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Abstract In this paper, fuzzy theory and interacting mul-

tiple model are introduced into H1 filter-based particle

filter to propose a new fuzzy interacting multiple model

H1 particle filter based on current statistical model. Each

model uses H1 particle filter algorithm for filtering, in

which the current statistical model can describe the

maneuver of target accurately and H1 filter can deal with

the nonlinear system effectively. Aiming at the problem of

large amount of probability calculation in interacting

multiple model by using combination calculation method,

our approach calculates each model matching probability

through the fuzzy theory, which can not only reduce the

calculation amount, but also improve the state estimation

accuracy to some extent. The simulation results show that

the proposed algorithm can be more accurate and robust to

track maneuvering target.

Keywords Fuzzy theory � Interacting multiple model �
Particle filter � H1 filter

1 Introduction

When the target is maneuvering, filtering residual (inno-

vation) will change. The size of filtering residual is closely

related to the maneuvering magnitude of the target. In the

interacting multiple model (IMM) algorithm, filtering

residuals exist not only in the estimation of each model, but

also in the matching probability of the model. The

matching probability of the models determines the weights

of the filter estimates of each model in the fusion output,

which has a great impact on the tracking accuracy of the

target. In the algorithm, the state of the model is uncertain,

and its matching probability is obtained by combination

calculation. The method has exponential complexity and a

large amount of calculation. In addition, the current sta-

tistical model can improve the acceleration with zero mean

of Singer model for the adaptive acceleration mean.

However, the scope change of target acceleration is limited

in the current statistical model, when the target motion

state changes or mutations, the tracking accuracy will be

reduced significantly. This can result in the following

dilemma. On the one hand, in order to improve perfor-

mance, we need to add the number of models. On the other

hand, increasing the number of models may not only not

improve the system performance, but also greatly increase

the amount of computation. At this time, if the model

probability of IMM algorithm is taken as the input of the

fuzzy inference system, we can choose a subset of more

realistic model from the model set through the fuzzy logic

reasoning. Thus, some unnecessary models can be elimi-

nated to reduce the competition among models. In the

proposed approach, the model matching probability is

obtained by using the fuzzy theory instead of the original

combination calculation method. The uncertainty of mea-

surement space is taken into account, and the reasoning
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from the uncertainty of measurement space to the uncer-

tainty of mode space can be solved. The application of

fuzzy theory not only can reduce the computational com-

plexity of the algorithm to some extent, but also improve

the accuracy of motion state estimation for maneuvering

target.

2 Related Work

For dynamic state estimation, the interacting multiple

model (IMM) algorithm is a very effective method [1–4].

Through the Markov transition probability, this method is

characterized by switching multiple models, adjusting the

filter bandwidth automatically and tracking arbitrary

maneuvering of the target. In the traditional methods, each

model filter usually uses Kalman filter or extended Kalman

filter algorithm. For nonlinear and non-Gaussian system,

their filtering performance can be degenerated greatly. In

recent years, the particle filter has been widely applied to

target tracking, which can solve the nonlinear and non-

Gaussian problems [5, 6], so the interacting multiple model

particle filter (IMMPF) algorithms are proposed for the

strong maneuvering target tracking [7, 8]. However, the

standard particle filter algorithm uses the system state

transition probability as its importance density function,

which cannot utilize the latest observations to generate new

particles. The result is that the produced particle samples

focus on the last of the posterior probability distribution,

which leads to a blind choice in the particles and causes the

reduction in the filtering precision [9]. In addition, the

particle filter usually adopts a large number of particles

which will produce a lot of calculation amount and influ-

ence real-time tracking. Some methods can optimize per-

formance using distributed technologies such as Top-k or

EMP [10–14]. In this paper, we introduce H1 filter

[15–17], which has strong robustness in external interfer-

ence and reduces the linearization error of nonlinear fil-

tering, into the framework of particle filter. At the same

time, by incorporating the latest observation information

into importance density function, it can better approach the

posterior probability distribution of the real state.

