

Research Space Journal article

> Efficacy of inspiratory muscle training as a practical and minimally intrusive technique to aid functional fitness among adults with obesity

Edwards, A., Graham, D., Bloxham, S. and Maguire, G.

Canterbury Christ Church University's repository of research outputs

http://create.canterbury.ac.uk

Please cite this publication as follows:

Edwards, A., Graham, D., Bloxham, S. and Maguire, G. (2016) Efficacy of inspiratory muscle training as a practical and minimally intrusive technique to aid functional fitness among adults with obesity. Respiratory Physiology & Neurobiology, 234. pp. 85-88. ISSN 1569-9048.

Link to official URL (if available):

http://dx.doi.org/10.1016/j.resp.2016.09.007

This version is made available in accordance with publishers' policies. All material made available by CReaTE is protected by intellectual property law, including copyright law. Any use made of the contents should comply with the relevant law.

Contact: create.library@canterbury.ac.uk

1	
2	
3	Title: Efficacy of inspiratory muscle training as a practical and minimally intrusive
4	technique to aid functional fitness among adults with obesity.
5	
6	
7	Authors: AM Edwards ^{1,2} , D Graham ² , S Bloxham ¹ , GP Maguire ²⁻³
8	¹ University of St Mark & St John, Plymouth, United Kingdom
9	² James Cook University, Cairns Institute, Cairns, Australia
10	³ Baker IDI Heart and Diabetes Research Institute, Melbourne, Australia
11	Running head: Inspiratory muscle training and obesity
12	
13	Corresponding author:
14	
15	A.M. Edwards PhD
16	Dean, Faculty of Sport & Health Sciences
17	University of St Mark & St John
18	Plymouth
19	United Kingdom
20	Tel: +44 1752 636700
21	Email: aedwards@marjon.ac.uk
22	
23	
24	

25 ABSTRACT

26

27	Objective: To examine the efficacy of inspiratory muscle training (IMT) as a non-
28	intrusive and practical intervention to stimulate improved functional fitness in adults with
29	obesity. As excess adiposity of the chest impedes the mechanics of breathing, targeted re-
30	training of the inspiratory muscles may ameliorate sensations of breathlessness, improve
31	physical performance and lead to greater engagement in physical activity.
32	<i>Methods:</i> Sixty seven adults (BMI = 36 ± 6.5) were randomized into either an
33	experimental (EXP: n=35) or placebo (PLA: n=32) group with both groups undertaking a
34	4-week IMT intervention, comprising daily use of a inspiratory resistance device set to
35	55% (EXP), or 10% (PLA) of maximum inspiratory effort.
36	<i>Results:</i> Inspiratory muscle strength was significantly improved in EXP (19.1 cmH ₂ 0
37	gain; P<0.01) but did not change in PLA. Additionally, the post training walking distance
38	covered was significantly extended for EXP (P<0.01), but not for PLA. Bivariate analysis
39	demonstrated a positive association between the change (%) of performance in the
40	walking test and BMI ($r = 0.78$; P<0.01) for EXP.
41	Conclusion: The findings from this study suggest IMT provides a practical, self-
42	administered intervention for use in a home setting. This could be a useful strategy for
43	wider scale public health implementation and concurrent application of physical activity
44	initiatives.
45	
46	Key words:

47 Obesity, physical activity, respiratory disorders, chronic disease

49 INTRODUCTION

50

51 Adults with obesity commonly experience shortness of breath at rest and during exercise 52 compared to healthy normal weight adults (Mandal and Hart, 2012; Villiot-Danger et al., 53 2011; Luce, 1980; Salome et al., 2008; Ladosky and Botelho, 2001). This is typically due 54 to excess adiposity of the chest which impedes the actions of the inspiratory muscles, 55 leading to an inability to exercise effectively and is associated with conditions such as obesity hypoventilation syndrome and sleep apnea (Olsen and Zwillich, 2005; Aldabal 56 57 and Bahammam, m 2009). As physical inactivity exacerbates breathing inadequacy by 58 detraining inspiratory and skeletal muscles (Villiot-Danger et al., 2011; Salome et al., 59 2008; Edwards et al., 2008) the primary purpose of this study was to examine whether or 60 not a inspiratory muscle training (IMT) programme undertaken in a home setting might 61 both strengthen the muscles of respiration of adults with obesity and thereby increase 62 their capacity to performance exercise (Edwards et al., 2012). The application of such an 63 unobtrusive, self-administered and practical intervention might prove a meaningful public 64 health intervention for wider scale implementation. Improved performance of detrained 65 inspiratory muscles in people with obesity would be expected to enable greater capacity 66 to engage and perform exercise through improvements to breathing (Ladosky and 67 Botelho, 2001) but as yet few studies have examined this issue among out-patients 68 (Arena and Cahalin, 2014; Edwards et al., 2012), although, encouraging gains have been 69 demonstrated among athletic groups (Edwards et al., 2008; Griffiths and McConnell, 70 2007; Romer et al., 2002).

