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Abstract In this paper, fuzzy theory and interacting mul-
tiple model are introduced into Hoo filter-based particle
filter to propose a new fuzzy interacting multiple model
Hoo particle filter based on current statistical model. Each
model uses Hoo particle filter algorithm for filtering, in
which the current statistical model can describe the
maneuver of target accurately and Hoo filter can deal with
the nonlinear system effectively. Aiming at the problem of
large amount of probability calculation in interacting
multiple model by using combination calculation method,
our approach calculates each model matching probability
through the fuzzy theory, which can not only reduce the
calculation amount, but also improve the state estimation
accuracy to some extent. The simulation results show that
the proposed algorithm can be more accurate and robust to
track maneuvering target.
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1 Introduction

When the target is maneuvering, filtering residual (inno-
vation) will change. The size of filtering residual is closely
related to the maneuvering magnitude of the target. In the
interacting multiple model (IMM) algorithm, filtering
residuals exist not only in the estimation of each model, but
also in the matching probability of the model. The
matching probability of the models determines the weights
of the filter estimates of each model in the fusion output,
which has a great impact on the tracking accuracy of the
target. In the algorithm, the state of the model is uncertain,
and its matching probability is obtained by combination
calculation. The method has exponential complexity and a
large amount of calculation. In addition, the current sta-
tistical model can improve the acceleration with zero mean
of Singer model for the adaptive acceleration mean.
However, the scope change of target acceleration is limited
in the current statistical model, when the target motion
state changes or mutations, the tracking accuracy will be
reduced significantly. This can result in the following
dilemma. On the one hand, in order to improve perfor-
mance, we need to add the number of models. On the other
hand, increasing the number of models may not only not
improve the system performance, but also greatly increase
the amount of computation. At this time, if the model
probability of IMM algorithm is taken as the input of the
fuzzy inference system, we can choose a subset of more
realistic model from the model set through the fuzzy logic
reasoning. Thus, some unnecessary models can be elimi-
nated to reduce the competition among models. In the
proposed approach, the model matching probability is
obtained by using the fuzzy theory instead of the original
combination calculation method. The uncertainty of mea-
surement space is taken into account, and the reasoning
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from the uncertainty of measurement space to the uncer-
tainty of mode space can be solved. The application of
fuzzy theory not only can reduce the computational com-
plexity of the algorithm to some extent, but also improve
the accuracy of motion state estimation for maneuvering
target.

2 Related Work

For dynamic state estimation, the interacting multiple
model (IMM) algorithm is a very effective method [1-4].
Through the Markov transition probability, this method is
characterized by switching multiple models, adjusting the
filter bandwidth automatically and tracking arbitrary
maneuvering of the target. In the traditional methods, each
model filter usually uses Kalman filter or extended Kalman
filter algorithm. For nonlinear and non-Gaussian system,
their filtering performance can be degenerated greatly. In
recent years, the particle filter has been widely applied to
target tracking, which can solve the nonlinear and non-
Gaussian problems [5, 6], so the interacting multiple model
particle filter (IMMPF) algorithms are proposed for the
strong maneuvering target tracking [7, 8]. However, the
standard particle filter algorithm uses the system state
transition probability as its importance density function,
which cannot utilize the latest observations to generate new
particles. The result is that the produced particle samples
focus on the last of the posterior probability distribution,
which leads to a blind choice in the particles and causes the
reduction in the filtering precision [9]. In addition, the
particle filter usually adopts a large number of particles
which will produce a lot of calculation amount and influ-
ence real-time tracking. Some methods can optimize per-
formance using distributed technologies such as Top-k or
EMP [10-14]. In this paper, we introduce Hoo filter
[15-17], which has strong robustness in external interfer-
ence and reduces the linearization error of nonlinear fil-
tering, into the framework of particle filter. At the same
time, by incorporating the latest observation information
into importance density function, it can better approach the
posterior probability distribution of the real state.

