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Subsequence dynamic time warping for charting:
Bullish and bearish class predictions for NYSE stocks
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Abstract

Advanced pattern recognition algorithms have been historically designed in or-
der to mitigate the problem of subjectivity that characterises technical analysis
(also known as ‘charting’). However, although such methods allow to approach
technical analysis scientifically, they mainly focus on automating the identifica-
tion of specific technical patterns. In this paper, we approach the assessment
of charting from a more generic point of view, by proposing an algorithmic ap-
proach using mainly the dynamic time warping (DTW) algorithm and two of its
modifications; subsequence DTW and derivative DTW. Our method captures
common characteristics of the entire family of technical patterns and is free of
technical descriptions and/or guidelines for the identification of specific techni-
cal patterns. The algorithm assigns bullish and bearish classes to a set of query
patterns by looking the price behaviour that follows the realisation of similar,
in terms of price and volume, historical subsequences to these queries. A large
number of stocks listed on NYSE from 2006 to 2015 is considered to statistically
evaluate the ability of the algorithm to predict classes and resulting maximum
potential profits within a test period that spans from 2010 to 2015. We find
statistically significant bearish class predictions that generate on average signif-
icant maximum potential profits. However, bullish performance measures are

not significant.
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1. Introduction

Technical analysis (TA) or charting is a primarily graphical assessment of
the historical evolution of trading-related price paths (Tsinaslanidis and Za-
pranis, 2016). It is based on the belief that history tends to be repeated, and
thus these price paths exhibit regularities. Proponents of TA argue that these
regularities can be profitably exploited to extrapolate future price movements
(Campbell et al., 1993). Apparently, this conflicts with the weak-form efficient
market hypothesis (Fama, 1970), in which current prices fully reflect all his-
torical information and any trading system/strategy based solely on historical
information (such as TA) can not systematically generate statistically signifi-
cant excess returns. Technicians (or chartists) use a wide range of technical
tools, such as technical indicators, candlesticks and technical patterns, to derive
trading signals. The efficacy of these tools has been assessed in many empirical
research works, whereby mixed results were reported.!

Yet, despite efforts undertaken, the task of assessing the overall efficacy of
charting still remains a challenging area of research. First, subjectivity em-
bedded mainly in the identification and interpretation of technical patterns,
places significant barriers in assessing the performance of this trading prac-
tice. Many empirical works can be found in the bibliography that aimed to
mitigate this problem by developing algorithmic pattern recognisers which al-
lowed to extrapolate a set of technical patterns that met specific criteria and
assess statistically their performance. For example, two of the first attempts to
automate the recognition of the ‘head-and-shoulders’ pattern can be found in
Neftci (1991) and Osler and Chang (1995), where several precise criteria were

set, whose fulfilment was a necessary condition for the pattern’s confirmation.

IFor a comprehensive literature review regarding the profitability of TA the reader may
see Park and Irwin (2007) and Nazdrio et al. (2017), whilst for a focus on technical patterns

see Tsinaslanidis and Zapranis (2016) and references therein.



For the identification of variations of ‘bull flags’, template matching techniques
were implemented in (Leigh et al., 2002a,b; Bo et al., 2005; Cervell6-Royo et al.,
2015; Arévalo et al., 2017), whilst neural networks and genetic algorithm were
used by Leigh et al. (2002c). A template matching technique was also adopted
by Wang and Chan (2009) for identifying ‘rounding bottomns’, whilst Zapranis
and Tsinaslanidis (2012) proposed a rule-based algorithm for identifying this
technical pattern.

Secondly, although there are many studies proposing algorithms for the iden-
tification of specific technical patterns (such as those referred above), or bundles
of technical patterns (such as Lo et al., 2000; Dawson and Steeley, 2003), valid
inferences for the predictability of TA as a trading method in general are diffi-
cult to be made. We could argue that technical patterns currently known and
used by the industry and the academia are not exhaustive. Although there is a
wide variety of technical patters, we have not found any evidence or statement
supporting that technical patterns reported by this time in the bibliography are
(or better, should be) the only ones. This implies that even proponents of TA
would have to agree that existed technical patterns cannot be used to capture
every possible regularity in the price paths of financial instruments. Thus, for
exploring the overall predictability of TA (for a given dataset) it is required to
evaluate either jointly the predictive performance of a relative large set of tech-
nical tools or assess the predictability of a prediction scheme that is designed
to capture principles of TA rather than focusing on individual technical tools.