71

Many physical activity interventions have been developed which aim to improve health
outcomes for adults with obesity by reducing excess body weight (Villiot-Danger et al.,
2011). However, the effectiveness of exercise is often restricted by factors associated
with premature fatigue, such as breathlessness (Luce et al., 1980; Salome et al., 2008).
Such sensations of fatigue could diminish the motivational drive to commence a physical
training programme or affect the sustainability of participation (Ekkekakis, 2009;
Edwards and Polman, 2013).

79

80 The act of inspiration is the primary cause of work when breathing. This occurs whereby 81 the chest and lungs expand to accommodate an increased volume of air, while expiration 82 is largely passive, particularly when resting or only exercising at moderate intensity (Otis 83 et al., 1950). Consequently, a pre-exercise training programme specifically designed to 84 enhance the performance of inspiratory muscles for adults with obesity might lessen 85 subconscious inhibition of exercise performance (Ekkekakis et al., 2009), reduce 86 respiratory muscle fatigue (Salome et al., 2008) and promote improved performance in 87 response to exercise challenges (Edwards et al., 2008; Edwards and Cooke, 2004). In 88 support of this perspective, a study of hospitalized obese adults demonstrated an 89 aggressive two month intervention of supervised respiratory (inspiratory and expiratory) 90 muscle training coupled with diet and physical training significantly improved both 91 respiratory muscle endurance and the distance covered in a 6-minute walking test (~11% 92 gain) (Villiot-Danger et al., 2011). While the results of that experiment strongly suggest 93 respiratory muscle training may be of value to obese individuals, its findings are not 94 directly applicable to non-hospitalised individuals due to the multidimensional nature of

the intervention and the supervisory requirements of such an intense protocol. A less
aggressive, but potentially equally effective strategy, is via inspiratory muscle training
(IMT) using a portable inspiratory-resistance training device (Edwards, 2013; Edwards et
al., 2012).

99

100 As obese individuals are well known to experience shortness of breath to a greater extent

101 than healthy normal subjects (Salome et al., 2008) it is therefore likely that a programme

102 of IMT training will be particularly meaningful for obese individuals. The aim of this

103 study is therefore to investigate whether a programme of IMT will improve inspiratory

104 muscle strength and functional performance as assessed by the self-paced 6-minute walk

105 test (Enright 2003).

107 MATERIAL AND METHODS

108

100	D (* *	
109	Particina	ntc
107	I ai ucipa	1103
	1	

110

	111	Sixty seven adults	(37 males	and 30 females) volunteered	for this stuc	ly, provided	l written
--	-----	--------------------	-----------	----------------	---------------	---------------	--------------	-----------

112 informed consent prior to participation and were randomly allocated to either

113 experimental (EXP: *n*=35; m=19, f=16) or placebo (PLA: *n*=32; m=18, f=14) group as

114 matched parallel pairs based on body mass index (BMI) and history of smoking.

115 Inclusion criteria were (i) $BMI > 27 \text{ kg/m}^2$ and (ii) being free of respiratory or

116 cardiovascular diseases. The physical characteristics of the two groups are shown in

117 Table 1. Ethical clearance for this study was provided by the Research and Ethics

- 118 committee of James Cook University.
- 119

120 Study Overview

121 Baseline physical assessments were made of mass, height, blood pressure, standard

spirometry (FVC, FEV₁), maximal inspiratory muscle pressure (MIP), 6-minute walk test

- 123 performance and estimation of maximal aerobic power (\dot{V} O₂ max). Following these
- 124 measures, all individuals undertook familiarization with a portable inspiratory-resistance
- 125 training device (PowerBREATHE, UK). This device was pre-set to either 55% of
- 126 individualized maximal inspiratory effort (EXP) or to the minimum device setting
- 127 equivalent to approximately 10% of maximal inspiratory effort (PLA) and thereafter used
- 128 during the experiment (Edwards, 2013). Over the 4-week period, both groups performed