At present, dynamic modes of many control systems are
becoming more and more complex. The choice of the
motion model is one of the important factors affecting the
tracking accuracy. The closer the model is to the actual
motion mode of the target, the better the tracking perfor-
mance will be. It is very difficult to describe the system
dynamics accurately with mathematical models. Therefore,
more and more researchers try to use the theory of fuzzy
control to solve the problem that complex systems are
difficult to model accurately [18-20]. For example, to
improve object tracking from video sequences, a fuzzy

observation model-based particle filter is proposed to
exploit spatial correlation in a rough set-theoretic frame-
work [19]. To deal with misleading state estimation, fuzzy
system is introduced into IMM filter to solve the fault-
prognostic problem [20]. In this paper, we use the theory of
fuzzy control to calculate the matching probability of the
model. The membership function is centered on the filter
value of each model at that time, and the observation value
at that time is transformed into independent variable. Two
function values are obtained and normalized as the prob-
ability of the model. This method not only reduces the
computational complexity of the algorithm, but also
improves the tracking accuracy.

3 The Current Statistical Model

Assuming that a is random acceleration of target, amax > 0,
a_max <0 are, respectively, upper limit and lower limit of
the acceleration. We can use the following situations to
modify probability density function.

(1) When a_p,<a<0, the probability density, the
mean and variance of the acceleration as follows:

— d_max a — A_max :
P.(a) ZaTGXP [_(ZT)] (1)
F@) = o+ 20 @)
4—7
=i (3)

(2) When 0<a <ap,x, the probability density, the mean
and variance of the acceleration as follows:
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(3) When a = 0, the probability density function can be
expressed as follows:

Py(a) = 6(a) (7)

(4) When a = amax Or a = d_max, the probability density
function is 0. The current statistical model of maneuvering
t current statistical model of maneuvering target is
described as follows:
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where the x, x(¢) and x(f), respectively, represent the
location, velocity and acceleration of the target motion, and

x(t) is the derivative of acceleration. @ is the acceleration
mean, a is maneuvering frequency, the mean value of w(r)
is zero and variance of white noise is 62, = 2ac>.

If set sampling interval as 7, discrete variance can be
expressed as follows:

X(k+ 1) = F()X(k) + G(K)a + v(k) 9)

where F(k)’s value and F(k)’s value of the Singer model
are equal, and G(k)’s value is expressed as follows:
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The covariance of discrete-time process noise w(t) is as
follows:
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When the absolute values of an.x and a_n.x are small, the
variance of system state noise is also small, and tracking
precision is high. However, the scope change of the
maneuvering target is relatively small, the corresponding
response speed is also slow. When the absolute values of
amax and a_p,.x are large, the variance of system state noise
is large as well. If the scope change of the maneuvering
target becomes larger, the response speed will also become
faster, that is, tracking algorithm for larger scope

maneuvering can respond quickly. The current statistical
model is a good practical model which can reflect the scope
and intensity changes of the maneuvering target.

4 Hoo Particle Filter Algorithm

In the particle filter, we can choose some different pro-
posal distribution functions. The most commonly used
function is the prior density [21, 22], that is,
q(xt|xt |, zx) = p(xi|xi_,). However, its shortcomings are
also obvious that it does not consider the system current
measurements, which can lead to the particle degeneracy
problem. To this end, the proposed approach utilizes Hoo
algorithm to generate new particles, which can consider the
system current measures to solve impoverishment problem
and improve the filtering accuracy. The algorithm is
described as follows.

Step 1: Initialization Sample the initial particles

x(()l),xéz), .. .,xéN), where N is the number of particles, and

oy =1/N,i=1,2,...N.

Step 2: H oo filter We bring the particles at time k — 1
into the Hoo filter, and then each particle performs Hoo
filtering to obtain the predicted particle at time k. Hoo filter
is described as follows.

x(klk — 1) =®(k|k — Dx(k — 1) (13)
plklk — 1) =®(klk — D)p(k — 1)®T(k — 1) + T(k — DT (k — 1)
(14)
x(k) =x(klk — 1) + Ky (k — 1) K((];)) _IZ;]SEC((IZC":_ 1))
(15)
Koo (k) =p(klk — 1)[H" (k) L"(k) R, " (k) (16)
plk) =(I = Kss(k)[H(k)  L(k)])p(klk — 1) (17)

O

S BR d MU PO
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The above formulas constitute the Hoo robust filter algo-
rithm. Because of using the different filter gain, the Hoo
filter is different from the standard Kalman filter essen-
tially. When the disturbance attenuation factor y — oo, we
can see that M (k) — 0, which makes the Hoo filter recur-
sion degenerate into the Kalman filter recursion. So the
Hoo norm of the Kalman filter may be very large, which
result in poor robustness performance. As the disturbance
attenuation factor y — min, we find M(k) — I, where [ is
the identity matrix. Though we can get good robustness,
the estimation square error is quite large. We can obtain
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satisfactory requirement by adjusting the parameter 7
according to testing experiment in practice.

