Stoner–

Wohlfarth grains. It is still necessary to investigate the behaviour of

systems that contain properties such as cubic anisotropy (although

in mixed assemblages uniaxial anisotropy will rapidly dominate

over cubic anisotropy, Özdemir & O’Reilly 1981), multidomain be-

haviour, and multicomponent mineral mixtures with strongly over-

lapping coercivity components. However, it is not unreasonable to

suggest that such properties are most likely to cause further devia-

tions from ideal CLG behaviour. The influence of starting states on

CLG models may in the future be useful when attempting to assess

the magnetic composition of a natural sample: differences between

the models for IRM curves started in the virgin and AC demagnetizd

states have the potential to provide important information on mag-

netic interaction and which region of the coercivity distribution they

affect most strongly (Petrovský et al. 1993). Future investigations

should also attempt to find more flexible distributions that can act as

the basis for unmixing procedures (e.g. Egli 2003), whilst the results

of numerical modelling experiments should provide information on

what kind of distributions would be expected for different magnetic

systems.
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