129	2 x 30 daily inspiratory efforts [15-16]. The assessments were then repeated following the
130	4-week intervention. Adherence and compliance to the training protocol were regularly
131	checked and no participants reported experiencing issues or difficulties.
132	
133	Study procedures
134	
135	Lung function and inspiratory muscle performance
136	
137	Spirometry measurements were undertaken at baseline and repeated post-programme.
138	These included forced vital capacity (FVC) and forced expiratory volume in 1 second
139	(FEV_1) . These procedures were completed using a hand held training device (Microlab-
140	Spirometry SN M20364, USA).
141	
142	In addition to standard spirometry measures, maximal static inspiratory mouth pressure
143	(MIP) was also measured. This was assessed at residual volume following a slow and
144	complete expiration using a mouth pressure meter (PowerBREATHE KH1
145	INSPIRATORY METER, Gaiam, UK). The best of three maximal efforts were analysed
146	for all measures. These procedures were completed similarly with our earlier
147	methodology (Edwards 2013).
148	
149	Functional exercise capacity

151	Participants were instructed to "walk as far as you can in six minutes without running or
152	jogging" in accordance with previously validated techniques for a 6-minute walk test
153	(Gibbons et al., 2001). Distance covered (m) and heart rates were recorded at the
154	conclusion of the 6-minute period. This test is a clinically relevant and common
155	procedure which provides an effective measure of functional walking capacity in
156	untrained, sedentary adults (Enright, 2003; Hulens et al. 2003; Gibbons et al., 2001).
157	
158	Using a validated heart rate derived algorithm, maximal aerobic power (\dot{V} O ₂ max) was
159	estimated from a sub-maximal single stage 4-minute walking test (Ebbeling et al., 1991).
160	All participants were requested to perform an individually determined brisk and constant
161	walking pace ranging from 3.5 to 5 km/h for 4-minutes on a treadmill in accordance with
162	the protocol.
163	
164	The study participants were required to wear a heart rate watch and a chest strap
165	transmitter (Polar, T31 Coded Transmitter, Australia) during exercise testing.
166	
167	The CR10 Borg Scale was used to ascertain ratings of perceived exertion RPE as an
168	index of fatigue perception in response to exercise (Borg, 1982).
169	
170	Statistical analyses
171	
172	Statistical software package SPSS (version 18.0, SPSS, Chicago, Illinois) was used for all
173	statistical analyses. Parametric pre- and post-training results and group interactions were

174	statistically compared using two-way repeated measures analyses of variance (group x
175	time) (ANOVA). Post hoc Tukey tests were used to examine differences between
176	datasets where indicated by ANOVA. Associations were examined using Pearson
177	Product Moment Correlations. To ascertain an appropriate sample size for the study,
178	analysis was based on an anticipated mean improvement (SD) in the six minute walk test
179	of those in the EXP in the PLA group (Edwards et al., 2008). Probability values of < 0.05
180	were considered significant and all tests were two sided. All results are expressed as
181	means (SD) unless otherwise stated.
182	
183	RESULTS
184	
185	Evaluation of distance covered in response to the 6-minute walking test revealed a
186	significant group x time ANOVA interaction. As expected, there was no difference
187	between groups at baseline. Within-group comparisons for time (pre- to -post-training)
188	indicated EXP significantly improved distance covered (m) in response to the 6-minute
189	walk test from baseline to post-training (60.6 \pm 25.7 m gain; P<0.01). Conversely, the
190	distance covered by PLA was not significantly extended over the 4-week intervention
191	period (13.3 ±35.9 m gain; NS).
192	
193	***** FIGURE 1 HERE ****
194	
195	The estimation of \dot{V} O ₂ max in response to treadmill walking did not identify a significant
196	difference between EXP and PLA at either baseline or after the intervention (Table 2).