When we obtain the target observation at time k, we can
calculate the importance weight of each predicted particle,
and then their weights are normalized.

P(alx)p(xilx_y)
q0alxi12)

N

~i i

Wy _wk/E Wy
Jj=1

where g(xi|xi ;,z¢) is the importance density function,
generally, g(xi|xi_;,z) = p(xi|xi_;). After normalizing
the weight, we can get the approximate posterior distri-
bution p(xg|z1.). 6(.) is the Dirac function.

E CL)k k—xk

Step 3: Resampling Accept the particles that have high
importance weights, and eliminate the particles that have
low importance weights. Set the weights i =1/N,
i=1,..,N.

Step 4: Output calculation The posterior probability
estimation of the state is obtained as

)Ekr’?ﬁ E (Z);()C;(
i=

Step 5 k = k + 1, and move to step2.

i
k —WOr—1

(19)

(20)

p(xi|z1) (21)

(22)

5 Fuzzy Interactive Multiple Model Hoo Particle
Filter Algorithm Based on Current Statistical
Model

For the interactive multiple model, the proposed approach
calculates each model matching probability by using the
fuzzy control theory, finally fusion output. The concrete
realization of the fuzzy control theory in algorithm is as
follows. First, the filtering values of models at current time
are regarded as the center of the membership functions,
respectively, and establish membership functions. Second,
the observation at this time is converted into the indepen-
dent variable. Finally, we can obtain function values as the
model probability after normalizing. The flowchart of the
proposed algorithm is showed in Fig. 1.

From Fig. 1, it is seen that this algorithm can be divided
into three parts, namely IMM filtering, calculating model
matching probability by the fuzzy inference system and
fusion output. The three parts are described as follows.

Stepl: IMM filtering In this step, the particles are ini-

tialized. Sample the initial particles xg)l),xéz), . .,x(()N),

X, (k| k) X, (k| k) X, (k|k)
R(k| k) Rklk) | Tt P, (k| k)
| l |
‘ Interaction Input P
Xy, (k| k) Xpklh) e oo onn £,k 1)

Foy(k | k) P, (k|k) R (k[ k)

Z(k+1) w8

‘Filtcr 1‘ ‘Fichr 2‘ """ Eilterm
Update model
probability with
» fuzzy control
theory
y| Interaction
Bl Output
v v \
X (k+1]k+1) X,(k+1[k+1) «evvns X, (k+1]k+1) u(k+1) X(k+1]k+1)

Fig. 1 The flowchart of the proposed algorithm

where N is the number of particles, and M is the number of

models. Set the initial value U = uin(O)ﬁ;llzzN "
u,(k) represents the model probability, > u,, = 1. For
input interaction, the particles of each model perform

interacting operation:

where

) = Tt (8) 23)
Cn :Znnmun(k) (24)

i (k/k) Z A (k/k)up,, (k) (25)
PRk =32 /0 + [ /R

— 2 (k)1 (k)] — 26, (K /K] }

where £ (k/k) and p), (k/k), respectively, represent the
covariance matrix and the mixed state vector of the N — th
particle of model m at time k. After interacting computing,
the state vector £,,(k + 1/k + 1), weight w (k + 1) and the
covariance matrix p,(k+ 1/k+ 1) of model m at time
k+1 are estimated by Hoo particle filter.

Step2: Calculating model matching probability by the
fuzzy inference system The measurement value z at the
current time is the direct input. According to z, we can
obtain W,, which is the direct input of the fuzzy inference
system, and the calculation of W, is as follows:

DD,, (k) =[abs(z(1,k) — x,,(1,k)) — abs(z(3,k) — xn(3,k))]
« [abs(z(1,k) — xu(1,k)) — abs(z(3,k) — xm(3,k))]T

(27)
W,, =DD,,/EM_ DD, (28)
This paper only adopts two motion models, therefore

m = 2. The two fuzzy systems are carried out simultane-
ously, in which the input z is converted to DD,,(k), and
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DD,,(k) is converted into fuzzy input value W,, of fuzzy
systems by fuzzy equation DD,,/ folDDm. Finally, unify
two fuzzy outputs.