At present, dynamic modes of many control systems are

becoming more and more complex. The choice of the

motion model is one of the important factors affecting the

tracking accuracy. The closer the model is to the actual

motion mode of the target, the better the tracking perfor-

mance will be. It is very difficult to describe the system

dynamics accurately with mathematical models. Therefore,

more and more researchers try to use the theory of fuzzy

control to solve the problem that complex systems are

difficult to model accurately [18–20]. For example, to

improve object tracking from video sequences, a fuzzy

observation model-based particle filter is proposed to

exploit spatial correlation in a rough set-theoretic frame-

work [19]. To deal with misleading state estimation, fuzzy

system is introduced into IMM filter to solve the fault-

prognostic problem [20]. In this paper, we use the theory of

fuzzy control to calculate the matching probability of the

model. The membership function is centered on the filter

value of each model at that time, and the observation value

at that time is transformed into independent variable. Two

function values are obtained and normalized as the prob-

ability of the model. This method not only reduces the

computational complexity of the algorithm, but also

improves the tracking accuracy.

3 The Current Statistical Model

Assuming that a is random acceleration of target, amax � 0,

a�max\0 are, respectively, upper limit and lower limit of

the acceleration. We can use the following situations to

modify probability density function.

(1) When a�max\a\0, the probability density, the

mean and variance of the acceleration as follows:

PrðaÞ ¼
a� a�max

l2
exp �ða� a�maxÞ2

2u2

" #
ð1Þ

EðaÞ ¼ a�max þ
ffiffiffi
p
2

r
l ð2Þ

r2a ¼
4� p
2

l2 ð3Þ

(2) When 0\a\amax, the probability density, the mean

and variance of the acceleration as follows:

PrðaÞ ¼
amax� � a

l2
exp �ðamax � aÞ2

2u2

" #
ð4Þ

EðaÞ ¼ amax �
ffiffiffi
p
2

r
l ð5Þ

r2a ¼
4� p
2

l2 ð6Þ

(3) When a ¼ 0, the probability density function can be

expressed as follows:

PrðaÞ ¼ dðaÞ ð7Þ

(4) When a ¼ amax or a ¼ a�max, the probability density

function is 0. The current statistical model of maneuvering

t current statistical model of maneuvering target is

described as follows:
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0
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2
64

3
75wðtÞ
ð8Þ

where the x, _xðtÞ and €xðtÞ, respectively, represent the

location, velocity and acceleration of the target motion, and

xðtÞ
...

is the derivative of acceleration. a is the acceleration

mean, a is maneuvering frequency, the mean value of w(t)

is zero and variance of white noise is r2w ¼ 2ar2a.
If set sampling interval as T, discrete variance can be

expressed as follows:

Xðk þ 1Þ ¼ FðkÞXðkÞ þ GðkÞ�aþ vðkÞ ð9Þ

where F(k)’s value and F(k)’s value of the Singer model

are equal, and G(k)’s value is expressed as follows:

GðkÞ ¼

1

a
ð�T þ aT2

2
þ 1� e�aT

a
Þ

T � 1� e�aT

a

1� e�aT

2
66664

3
77775 ð10Þ

The covariance of discrete-time process noise w(t) is as

follows:

QðkÞ ¼ 2ar2a

q11 q12 q13

q21 q22 q23

q31 q32 q33

0
B@

1
CA ð11Þ

where

q11 ¼
1

2a5
½1þ 2aT � e�2aT þ 2a3T3=3� 2a2T2 � 4aTe�aT �

q12 ¼
1

2a4
½1� 2e�aT þ e�2aT þ 2aTe�aT � 2aT þ 2a2T2� ¼ q21

q13 ¼
1

2a3
½1� e�2aT � 2aTe�aT � ¼ q31

q22 ¼
1

2a3
½�3þ 4e�aT � e�2aT þ 2aT�

q23 ¼
1

2a2
½1� 2Te�aT þ e�2aT � ¼ q32

q33 ¼
1

2a
½1� 2e�2aT �

ð12Þ

When the absolute values of amax and a�max are small, the

variance of system state noise is also small, and tracking

precision is high. However, the scope change of the

maneuvering target is relatively small, the corresponding

response speed is also slow. When the absolute values of

amax and a�max are large, the variance of system state noise

is large as well. If the scope change of the maneuvering

target becomes larger, the response speed will also become

faster, that is, tracking algorithm for larger scope

maneuvering can respond quickly. The current statistical

model is a good practical model which can reflect the scope

and intensity changes of the maneuvering target.