- 197 Additionally, assessment of standard spirometry variables (FVC and FEV₁) also did not
- 198 identify differences between groups at either baseline or post-training (Table 2).
- 199
- 200 The MIP assessment revealed a significant group x time ANOVA interaction effect
- 201 (P<0.01). Subsequent post hoc Tukey HSD test evaluation demonstrated MIP improved
- significantly over the 4-week intervention for EXP (66.7 ± 10.5 to 85.8 ± 9.3 cmH₂O;
- 203 P<0.01). However, MIP did not significantly change for PLA (68.4 \pm 11.7 to 77.7 \pm 10.8

204 cmH₂0; NS). There was a between group difference following the intervention where

- EXP demonstrated significantly greater MIP than PLA (P<0.01).
- 206

207 Heart rate responses to the 6-minute walk test were unchanged for both EXP (124±14 and

 $208 \quad 121 \pm 15 \text{ b/min}$) and PLA (118 ±15 and 116 ±11 b/min) from pre- to post-training.

209

210 RPE evaluations undertaken after exercise were not different between groups and did not 211 change significantly from baseline to post-training in either EXP $(2.7 \pm 0.7 \text{ to } 2.7 \pm 0.8)$ 212 or PLA $(2.7 \pm 1.7 \text{ to } 2.9 \pm 1.8)$.

213

A significant correlation was observed between % change of distance covered in the 6minute walk test (pre- to post-training) and baseline BMI (r = 0.78; P<0.01). This effect between a participant factor and intervention response was specific to EXP. There were no meaningful associations identified in PLA.

218

DISCUSSION

222	The main finding of this study was that a 4-week period of inspiratory muscle training
223	(IMT) appears efficacious for improving inspiratory muscle strength and the functional
224	fitness of obese and overweight participants. As these effects were not evident in PLA, it
225	suggests that IMT may be a meaningful intervention with which to augment physical
226	performance outcomes for overweight and obese individuals. The results of our study
227	support and exceed those from our earlier pilot data (Edwards et al., 2012) and also from
228	hospitalized obese individuals (Villiot-Danger et al., 2011). As these results were
229	achieved with a considerably less aggressive intervention it seems likely that such a
230	practical technique might be suitable for wider implementation.
231	
232	In our study, post-test evaluations of perceived exertion did not differentiate the groups,
233	despite a significant improvement in walking performance for EXP. This suggests
234	individuals may have paced themselves according to physical sensations (Suzuki et al.,
235	1995, such as a tolerable level of physical discomfort the individuals were prepared to
236	endure in the 6-minute task (Ekkekakis, 2009; Edwards and Polman, 2013). As such,
237	participants would (and did) experience the same level of tolerable physical discomfort
238	during the 6-minute walk test at both baseline and post-training. The difference would
239	therefore not be evident in a change to the perceived exertion but in a changed
240	(improved) outcome of a greater walking distance covered.
241	

Bivariate analysis revealed an interesting association between data sets whereby the (%) change from baseline to post-training in distance covered for the 6-minute walk test was positively related to BMI for EXP (r = 0.78; P<0.01). This suggests individuals with a higher BMI might be expected to gain the most from an IMT intervention, possibly due to the greater post-training performance and resistance to fatigue of inspiratory muscles (Verges et al., 2007; Zerah et al., 1993).

248

249 MIP results for EXP remained beneath levels reported for healthy subjects (Voliantis et

al., 2001) suggesting that continuation of IMT beyond a 4-week period could be

251 meaningful to an obese population where detraining effects may be substantial. There are

very limited data in this area and, therefore, further studies may elucidate whether

253 extending the period of IMT prior to physical training and also utilising concurrent (IMT

and physical) training improve performance outcomes for obese individuals.

255

Although this study was much larger and robust than our previous pilot study (Edwards et

al., 2012) it did not include a concurrent IMT strategy with exercise intervention. The use

258 of IMT in conjunction to an exercise training intervention could be expected to further

augment performance as has been the case in athletes (Edwards et al., 2008).

260 Nevertheless, a 4-week period of IMT demonstrates the usefulness of the technique over

a short period, but a longitudinal intervention with and without concurrent exercise would

262 be worthwhile to determine whether training effects are sustainable.