Motivated mainly by the latter point, this study aims to approach chart-
ing from a more generic viewpoint and advance the research on this field in
several ways. First, we formally state a set of five charting characteristics. Sub-
sequently, an algorithmic framework is proposed which is designed to capture
these common characteristics of the entire family of technical patterns, instead
of focusing on a specific, or a bundle of specific technical patterns.

The proposed algorithmic framework is mainly based on dynamic time warp-
ing (DTW) and two of its modifications; the derivative DTW and the subse-
quence DTW. DTW and its modifications are algorithmic techniques that ini-



tially became popular in the context of speech recognition (Sakoe and Chiba,
1978). However, they have been used in other scientific areas as well, includ-
ing finance (Wang et al., 2012; Tsinaslanidis and Kugiumtzis, 2014). DTW is
mainly used to find an optimal alignment between two given (time-dependent)
sequences, derivative DTW (Keogh and Pazzani, 2001) is a modification of DTW
which considers the estimated local derivatives of the data, allowing the imple-
mentation of DTW not only to sequences that differ in length (time) but also
sequences that differ in price level, whilst subsequence DTW (Miiller, 2007)
allows the user to identify subsequences within a longer sequence, which are
‘similar’ to another shorter query sequence.

In this paper, price series of 640 NYSE stocks are considered for the period
2006-2015 (see section 3). In the proposed algorithm, starting and ending points
of candidate query patterns are defined by the perceptually important points
(PIPs) algorithm (Fu et al., 2008) and volume ‘peaks’ respectively. The search
of the query patterns is confined to the test period that spans from 2010-2015.
DTW and its two modifications are being used to find historical subsequences
which are the most ‘similar’ to each query in terms of price and volume. The
search of similar patterns is being carried in the whole dataset, rather than in
the individual series that the query pattern belongs to. It is worth noting that
these historical subsequences can occur at any time either during the period
2006-2009 or during the test period (after the end of 2009) as long as they
occur before the realisation of the corresponding query. For each query pattern,
class predictions are made for the future price evolution, by looking the price
behaviour after the formation of the identified historical subsequences.

We initially assess the ability of the algorithm to predict bullish and bearish
patterns and we find a superior performance in the latter case. The profitability
of the algorithm is also assessed and we find that only bearish signals generate
statistically significant returns. Our results indicate that TA may in principal
add value in the trading decision processes.

The rest of this paper is organised as follows. In section 2, we present

and justify a collection of five characteristics of charting that our proposed



algorithm captures. Section 3 presents our dataset, whilst section 4 presents
our methodology. Empirical results regarding the predictive performance of
the algorithm are presented in section 5, whilst the algorithms profitability is
statistically assessed in section 6. Finally, section 7 provides a discussion and

concludes.

2. Inferences from charting

The aim of the algorithmic pattern recognition scheme, proposed in this
paper, is to set the ground for a comprehensive assessment of the predictive
performance of charting without the consideration of particular technical pat-
terns. In order to achieve this, this scheme has to be free of specific technical
descriptions and/or guidelines for the identification of particular technical pat-
terns. Instead, it has to capture generic technical characteristics that can be
inferred and justified from the relevant bibliography on TA or common prac-
tices that technicians follow. This section presents the justification of the five
inferences from charting that we are considering in this study.

(i) Technical patterns are globally valid. This means that technical patterns
such as ‘head-and-shoulders’ and ‘flags’ are valid for all securities price series.
In the context of TA, when a technical pattern is ‘confirmed’ technicians expect
a particular future price behaviour regardless the securities series on which the
pattern was identified. As an example, a ‘head-and-shoulders’ pattern signals a
downwards movement of the price series, whether this series corresponds to a
stock (belonging to any sector), a currency rate or a market index. This ‘global’
validity of technical patterns, can also be inferred and further supported by the
bibliography. For instance, Park and Irwin (2007), categorised 137 technical
trading studies into ‘stock markets’;, ‘foreign exchange markets’ and ‘futures
markets’ studies, according to the markets they had concentrated on.