4 H1 Particle Filter Algorithm

In the particle filter, we can choose some different pro-

posal distribution functions. The most commonly used

function is the prior density [21, 22], that is,

qðxikjxik�1; zkÞ ¼ pðxikjxik�1Þ. However, its shortcomings are

also obvious that it does not consider the system current

measurements, which can lead to the particle degeneracy

problem. To this end, the proposed approach utilizes H1
algorithm to generate new particles, which can consider the

system current measures to solve impoverishment problem

and improve the filtering accuracy. The algorithm is

described as follows.

Step 1: Initialization Sample the initial particles

x
ð1Þ
0 ; x

ð2Þ
0 ; . . .; x

ðNÞ
0 , where N is the number of particles, and

xi
0 ¼ 1=N; i ¼ 1; 2; . . .N.

Step 2: H 1 filter We bring the particles at time k � 1

into the H1 filter, and then each particle performs H1
filtering to obtain the predicted particle at time k. H1 filter

is described as follows.

xðkjk � 1Þ ¼Uðkjk � 1Þxðk � 1Þ ð13Þ

pðkjk � 1Þ ¼Uðkjk � 1Þpðk � 1ÞUTðk � 1Þ þ Cðk � 1ÞCTðk � 1Þ
ð14Þ

xðkÞ ¼xðkjk � 1Þ þ K1ðk � 1Þ
ZðkÞ � HðkÞxðkjk � 1Þ
~SðkÞ � LðkÞxðkjk � 1Þ

� �
ð15Þ

K1ðkÞ ¼pðkjk � 1Þ HTðkÞ LTðkÞ
� �

R�1
e ðkÞ ð16Þ

pðkÞ ¼ I � K1ðkÞ HðkÞ LðkÞ½ �ð Þpðkjk � 1Þ ð17Þ

ReðkÞ ¼
I 0

0 � c2I

� �
þ

HðkÞ
LðkÞ

� �
pðkjk � 1Þ HTðkÞ LTðkÞ

� �
ð18Þ

The above formulas constitute the H1 robust filter algo-

rithm. Because of using the different filter gain, the H1
filter is different from the standard Kalman filter essen-

tially. When the disturbance attenuation factor c ! 1, we

can see that MðkÞ ! 0, which makes the H1 filter recur-

sion degenerate into the Kalman filter recursion. So the

H1 norm of the Kalman filter may be very large, which

result in poor robustness performance. As the disturbance

attenuation factor c ! min, we find MðkÞ ! I, where I is

the identity matrix. Though we can get good robustness,

the estimation square error is quite large. We can obtain
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satisfactory requirement by adjusting the parameter c
according to testing experiment in practice.

When we obtain the target observation at time k, we can

calculate the importance weight of each predicted particle,

and then their weights are normalized.

xi
k ¼xi

k�1

pðzkjxikÞpðxikjxik�1Þ
qðxikjxik�1; zkÞ

ð19Þ

~xi
k ¼xi

k=
XN
j¼1

xi
k ð20Þ

where qðxikjxik�1; zkÞ is the importance density function,

generally, qðxikjxik�1; zkÞ ¼ pðxikjxik�1Þ. After normalizing

the weight, we can get the approximate posterior distri-

bution pðxkjz1:kÞ. dð:Þ is the Dirac function.

pðxkjz1:kÞ ¼
XN
j¼1

~xi
kdðxk � xikÞ ð21Þ

Step 3: Resampling Accept the particles that have high

importance weights, and eliminate the particles that have

low importance weights. Set the weights xi
k ¼ 1=N;

i ¼ 1; . . .;N.
Step 4: Output calculation The posterior probability

estimation of the state is obtained as

x̂k �
XN
i¼1

~xi
kx

i
k ð22Þ

Step 5 k ¼ k þ 1, and move to step2.