263

264	In summary, IMT may provide a practical, minimally intrusive intervention to augment
265	both inspiratory muscle strength and walking distance among overweight and obese
266	adults. The beneficial effects of this treatment were similar to those previously reported
267	from vigorous, supervised training among hospitalised obese patients (Villiot-Danger et
268	al., 2011). Our findings indicate similar effects could be expected without the need for
269	hospitalisation and indicate that IMT can easily be performed in the home environment.
270	Therefore, IMT appears a useful strategy to enhance walking performance in overweight
271	and obese individuals which may prove to be a meaningful priming (pre-exercise)
272	intervention with which to stimulate performance adaptations and greater future
273	engagement with physical activity.
274	
275	Acknowledgements:
276	The authors would like to thank research students for their support in data collection.
277	
278	Disclosure:
279	
280	None of the authors had a conflict of interest regarding any aspect of this work.
281	
282	No external funding was provided for this project
283	
284	Ethical approval for this project was provided by the Human Research and Ethics
285	Committee of James Cook University (ref: H5450)
286	
287	

288 **REFERENCES:**

- 290 1. Al Dabal, L., and Bahammam, A.S. (2009). Obesity hypoventilation syndrome. Ann 291 *Thorac Med*, 4, 41-49
- 292 2. Arena, R., and Cahalin, L. P. (2014). Evaluation of cardiorespiratory fitness and
- 293 respiratory muscle function in the obese population. Progress in Cardiovascular 294 Diseases, 56, 457-464.
- 295 3. Borg, G. (1982). Psychophysiological bases of perceived exertion. Med Sci Sports 296 Exerc 14, 377-387.
- 297 4. Ebbeling, C., Ward, A., Puleo, E., Widrick, J., and Rippe, J.M. (1991) Development 298 of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc 23, 966-299 973.
- 300 5. Edwards, A.M. (2013). Respiratory muscle training extends exercise tolerance
- 301 without concomitant change to peak oxygen uptake: physiological, performance and
- 302 perceptual responses derived from the same incremental exercise test. *Respirology*
- 303 18,1022-1027.
- 304 6. Edwards, A.M., and Cooke, C. (2004). Oxygen uptake kinetics and maximal aerobic
- 305 power are unaffected by inspiratory muscle training in healthy subjects where time to 306 exhaustion is extended. Eur J Appl Physiol 93, 139-144.
- 307 7. Edwards, A.M., Graham, D., Maguire, G., Boland, V., and Richardson, G. (2012).
- 308 The effect of inspiratory muscle training on walking performance in overweight and
- 309 obese individuals. J Obesity, 1-6.

310	8.	Edwards, A.M., and Polman, R.C.J. (2013). Pacing and awareness: brain regulation of
311		physical activity. Sports Med 43, 1057-1063

- 312 9. Edwards A.M., and Walker, R. (2009). Inspiratory muscle training and endurance: A
 313 central metabolic control perspective. *Int J Sports Physiol Perform*, 4:122-128.
- 314 10. Edwards, A.M., Wells, C., and Butterly, R.J. (2008). Concurrent inspiratory muscle
- 315 and cardiovascular training differentially improves both perceptions of effort and
- 316 5000 m running performance compared with cardiovascular training alone. Br J
- 317 Sports Med 42, 523-527.
- 318 11. Ekkekakis, P. (2009).Let them roam free? Physiological and psychological evidence
- for the potential of self-selected exercise intensity in public health. *Sports Med* 39,
 857-888.
- 321 12. Ekkekakis, P., Lind, E., and Vazou, S. (2009). Affective responses to increasing
- levels of exercise intensity in normal-weight, overweight, and obese middle-aged
 women. *Obesity* 18:79-85.
- 324 13. Enright, P. (2003). The six-minute walk test. *Respir Care* 48, 783-785.
- 325 14. Gibbons, W., Fruchter, N., Sloan, S., and Levy, R. (2001). Reference values for a
- 326 multiple repetition 6-minute walk test in healthy adults older than 20 years. *J Cardio*
- 327 *Rehab* 21, 87-93.
- 328 15. Griffiths, L. A., and McConnell, A. K. (2007). The influence of inspiratory and
- 329 expiratory muscle training upon rowing performance. Eur J App Physiol, 99, 457-
- 330 466.

331	16. Hulens, M., Vansant, G., Claessens, A., Lysens, R., and Muls, E. (2003). Predictors
332	of 6-minute walk test results in lean, obese and morbidly obese women. Scand J Med
333	Sci Sports 13, 98-105.
334	17. Ladosky, W., and Botelho, M.A., Albuquerque, J.P. Jr. (2001). Chest mechanics in