(ii) Patterns are sequences of regional locals. An explicit statement in sup-
port of this argument can be found in (Neftci, 1991, p. 550) where the author

states: ‘This article shows that most patterns used by technical analysts need



to be characterized by appropriate sequences of local minima and/or mazima
and will lead to nonlinear prediction problems’. Various proposed algorithms
for the identification of technical patterns involve the assignment of specific cri-
teria to sequences of regional locals. Such locals can be identified with various
methods. For example, Lo et al. (2000) use a kernel regression to smooth price
series and then they consider the derivative of the smoothed series in respect to
time. They compared the signs of neighbouring derivatives and a regional local
was identified when those signs differed. Finally, Lucke (2003), identified local
extrema by using a computer program which was originally designed to identify
business cycle turning points, whilst Zapranis and Tsinaslanidis (2012), used a
rolling window of fixed size to identify regional peaks.

(iii) Increased volume confirms a pattern’s formation. There are many cases
of technical patterns whose formation is confirmed by an increased level of vol-
ume. Pring (2002), when describing the trading signals that occur after price
breaches a trend-line, highlights the importance of high volume at such break-
outs with the following statement: ‘It is this upward surge in the trading ac-
tivity that confirms the validity of the breakout’. The importance of high volume
in confirming the formation of other technical patterns is also emphasised by
the same author. In the context of TA, it can be argued that increased volume
may indicate that most of the traders (or else most of the trades) are seeing the
same thing in the market, and therefore the market confirms that a pattern has
occurred.

(iv) Patterns can occur at different sizes. This statement implies that the
width (time length) and the height of a particular technical pattern may vary.
The variation that occurs in the time dimension is evident from the identifica-
tion guidelines provided in the bibliography for various technical patterns. For
example, concerning ‘flag’ patterns, Bulkowski (2005) and Edwards et al. (2007)
report a maximum width of 3 weeks, whereas Pring (2002) states that these pat-
terns can be as long as 3 to 5 weeks. The variation in the possible height of a
pattern can be easily inferred from the first argument presented above. Since

a technical pattern may occur in any stock price series and given that each se-



ries fluctuates on different price levels, a rational conclusion to make is that a
technical pattern may appear at different price levels, and thus realise different
heights. Further support on this argument can be found in Cervell6-Royo et al.
(2015) and Arévalo et al. (2017) by the manner the template grid for recognising
‘flags’ is fitted over price windows that correspond to different price levels.

(v) Similar trading volume for each pattern. This is another inference from
the identification guidelines provided in the bibliography on TA, according to
which the volume during the formation of a particular pattern should evolve in a
particular manner. For example, in the case of the ‘head-and-shoulders’ pattern,
the volume trend gradually diminishes during the formation of the pattern and
expands substantially on the breakout (Pring, 2002; Bulkowski, 2005). Similar
volume patterns are also suggested for other technical patterns. Thus, it can be
deduced that the volume evolution during the formation of each pattern has to

be ‘similar’ too.

3. Data

The initial dataset was extracted from Bloomberg and consisted of adjusted
daily closing prices for 1920 NYSE stocks for the requested period 3-Jan-2006
until 31-Dec-2015. We applied a filtering process that closely follows Marshall
et al. (2009) and Sharma and Narayan (2014). More precisely, we have excluded
stocks that had prices either less than $5 or greater than $500, stocks that had at
least one year with a proportion of nontrades greater than 5% and stocks with at
least four consecutive days of missing values. The aforementioned approaches
ensure that results will not be influenced by stocks with unduly high or low
prices and stocks with insufficient trading activity. After adopting the above
filtering procedure, the finalised dataset consists of T = 2,517 daily close prices
of I = 640 stocks, i.e. {Cys;t=1,...,T;i=1,...,1}. For these stocks we have
also retrieved the following daily series: open prices (O;;), low prices (L;;)
and high prices (H;;). This paper also considers the relative volume (V;;),

which is the ratio of the number of shares traded to the number of shares



outstanding (Campbell et al., 1993).> Remaining missing values were filled as
follows. Remaining missing close values were filled with linear interpolation,
open missing values were filled with the previous close price whilst high and
low missing values, for a particular day ¢, were filled with max (O, C};) and

min (O, C}) respectively.

4. Methods

Our methodology can be briefly described as follows. Let Q1xn be a price
pattern with a length of N days, that has been identified during the period from
time t = t* — N + 1 until time ¢ = ¢t* on a particular stock, i. The expectation
to be formed at time ¢* on the further evolution of this price series will be based
on other historical patterns, similar to @, that can appear at different series,
on different price levels and with different lengths. In the rest of this paper we
will interchangeably refer to these @ patterns as ‘query patterns’ or simply Qs,
whilst the terms ‘similar historical subsquences’ or simply ‘target patterns’ will
be used to refer to the historical patterns that are ‘similar’ to a query.