5 Fuzzy Interactive Multiple Model H1 Particle
Filter Algorithm Based on Current Statistical
Model

For the interactive multiple model, the proposed approach

calculates each model matching probability by using the

fuzzy control theory, finally fusion output. The concrete

realization of the fuzzy control theory in algorithm is as

follows. First, the filtering values of models at current time

are regarded as the center of the membership functions,

respectively, and establish membership functions. Second,

the observation at this time is converted into the indepen-

dent variable. Finally, we can obtain function values as the

model probability after normalizing. The flowchart of the

proposed algorithm is showed in Fig. 1.

From Fig. 1, it is seen that this algorithm can be divided

into three parts, namely IMM filtering, calculating model

matching probability by the fuzzy inference system and

fusion output. The three parts are described as follows.

Step1: IMM filtering In this step, the particles are ini-

tialized. Sample the initial particles x
ð1Þ
0 ; x

ð2Þ
0 ; . . .; x

ðNÞ
0 ,

where N is the number of particles, and M is the number of

models. Set the initial value U ¼ uimð0Þ
i¼1;2���N
m¼1;2;���;M , where

umðkÞ represents the model probability,
P

um ¼ 1. For

input interaction, the particles of each model perform

interacting operation:

un=mðkÞ ¼
1

c
pnmunðkÞ ð23Þ

cm ¼
X

pnmunðkÞ ð24Þ

x̂N0mðk=kÞ ¼
XN

n�1
x̂Nn ðk=kÞuNn=mðkÞ ð25Þ

pN0mðk=kÞ ¼
XN

n�1
uNn=mðkÞfpNn ðk=kÞ þ ½x̂Nn ðk=kÞ�

� x̂N0mðk=kÞ�½x̂Nn ðk=kÞ� � x̂N0mðk=k�
Tg

ð26Þ

where x̂N0mðk=kÞ and pN0mðk=kÞ, respectively, represent the
covariance matrix and the mixed state vector of the N � th

particle of model m at time k. After interacting computing,

the state vector x̂mðk þ 1=k þ 1Þ, weight wN
mðk þ 1Þ and the

covariance matrix pmðk þ 1=k þ 1Þ of model m at time

k?1 are estimated by H1 particle filter.

Step2: Calculating model matching probability by the

fuzzy inference system The measurement value z at the

current time is the direct input. According to z, we can

obtain Wm which is the direct input of the fuzzy inference

system, and the calculation of Wm is as follows:

DDmðkÞ ¼½absðzð1; kÞ � xmð1; kÞÞ � absðzð3; kÞ � xmð3; kÞÞ�
� ½absðzð1; kÞ � xmð1; kÞÞ � absðzð3; kÞ � xmð3; kÞÞ�T

ð27Þ

Wm ¼DDm=R
M
m�1DDm ð28Þ

This paper only adopts two motion models, therefore

m ¼ 2. The two fuzzy systems are carried out simultane-

ously, in which the input z is converted to DDmðkÞ, and

Fig. 1 The flowchart of the proposed algorithm
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DDmðkÞ is converted into fuzzy input value Wm of fuzzy

systems by fuzzy equation DDm=RM
m�1DDm. Finally, unify

two fuzzy outputs.

Assume that the universal space of Wm is Am, and two

different models in model set have the same universal

space. The fuzzy subset size of the fuzzy inference system

is a great impact on calculation amount. Generally, the

more fuzzy subsets, the larger computation amount, but the

higher precision. We define fuzzy subset of the input Wm

on the universal as SP (small positive), MP (middle posi-

tive) and LP (large positive). The commonly used Gaussian

function uðWmÞ ¼ exp½�ðWM�CÞ2
2r2 � is applied as membership

function. As shown in Fig. 2, c and r are distribution

parameters of quantitative input of the fuzzy inference

system. After fuzzy inference, we can obtain fuzzy value

wm of Wm. Fuzzy subset of the fuzzy output space is

defined as SP (small positive), MP (middle positive), and

LP (large positive), and common trigonometric function is

treated as membership function.