Assume that the universal space of W,, is A,,, and two
different models in model set have the same universal
space. The fuzzy subset size of the fuzzy inference system
is a great impact on calculation amount. Generally, the
more fuzzy subsets, the larger computation amount, but the
higher precision. We define fuzzy subset of the input W,
on the universal as SP (small positive), MP (middle posi-
tive) and LP (large positive). The commonly used Gaussian
7(WZ+QC>2] is applied as membership
function. As shown in Fig. 2, ¢ and ¢ are distribution
parameters of quantitative input of the fuzzy inference
system. After fuzzy inference, we can obtain fuzzy value
wy,, of W,. Fuzzy subset of the fuzzy output space is
defined as SP (small positive), MP (middle positive), and
LP (large positive), and common trigonometric function is
treated as membership function.

function u(W,,) = exp|

In the left-hand subgraph of Fig. 2, the abscissa repre-
sents value of W,,, and the ordinate represents the degree of
membership. In the other subgraph, the abscissa is the
value of the output probability, and the ordinate is the
degree of membership. The essence of the fuzzy control
theory is when fuzzy input values correspond to the two
membership values at the same time; the corresponding
two results are combined into the final output. After
fuzzification, the model matching probability can be
adjusted by the following fuzzy rules in Table 1.

According to the above fuzzy rules, we can obtain the
model matching probability at the current time. After the
model is normalized, the final fuzzy matching probability
of model is calculated by

Ui

i=1 Ui

Step 3: Fusion output State at time k+1 is estimated by

1 1

SP WP P SP WP LP
08 08
0.6 06
04 04
0.2 02
0 : 0
0 05 1 0 05 1

Fig. 2 Membership function of the input space and the output space

Table 1 Fuzzy relationship Rule W, W,

uj u
table

R Sp MP LP SP
R, Sp Lp LP SP
R3 MP SP SPp LP
Ry MP LP SP SP
Rs LP SP Sp LP
Rs LPp MP SP SP

En(k+ 1k +1) :ZN:ui(k+1)x;,(k+1|k+1) (30)

i=1
State covariance matrix at time k+1 is computed by

Pu(k+1k+1) = ZN:u,-(k+ 1)
{PL (k) + [ (k+ 1k + 1) — 2 (k + 1]k + D][])"}
(31)

6 Simulation Results and Analysis

In order to validate the performance of interacting multiple
model Hoo particle filtering (FIMMCVCS-HooPF) based
on current statistical model, we compare it with two
algorithms. They are, respectively, the fuzzy interacting
multiple model particle filtering based on current statistical
model (FIMMCVCS-PF) and the fuzzy interacting multiple
model Kalman particle filtering algorithm-based current
statistical model (FIMMCVCS-KPF). Simulation experi-
ments are carried on two different motion trajectories. In
case 1, target performs weak maneuvering motion whose
nonlinear level is not very high. In case 2, target performs
strong maneuvering motion whose nonlinear level is high.
In the IMM algorithm, there should be at least one target
maneuver model and one non-maneuver model. The sys-
tem model and observation model of two scenes are the
same, so we use the uniform model (CV) and the current
statistical model (CS) for the IMM filtering. Why we use
these models is that uniform model perform well on non-
maneuver model and the current statistical model do well
on target maneuver model. The system model and obser-
vation models are described as follows.
System model

x(k 4 1) = f(x(k), T, My) + w(x(k), My) (32)
Observation model

2k + 1) = h(x(k + 1), T) + v(x(k + 1)) (33)

where x = [x,x,y,y,a,a]r is the state vector, s = [x,y]T is
the position vector, v = [x, y]T is the velocity vector, a =
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[a,a}T is the acceleration vector, and the system noise is
Gaussian white noise w with zero mean.