The derivative subsequence DTW algorithm is implemented to identify his-
torical subsequences in the entire dataset, which are similar to a query pattern
and occurred prior to time t*. The subsequence version of DTW is designed
to identify subsequences, similar to a query, that may differ in length. Fur-

thermore, the derivative version of DTW identifies similar patterns that may

2The choice of using the relative volume instead of the number of shares traded can be
justified for two reasons. First, in this paper volume ‘peaks’ will be used to determine the
ending point of a candidate query pattern. The relative volume measures the trading volume
relative to the capacity of the market to absorb volume. While, inferences for the liquidity
of an asset can be made by examining the number of shares traded, a ‘peak’ on the relative
volume series will indicate a relative low number of available shares and that a further, sudden
increase in demand could affect substantially the price of the stock. Secondly, in this paper
we will also consider the similarity between volume subsequences of different stocks. Thus,
for comparison reasons, the relative volume has been chosen as a more appropriate volume

measure than the total number of shares traded.



occur at different price levels. Apparently, combining the aforementioned DTW
modifications deals with argument (iv), whilst searching for similar historical
subsequences in the entire dataset deals with argument (i) (see section 2). Addi-
tionally, in order to find similar historical subsequencies, the similarity between
the trading volume of @ and those of the target patterns is also considered, deal-
ing with argument (v). Arguments (ii) and (iii) are embedded to our proposed
methodology when identifying the starting and ending times of Qs respectively.

A bullish or bearish class is assigned to each one of the target patterns
after examining the price behaviour that follows their formation. The predicted
class to be assigned to a specific query is determined by the type of target
patterns that forms the majority. The proposed methodology described above
is free of any specific technical pattern’s characteristics and thus it deals with
our argument that technical patterns which currently exist in the bibliography
should not be expected to be exhaustive. If the main principle of TA is valid
(that history tends to be repeated) then it should be expected that the proposed
methodology will give accurate predictions most of the times.

This section presents the main parts of our methodology and is organised
as follows. Section 4.1 describes the procedure for identifying the Qs. Section
4.2 presents the subsequence DTW algorithm. Finally, section 4.3 presents the
labelling procedure that is adopted to assign bullish or bearish classes to the Qs

and their target patterns, and the manner predictions are made for Qs.

4.1. Defining the query pattern

The first step of the proposed methodology involves the specification of the
query pattern, Q. More precisely, a procedure is required to identify its starting
and ending points. Lets assume that the query pattern for a particular stock,
spans over a time interval from ¢ = ¢* — N + 1 until time ¢ = t*. For defining
the ending point, t*, argument (iii) is considered, which suggests that increased
volume is usually required to confirm a pattern’s formation. Pring (2002) states
as a major technical principle that volume is always measured relative to its

recent past. Thus, we use a short-term rolling window of 30 days to identify



times where the relative volume distances more than three standard deviations
above its mean. The times that the above condition is satisfied will define all
ending points of the @ patterns that will be considered later in the empirical
part of our analysis.

Subsequently, the starting point of the query pattern has to be defined as
well. As we have argued in section 2, patterns are sequences of regional locals.
Thus, it can be inferred that the starting point of a pattern should be also a local
extrema. Given an ending time, t*, for a particular query, we implement the
(PIPs) algorithm to identify the starting point of a pattern. PIPs is a promising
method to identify salient points on a time series and they have been used in
many applications on time series data mining, but also in finance applications
to identify technical patterns (Fu et al., 2007; Chen et al., 2013).

The algorithm for identifying PIPs on a price series, starts by characterising
the first and the last observation as PIPs. Afterwards, the Euclidean distances
between the initial two PIPs and all the remaining observations is being cal-
culated. The observation with the maximum distance is being characterised
as the third PIP. The algorithm proceeds and characterises as the fourth PIP
the observation that maximises its distance from its two adjacent PIPs. The
algorithm usually terminates when the requested by the user number of PIPs
are identified.