In the left-hand subgraph of Fig. 2, the abscissa repre-

sents value ofWm, and the ordinate represents the degree of

membership. In the other subgraph, the abscissa is the

value of the output probability, and the ordinate is the

degree of membership. The essence of the fuzzy control

theory is when fuzzy input values correspond to the two

membership values at the same time; the corresponding

two results are combined into the final output. After

fuzzification, the model matching probability can be

adjusted by the following fuzzy rules in Table 1.

According to the above fuzzy rules, we can obtain the

model matching probability at the current time. After the

model is normalized, the final fuzzy matching probability

of model is calculated by

ui ¼
uiPm
i¼1 ui

ð29Þ

Step 3: Fusion output State at time k?1 is estimated by

x̂mðk þ 1jk þ 1Þ ¼
XN
i¼1

uiðk þ 1Þx̂imðk þ 1jk þ 1Þ ð30Þ

State covariance matrix at time k?1 is computed by

Pmðk þ 1jk þ 1Þ ¼
XN
i¼1

uiðk þ 1Þ

Pi
mðkÞ þ ½x̂imðk þ 1jk þ 1Þ � x̂mðk þ 1jk þ 1Þ�½:�T

� �
ð31Þ

6 Simulation Results and Analysis

In order to validate the performance of interacting multiple

model H1 particle filtering (FIMMCVCS-H1PF) based

on current statistical model, we compare it with two

algorithms. They are, respectively, the fuzzy interacting

multiple model particle filtering based on current statistical

model (FIMMCVCS-PF) and the fuzzy interacting multiple

model Kalman particle filtering algorithm-based current

statistical model (FIMMCVCS-KPF). Simulation experi-

ments are carried on two different motion trajectories. In

case 1, target performs weak maneuvering motion whose

nonlinear level is not very high. In case 2, target performs

strong maneuvering motion whose nonlinear level is high.

In the IMM algorithm, there should be at least one target

maneuver model and one non-maneuver model. The sys-

tem model and observation model of two scenes are the

same, so we use the uniform model (CV) and the current

statistical model (CS) for the IMM filtering. Why we use

these models is that uniform model perform well on non-

maneuver model and the current statistical model do well

on target maneuver model. The system model and obser-

vation models are described as follows.

System model

xðk þ 1Þ ¼ f ðxðkÞ; T ;MkÞ þ wðxðkÞ;MkÞ ð32Þ

Observation model

zðk þ 1Þ ¼ hðxðk þ 1Þ; TÞ þ vðxðk þ 1ÞÞ ð33Þ

where x ¼ ½x; x; y; y; a; a�T is the state vector, s ¼ ½x; y�T is

the position vector, v ¼ ½x; y�T is the velocity vector, a ¼
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1
SP SPMP LP MP LP

Fig. 2 Membership function of the input space and the output space

Table 1 Fuzzy relationship

table
Rule W1 W1 u1 u2

R1 SP MP LP SP

R2 SP LP LP SP

R3 MP SP SP LP

R4 MP LP SP SP

R5 LP SP SP LP

R6 LP MP SP SP
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½a; a�T is the acceleration vector, and the system noise is

Gaussian white noise w with zero mean.

Here, we use the uniform model (CV) as a model M1,

and the current statistical model (CS) as the other model

M2. The two models are described as follows

f ðxðkÞ; T ;M1Þ ¼

1 T 0 0 0 0

0 1 0 0 0 0

0 0 1 T 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
xðkÞ þ w1ðkÞ

ð34Þ

f ðxðkÞ; T ;M2Þ ¼

1 T 0 0 T2=2 0

0 1 0 0 T T2=2

0 0 1 T 0 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775
xðkÞ þ w2ðkÞ

ð35Þ

Observation model is polar coordinate model. Its expres-

sion is

ZðkÞ ¼
rðkÞ
uðkÞ

� �
¼ hðxðkÞÞ þ vðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðkÞ2 þ yðkÞ2

q
arctanðxðkÞ

yðkÞÞ

2
664

3
775þ

vrðkÞ
vuðkÞ

� �

ð36Þ

Assume that the position of the radar in origin, v(k) is

Gaussian white noise with zero mean, whose covariance

matrix is RðkÞ ¼ diayðr2r ; ru2Þ, where rr is standard

deviation of the distance, and ru is standard deviation of

the angle.