Here, we use the uniform model (CV) as a model M,
and the current statistical model (CS) as the other model
M,. The two models are described as follows

't 7 0 0 0 07
1 00 00O
0 01 T 0O
k), T,My) = k k
fa®LT M) =] o [ m)
000 000
L0 O 0 0 0 0]
(34)
- 7 .0 0 7?/2 0 ]
01 00 T T2
001 T 0 0
T,M,) = k k
fa®, T M) = o [xE) e
0000 1 0
L0 OO 0 O 1 |

(35)

Observation model is polar coordinate model. Its expres-
sion is

x(k)* + y(k)* v (k)
arctan()@) i |:vf/’(k)}

y(k)
(36)

Assume that the position of the radar in origin, v(k) is
Gaussian white noise with zero mean, whose covariance
matrix is R(k) = diay(d?,0,?), where ¢, is standard
deviation of the distance, and o, is standard deviation of
the angle.

In two cases, the initial position of the target is
x(0) = [100m, 120m]", initial velocity is v(0) = [15m/s,
15m/s)”, the initial acceleration is a(0) = [0m?/s,
0m?2/s|" scan cycle is T =1 s, the particle number is
N = 100, model probability is u;(0) = 0.5, u»(0) = 0.5 at

initial time and probability transition matrix is
0.8 0.2
= [0.2 0.8}

6.1 Simulation Experiment 1

In this section, we show comparisons between algorithms
using fuzzy control and those without fuzzy control theory,
which mainly demonstrates the efficiency of the fuzzy
theory in the maneuvering target tracking. Maneuvering
target performs a total of 100 scan cycles, in which 1-28
scan cycles are uniform motion, 29-70 scan cycles are turn

motion and the remaining 30 scan cycles are uniform
motion. The turn rate is w = 0.13 rad/s, disturbance
attenuation factor of Hoo particle filter is y = 0.7. Because
our model is 2D, here we use the distance error, which is
the difference between the estimated state and the real
state. If this method is used in more difficult issue, the error
assessment can be adjusted. The simulation results as
follows.

From Figs. 3, 4 and 5, we can see that the interacting
multiple model particle filter algorithm can improve the
accuracy of target tracking because of using the fuzzy
control theory. In particular, when the target performs
maneuvering motion, the tracking performance of the
algorithm with fuzzy control theory is greatly enhanced.
From Figs. 6, 7, 8, 9, 10 and 11, it is seen that the inter-
acting multiple model Kalman particle filter and the
interacting multiple model Hoo particle filter can improve
the tracking performance to some extent by the fuzzy
control theory. Because IMMCVCS-KPF and IMMCVCS-
HooPF algorithm originally have good performance for
maneuvering target tracking, the advantages of the fuzzy
control theory are not obvious for the two algorithms. But
the application of fuzzy control theory can reduce the
computational complexity.

6.2 Simulation Experiment 2

In this section, we show the performance comparisons
among three algorithms, namely FIMMCVCS-PF,
FIMMCVCS-KPF and FIMMCVCS-HooPF. The main
purpose of experiments is to demonstrate the effectiveness
of the proposed FIMMCVCS-HoPF in this paper.
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Fig. 3 Trajectory and position error
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800 ‘ 1
600 1
£
= 400 True state

I —— IMM-KPF | |

200 ——— FIMM-KPF

0 200 400 600 800 1000

x(m)

E
§ 30
20
@
2 10
] — IMM-KPF
i) o — FIMM-KPF | |
e I . . .

0 20 40 60 80

time step
Fig. 6 Trajectory and position error comparison between

IMMCVCS-KPF and FIMMCVCS-KPF filter

1000 True state
g 800 f|——IMM-KPF
T 600 |~ FIMM-KPF
©
» 400
> 200
20 40 60 80 100
time step
40 T
— IMM-KPF
B —— FIMM-KPF
S 20
(0]
X
0
0 20 40 60 80 100
time step
Fig. 7 Trajectory and position error comparison between

IMMCVCS-KPF and FIMMCVCS-KPF filter in the X-direction
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Fig. 10 Trajectory and position error comparison between
IMMCVCS-HooPF and FIMMCVCS-HooPF filter in the X-direction
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6.2.1 Weak Maneuvering Target Tracking Situation

Maneuvering target performs a total of 100 scan cycle,
where 1-28 scan cycles are uniform motion, 29-70 cycles
are turn motion, and the remaining 30 scan cycles are
uniform motion. The turn rate is w = 0.08 rad/s, and dis-
turbance attenuation factor of Hoo particle filter is y = 0.7.