- 335 morbidly obese non-hypoventilated patients. *Respir Med*, 95, 281-6
- 18. Luce, J. (1980). Respiratory complications of obesity. *Chest* 78, 626-631.
- 337 19. Mador, M., Magalang, U., Rodis, A., and Kufel, T. (1993). Diaphragm fatigue after
- exercise in healthy human subjects. *Am Rev Respir Dis* 148, 1571-1578.
- 339 20. Mandal, S., and Hart, N. (2012). Respiratory complications of obesity. *Clin Med* 12,
 340 75-78
- 341 21. McConnell, A., and Romer, L. (2004). Respiratory muscle training in humans:
- Resolving the controversy. *Int J Sports Med* 25, 284-293.
- 343 22. Olsen, A.L., and Zwillich, C. (2005). The obesity hypoventilation syndrome. *Am J*344 *Med* 118, 948-956
- 345 23. Romer, L. M., McConnell, A. K., and Jones, D. A. (2002). Effects of inspiratory
- muscle training on time-trial performance in trained cyclists. *J Sports Sci*, 20, 547590.
- 348 24. Otis, A., Fenn, W., and Rahn, H. (1950). Mechanics of breathing in man. *J Appl*349 *Physiol* 2, 592-607.
- 350 25. Salome, C., Munoz, P., Berend, N., Thorpe, C.W., Schachter, L.M., and King, G.G.
- 351 (2008). Effect of obesity on breathlessness and airway responsiveness to
- 352 methacholine in non-asthmatic subjects. *Int J Obesity* 32, 502-509.

353	26. St Clair Gibson, A. Lambert, E., Rauch, L., Tucker, R., Baden, D., Foster, C. et al.
354	(2006). The role of information processing between the brain and peripheral
355	physiological systems in pacing and perception of effort. Sports Med 36, 705-722.
356	27. Suzuki, S., Sato, M., and Okubo, T. (1995). Expiratory muscle training and sensation
357	of respiratory effort during exercise in normal subjects. Thorax 50, 366-370.
358	28. Verges, S., Lenherr, O., Haner, A., Schulz, C., and Spengler, C. (2007). Increased
359	fatigue resistance of respiratory muscles during exercise after respiratory muscle
360	endurance training. Am J Physiol: Reg Int and Comp Physiol 292, R1246-R1253.
361	29. Villiot-Danger, J., Villiot-Danger, E., Borel, J., Pepin J.L., Wuyam, B., and Verges,
362	S. (2011). Respiratory muscle endurance training in obese patients. Int J Obes 35,
363	692-699.
364	30. Volianitis, S., McConnell, A. K., Koutedakis, Y., McNaughton, L. R., Backx, K., and
365	Jones, D. A. (2001). Inspiratory muscle training improves rowing performance. Med
366	Sci Sports Exerc, 33, 803-809.

- 367 31. Zerah, F., Harf, A., Perlemuter, L., Lorino, H., Lorino, A., and Atlan, G. (1993).
- 368 Effects of obesity on respiratory resistance. *Chest*, 103, 1470-1476

370 Table 1. Participants' characteristics

	EXP $(n = 35)$	PLA (<i>n</i> =32)
Age (years)	46 ± 7.5	48 ± 11.0
Height (cm)	172.4 ± 9.1	169.9 ± 10.8
Mass (kg)	107.3 ± 33.6	101.5 ± 26.6
BMI (kg/m^2)	36.8 ± 7.4	35.2 ± 5.9
Systolic blood pressure (mm Hg)	135.9 ± 15.1	135.7 ± 13.7
Diastolic blood pressure (mm Hg)	87.8 ± 13.5	88.7 ± 20.9

371 Mean \pm SD. There were no statistically significant differences between the physical

373

Table 2. Lung function and maximal aerobic power variables prior to and following the

375 4-week intervention.

	EXP		PLA	
	Pre (n=35)	Post (n=35)	Pre (n=32)	Post (n=32)
FVC (l)	3.3 ± 0.9	3.2 ± 0.7	3.1 ± 0.8	3.1 ± 0.7
FEV_1 (l)	2.7 ± 0.8	2.8 ± 0.9	2.6 ± 0.7	2.7 ± 0.5
Estimated \dot{V} O ₂ max	39.4 ± 10.1	39.5 ± 10.3	38.3 ± 11.1	38.5 ± 11.2
(ml/kg/min)				
Mean \pm SD.				

376 377

378

379 **Figure captions:**

380

381 Figure 1. Distance covered (metres) in response to the 6-minute walk test for both

382 experimental (EXP; n=35) and placebo (PLA; n=32) groups. * = significant difference

between baseline and post-training distance covered (P<0.01). Means ±SD and individual

384 (before and after training) results are displayed.

³⁷² characteristics of EXP and PLA groups.