In two cases, the initial position of the target is

xð0Þ ¼ ½100m; 120m�T , initial velocity is vð0Þ ¼ ½15m=s;

15m=s�T , the initial acceleration is að0Þ ¼ ½0m2=s;

0m2=s�T scan cycle is T ¼ 1 s, the particle number is

N ¼ 100, model probability is u1ð0Þ ¼ 0:5, u2ð0Þ ¼ 0:5 at

initial time and probability transition matrix is

P ¼ 0:8 0:2
0:2 0:8

� �
.

6.1 Simulation Experiment 1

In this section, we show comparisons between algorithms

using fuzzy control and those without fuzzy control theory,

which mainly demonstrates the efficiency of the fuzzy

theory in the maneuvering target tracking. Maneuvering

target performs a total of 100 scan cycles, in which 1–28

scan cycles are uniform motion, 29–70 scan cycles are turn

motion and the remaining 30 scan cycles are uniform

motion. The turn rate is w ¼ 0:13 rad/s, disturbance

attenuation factor of H1 particle filter is c ¼ 0:7. Because

our model is 2D, here we use the distance error, which is

the difference between the estimated state and the real

state. If this method is used in more difficult issue, the error

assessment can be adjusted. The simulation results as

follows.

From Figs. 3, 4 and 5, we can see that the interacting

multiple model particle filter algorithm can improve the

accuracy of target tracking because of using the fuzzy

control theory. In particular, when the target performs

maneuvering motion, the tracking performance of the

algorithm with fuzzy control theory is greatly enhanced.

From Figs. 6, 7, 8, 9, 10 and 11, it is seen that the inter-

acting multiple model Kalman particle filter and the

interacting multiple model H1 particle filter can improve

the tracking performance to some extent by the fuzzy

control theory. Because IMMCVCS-KPF and IMMCVCS-

H1PF algorithm originally have good performance for

maneuvering target tracking, the advantages of the fuzzy

control theory are not obvious for the two algorithms. But

the application of fuzzy control theory can reduce the

computational complexity.

6.2 Simulation Experiment 2

In this section, we show the performance comparisons

among three algorithms, namely FIMMCVCS-PF,

FIMMCVCS-KPF and FIMMCVCS-H1PF. The main

purpose of experiments is to demonstrate the effectiveness

of the proposed FIMMCVCS-H1PF in this paper.
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Fig. 3 Trajectory and position error comparison between

IMMCVCS-PF and FIMMCVCS-PF filter
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Fig. 4 Trajectory and position error comparison between

IMMCVCS-PF and FIMMCVCS-PF filter in the X-direction
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Fig. 5 Trajectory and position error comparison between

IMMCVCS-PF and FIMMCVCS-PF filter in the Y-direction
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Fig. 6 Trajectory and position error comparison between

IMMCVCS-KPF and FIMMCVCS-KPF filter
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Fig. 7 Trajectory and position error comparison between

IMMCVCS-KPF and FIMMCVCS-KPF filter in the X-direction
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Fig. 8 Trajectory and position error comparison between

IMMCVCS-KPF and FIMMCVCS-KPF filter in the Y-direction
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Fig. 9 Trajectory and position error comparison between

IMMCVCS-H1PF and FIMMCVCS-H1PF filter
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6.2.1 Weak Maneuvering Target Tracking Situation

Maneuvering target performs a total of 100 scan cycle,

where 1–28 scan cycles are uniform motion, 29–70 cycles

are turn motion, and the remaining 30 scan cycles are

uniform motion. The turn rate is w ¼ 0:08 rad/s, and dis-

turbance attenuation factor of H1 particle filter is c ¼ 0:7.