From Figs. 12, 13, 14 and 15, we can see that
the FIMMCVCS-HooPF is obviously better than
FIMMCVCS-PF and FIMMKPF. FIMMCVCS-KPF and
FIMMCVCS-HooPF can handle target maneuvering
motion effectively. The tracking errors of three algorithms
are all reduced. When the target does non-maneuvering
motion, FIMMCVCS-PF can track the target well and
tracking accuracy is similar with FIMMCVCS-KPF and
FIMMCVCS-HooPF. However, when the target maneu-
vering happens, although the maneuvering of this scene is
weak, the tracking error of FIMMCVCS-PF is still far lager
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Fig. 12 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-
KPF and FIMMCVCS-HooPF filter

X state

oF True state =

FIMMCVCS-PF T

FIMMCVCS-KPF T

FIMMCVCS-HooPF
T T

-500 : : ;
0 10 20 30 40 50 60 70 8 90 100

time step

1000 [

Y state

500 [ o True state
‘ FIMMCVCS-PF

FIMMCVCS-KPF

FIMMCVCS-HooPF

0 10 20 30 40 50 60 70 80 90 100
time step

Fig. 13 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-
KPF and FIMMCVCS-HooPF filter in two axes

than those of FIMMCVCS-KPF and FIMMCVCS-HooPF.
In the entire process of tracking, FIMMCVCS-KPF and
FIMMCVCS-HooPF can all achieve stable tracking, while
the tracking error of FIMMCVCS-HooPF is obviously less
than that of FIMMCVCS-KPF, and its tracking perfor-
mance is still higher than FIMMCVCS-KPF. Because the
H-infinity filter generates new particles, and effectively
solves the problem of particle starvation, H-infinity filter-
ing algorithm can take into account current measurements
and achieve a trade-off between accuracy and robustness.

As is shown in Table 2, we use average magnitude of
error and root-mean-square error to evaluate our experi-
mental results, where D-AME is average magnitude of
error of distance, X-AME is average magnitude of error in
x-axis, Y-AME is average magnitude of error in y-axis, D-
RMSE is root-mean-square error of distance, X-RMSE is
root-mean-square error in x-axis, and Y-RMSE is root-
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Fig. 14 The position error comparison of FIMMCVCS-PF,
FIMMCVCS-KPF and FIMMCVCS-HooPF.
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Fig. 15 Position error comparison of FIMMCVCS-PF, FIMMCVCS-
KPF and FIMMCVCS-HooPF in two axes

mean-square error in y-axis. The AME of FIMMCVCS-
HooPF is reduced nearly half of that of FIMMCVCS-PF
and FIMMCVCS-KPF, which indicates that FIMMCVCS-
HooPF has higher precision. The RMSE data shows
FIMMCVCS-KPF can keep stable performance, while
FIMMCVCS-HooPF has lower RMSE than FIMMCVCS-
KPF and can perform more stable.
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Fig. 16 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-
KPF and FIMMCVCS-HooPF filter

6.2.2 Strong Maneuvering Target Tracking Situation

In this situation, maneuvering target performs a total of 100
scan cycles, where 1-28 scan cycles are uniform motion,
29-70 scan cycles are turn motion, and the remaining 30
scan cycles are uniform motion. The turn rate is w = 0.13
rad/s, and disturbance attenuation factor of Hoo particle
filter is y = 0.7.

From Figs. 16, 17, 18 and 19, it is seen that
FIMMCVCS-HooPF can still achieve high precision when
the target performs lager maneuvering motion. In the entire
process of tracking, FIMMCVCS-HooPF shows the
stable tracking performance, and tracking accuracy is bet-
ter than the other two methods. The tracking performance
of FIMMCVCS-KPF is between FIMMCVCS-PF and
FIMMcvcs-HooPF. 1t is also stable in the whole process.
However, its tracking error 1is relative large to
FIMMCVCS-HooPF, that is, Hoo particle filter can out-
perform Kalman particle filter. FIMMCVCS-PF can
improve tracking performance to some extent when
tracking large maneuvering targets, but in the entire pro-
cess of tracking, when the target happens lager maneu-
vering, the tracking error of this algorithm is still higher
than that of other time. So it cannot achieve stable and
accurate tracking for such large maneuvering target.