From Figs. 12, 13, 14 and 15, we can see that

the FIMMCVCS-H1PF is obviously better than

FIMMCVCS-PF and FIMMKPF. FIMMCVCS-KPF and

FIMMCVCS-H1PF can handle target maneuvering

motion effectively. The tracking errors of three algorithms

are all reduced. When the target does non-maneuvering

motion, FIMMCVCS-PF can track the target well and

tracking accuracy is similar with FIMMCVCS-KPF and

FIMMCVCS-H1PF. However, when the target maneu-

vering happens, although the maneuvering of this scene is

weak, the tracking error of FIMMCVCS-PF is still far lager

than those of FIMMCVCS-KPF and FIMMCVCS-H1PF.

In the entire process of tracking, FIMMCVCS-KPF and

FIMMCVCS-H1PF can all achieve stable tracking, while

the tracking error of FIMMCVCS-H1PF is obviously less

than that of FIMMCVCS-KPF, and its tracking perfor-

mance is still higher than FIMMCVCS-KPF. Because the

H-infinity filter generates new particles, and effectively

solves the problem of particle starvation, H-infinity filter-

ing algorithm can take into account current measurements

and achieve a trade-off between accuracy and robustness.

As is shown in Table 2, we use average magnitude of

error and root-mean-square error to evaluate our experi-

mental results, where D-AME is average magnitude of

error of distance, X-AME is average magnitude of error in

x-axis, Y-AME is average magnitude of error in y-axis, D-

RMSE is root-mean-square error of distance, X-RMSE is

root-mean-square error in x-axis, and Y-RMSE is root-
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Fig. 10 Trajectory and position error comparison between

IMMCVCS-H1PF and FIMMCVCS-H1PF filter in the X-direction
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Fig. 11 Trajectory and position error comparison between

IMMCVCS-H1PF and FIMMCVCS-H1PF filter in the Y-direction
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Fig. 12 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-

KPF and FIMMCVCS-H1PF filter
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Fig. 13 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-

KPF and FIMMCVCS-H1PF filter in two axes
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mean-square error in y-axis. The AME of FIMMCVCS-

H1PF is reduced nearly half of that of FIMMCVCS-PF

and FIMMCVCS-KPF, which indicates that FIMMCVCS-

H1PF has higher precision. The RMSE data shows

FIMMCVCS-KPF can keep stable performance, while

FIMMCVCS-H1PF has lower RMSE than FIMMCVCS-

KPF and can perform more stable.

6.2.2 Strong Maneuvering Target Tracking Situation

In this situation, maneuvering target performs a total of 100

scan cycles, where 1–28 scan cycles are uniform motion,

29–70 scan cycles are turn motion, and the remaining 30

scan cycles are uniform motion. The turn rate is w ¼ 0:13

rad/s, and disturbance attenuation factor of H1 particle

filter is c ¼ 0:7.

From Figs. 16, 17, 18 and 19, it is seen that

FIMMCVCS-H1PF can still achieve high precision when

the target performs lager maneuvering motion. In the entire

process of tracking, FIMMCVCS-H1PF shows the

stable tracking performance, and tracking accuracy is bet-

ter than the other two methods. The tracking performance

of FIMMCVCS-KPF is between FIMMCVCS-PF and

FIMMcvcs-H1PF. It is also stable in the whole process.

However, its tracking error is relative large to

FIMMCVCS-H1PF, that is, H1 particle filter can out-

perform Kalman particle filter. FIMMCVCS-PF can

improve tracking performance to some extent when

tracking large maneuvering targets, but in the entire pro-

cess of tracking, when the target happens lager maneu-

vering, the tracking error of this algorithm is still higher

than that of other time. So it cannot achieve stable and

accurate tracking for such large maneuvering target.

From Table 3, we can see FIMMCVCS-H1PF per-

forms better and has lower average magnitude of error and

root-mean-square error in x-axis, y-axis and distance than
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Fig. 14 The position error comparison of FIMMCVCS-PF,

FIMMCVCS-KPF and FIMMCVCS-H1PF.
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Fig. 15 Position error comparison of FIMMCVCS-PF, FIMMCVCS-

KPF and FIMMCVCS-H1PF in two axes

Table 2 The AME and RMSE

of different algorithms in weak

maneuvering motion condition

Algorithm D-AME X-AME Y-AME D-RMSE X-RMSE Y-RMSE

FIMMCVCS-PF 21.6641 11.1430 16.7418 31.9292 16.0258 27.6161

FIMMCVCS-KPF 22.0228 13.8800 15.7588 22.3404 15.0296 16.5288

FIMMCVCS-H1PF 13.5703 11.7806 5.4036 14.5801 12.8047 6.9727
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Fig. 16 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-

KPF and FIMMCVCS-H1PF filter
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FIMMCVCS-PF and FIMMCVCS-KPF. It indicates that

FIMMCVCS-H1PF can still achieve high precision and

can keep performance stable both in weak maneuvering

motion condition and strong maneuvering motion

condition.

The track performance improvement comes from these

adjustments. We propose an interactive multi-model

(FIMM) H-infinity particle filter algorithm based on the

‘‘current’’ statistical model. The model adopted by the

proposed algorithm is a ‘‘current’’ statistical model, which

can truly reflect the strength of the target maneuver and the

range of maneuvering changes. At the same time, the

interactive multi-model algorithm can adopt multiple

motion models and can accurately reflect the target. The

form of motion, and most importantly, the filter in the new

algorithm is an H-infinity particle filter. The algorithm

achieves accurate and robust tracking throughout the

motion of the target.

Model matching probability is one of the factors

affecting the tracking performance of IMM algorithm. The

model matching probability in the standard IMM algorithm

is obtained by the combination calculation method. The

method has a large amount of calculation. For this problem,

we use a fuzzy control interaction. For this problem, we use

a new fuzzy control interaction multi-model based H-in-

finity particle filtering algorithm. The main improvement

of the algorithm is to calculate the model matching prob-

ability through fuzzy control theory. The new algorithm

reduces the computational complexity of the algorithm to a

certain extent and improves the tracking accuracy.

7 Summary

In order to solve the problem of state estimation for non-

linear non-Gaussian systems, this paper proposes a novel

fuzzy interacting multiple model H1 particle filter algo-

rithm based on current statistical model. It can inherit the

advantages of the H1 particle filtering algorithm, and

absorb the merits of the IMM algorithm by the fuzzy

control theory. So the algorithm can achieve very

stable and accurate state estimation performance. The

simulation results show that the IMMCVCS-PF algorithm

combined with fuzzy control can improve the tracking

precision greatly when target performs maneuvering

motion. For the IMMCVCS-KPF and IMMCVCS-H1PF,

the fuzzy control theory can also improve the tracking

performance to some extent. The three algorithms with the

fuzzy control theory can reduce the computational com-

plexity. From the comparisons of the FIMMPF,

FIMMCVCS-KPF and FIMMCVCS-H1PF, we can see

that the tracking performance of FIMMCVCS-H1PF

outperforms the other two. Future study will focus on

0 10 20 30 40 50 60 70 80 90 100

time step

0

500

1000
X

 s
ta

te
True state
FIMMCVCS-PF
FIMMCVCS-KPF
FIMMCVCS-H PF

0 10 20 30 40 50 60 70 80 90 100

time step

0

500

1000

Y
 s

ta
te

True state
FIMMCVCS-PF
FIMMCVCS-KPF
FIMMCVCS-H PF

Fig. 17 Trajectory comparison of FIMMCVCS-PF, FIMMCVCS-

KPF and FIMMCVCS-H1PF filter
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Fig. 18 The position error comparison of FIMMCVCS-PF,

FIMMCVCS-KPF and FIMMCVCS-H1PF
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generalizing this method to more difficult scene and we

will try to use parallel computing and high-performance

computing [23–28] to optimize FIMMCVCS-H1PF

algorithm.
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