From Table 3, we can see FIMMCVCS-HooPF per-
forms better and has lower average magnitude of error and
root-mean-square error in x-axis, y-axis and distance than

Table 2 The AME and RMSE

) 1 ! Algorithm D-AME X-AME Y-AME D-RMSE X-RMSE Y-RMSE

of different algorithms in weak

maneuvering motion condition FIMMCVCS-PF 21.6641 11.1430 16.7418 31.9292 16.0258 27.6161
FIMMCVCS-KPF 22.0228 13.8800 15.7588 22.3404 15.0296 16.5288
FIMMCVCS-HooPF 13.5703 11.7806 5.4036 14.5801 12.8047 6.9727
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Fig. 17 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-
KPF and FIMMCVCS-HooPF filter
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Fig. 18 The position error comparison of FIMMCVCS-PF,
FIMMCVCS-KPF and FIMMCVCS-HooPF
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Fig. 19 The position error comparison of FIMMCVCS-PF,
FIMMCVCS-KPF and FIMMCVCS-HooPF in two axes

FIMMCVCS-PF and FIMMCVCS-KPF. It indicates that
FIMMCVCS-HooPF can still achieve high precision and
can keep performance stable both in weak maneuvering
motion condition and strong maneuvering motion
condition.

The track performance improvement comes from these
adjustments. We propose an interactive multi-model
(FIMM) H-infinity particle filter algorithm based on the
“current” statistical model. The model adopted by the
proposed algorithm is a “current” statistical model, which
can truly reflect the strength of the target maneuver and the
range of maneuvering changes. At the same time, the
interactive multi-model algorithm can adopt multiple
motion models and can accurately reflect the target. The
form of motion, and most importantly, the filter in the new
algorithm is an H-infinity particle filter. The algorithm
achieves accurate and robust tracking throughout the
motion of the target.

Model matching probability is one of the factors
affecting the tracking performance of IMM algorithm. The
model matching probability in the standard IMM algorithm
is obtained by the combination calculation method. The
method has a large amount of calculation. For this problem,
we use a fuzzy control interaction. For this problem, we use
a new fuzzy control interaction multi-model based H-in-
finity particle filtering algorithm. The main improvement
of the algorithm is to calculate the model matching prob-
ability through fuzzy control theory. The new algorithm
reduces the computational complexity of the algorithm to a
certain extent and improves the tracking accuracy.

7 Summary

In order to solve the problem of state estimation for non-
linear non-Gaussian systems, this paper proposes a novel
fuzzy interacting multiple model Hoo particle filter algo-
rithm based on current statistical model. It can inherit the
advantages of the Hoo particle filtering algorithm, and
absorb the merits of the IMM algorithm by the fuzzy
control theory. So the algorithm can achieve very
stable and accurate state estimation performance. The
simulation results show that the IMMCVCS-PF algorithm
combined with fuzzy control can improve the tracking
precision greatly when target performs maneuvering
motion. For the IMMCVCS-KPF and IMMCVCS-HocPF,
the fuzzy control theory can also improve the tracking
performance to some extent. The three algorithms with the
fuzzy control theory can reduce the computational com-
plexity. From the comparisons of the FIMMPF,
FIMMCVCS-KPF and FIMMCVCS-HooPF, we can see
that the tracking performance of FIMMCVCS-HooPF
outperforms the other two. Future study will focus on
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Table 3 The AME and RMSE

Algorithm D-AME X-AME Y-AME D-RMSE X-RMSE Y-RMSE
of different algorithms in strong
maneuvering motion condition FIMMCVCS-PF 19.0395 14.4822 10.4510 27.5556 22.3521 16.1152
FIMMCVCS-KPF 22.6607 16.9804 11.6958 23.0848 18.5156 13.7876
FIMMCVCS-HooPF 16.8916 15.1203 5.4987 18.1584 16.6303 7.2910

generalizing this method to more difficult scene and we
will try to use parallel computing and high-performance

computing [23-28]

to optimize FIMMCVCS-HooPF

algorithm.
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