In this study, after identifying the ending time, t*, for a particular query
pattern of stock 7, we search for PIPs on the closing prices of stock i, by using
the observations from time ¢t = 1 until time ¢ = ¢*. The algorithm stops when
the first PIP is identified within a time frame of [t* — 4 months : t* — 2 weeks],
which preceded time ¢*. By using this time frame, @ patterns are restricted to
have a length between 20 and 80 trading days. These values were chosen based
on the average lengths of celebrated technical patterns that were provided in

the bibliography (Bulkowski, 2005; Tsinaslanidis and Zapranis, 2016).
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4.2. Subsequence Dynamic Time Warping
DTW is an algorithmic technique which is mainly used to find the optimal
alignment between two given (time-dependent) sequences, under certain restric-

tions (Miller, 2007). Having a query series, Qixny = {qn};vzl, and a set of K

My
m=1"

target series, Y1 xar, = {ym} with various lengths My, for k = 1,..., K, the
DTW algorithm can be used to find which one of the target series is most similar
(or better has the minimum alignment cost) to Q. Furthermore, the optimal
alignment of these two similar sequences can be achieved with the use of the
optimal alignment (or warping) path, Z*. More precisely, Z* is a sequence of
elements {27, 25,...,2%,..., 2} } where each z} indicates a pair of observations,
one from each series Q and Y, to be aligned, i.e. 25 = (n,m).

However, in the context of TA, when assessing the performance of a partic-
ular technical pattern, the task that someone needs to accomplish, is to search
for a particular pattern in all stocks that compose the dataset under consider-
ation. This is actually a subsequence matching problem where the user needs
to identify subsequences within a longer sequence (or longer sequences), Y7y as
(Y1xn, ), which are ‘similar’ to another shorter sequence, Q1 xn, where N <« M
(N <« My). Apparently, Q represents the technical pattern under consideration
and Y are the stock price series composing the dataset. In this paper we deal
with this problem by implementing the derivative subsequence DTW algorithm.
The steps of this algorithm are subsequently described.

Lets assume that our task is to identify subsequences of Y1« = {ym}%[:1
which are similar to the query sequence Qi«y, where N <« M. Following
Tsinaslanidis and Zapranis (2016), initial price series are smoothed by adopting
the Savitzky-Golay filter with a rolling window of 21 trading days and a cubic
polynomial model (Savitzky and Golay, 1964). Smoothing series in pattern
recognition tasks is a usual practice. Lo et al. (2000), argue that by this process,
nonlinear relations are extracted by ‘averaging out’ the noise. The same authors
also argue that smoothing mimics the way human cognition extracts regularities
from noisy data and thus the skills of technical analysts in identifying particular

technical patterns via visual assessment. Series @ and Y which will be inputs

11



to the derivative subsequence DTW, result by standardising the derivative, as
defined in Keogh and Pazzani (2001), of the smoothed price series.

The first step involves the calculation of a distance (or cost) matrix, Dy,
where each element, d,, ., represents the distance between ¢, and y,,, i.e.
dp.m = |qn — ym|. The second step involves the calculation of the accumulated

distance (or cost) matrix, Dnyy = {Jnym}, as

dmma lfn =1
d

nm + Jn—l,m; ifn#Alandm=1 (1)

dp,m + min {dn,Lm, dn,m,l,dn,l’m,l} , ifn#1and m#1.

After adopting Eq. (1), the row vector JMm will include the total costs of all
M optimal warping paths. Each one of these paths should satisfy the boundary
condition z; = (1,a) and zy = (N,w), where 1 < a < w < M. In other words,
a and w indicate the start and end of a subsequence of Y which is candidate
to be similar to Q. Here, similarity is defined if the warping cost is less than a
user-defined cost threshold, 7, € R. The subscript in the threshold, 7, is used
to distinguish it from two other thresholds that we introduce later in this paper;
Ty (section 4.3) and 7, (section 5.3). Thus, the set Q* = {wl*}lel with the L

most similar subsequences’ ends results from

0" =arg,, (de < Tp) . (2)

The final step involves the identification of the set A* = {a;‘}lel consisting

of the starting points for each one of these L similar subsequences. Let Z! be the

optimal warping path ending at time wj, i.e. 2} = (NV,w}). Given 2§ = (n,m),

2371 is defined as

(n—1,1), iftm=1
Zé\—l = - - (3)

arg min {dn_Lm, dpm—1, dn—1,m—1} , otherwise.

12



The process described in Eq. (3) terminates when n = 1, whereby 2} = (1, ).
Thus, the two sets, A* and 2*, contain the starting and ending points of the his-
torical subsquences which are consider to be most similar to the query pattern.
Appendix A provides an example of the aforementioned procedure.

In our empirical analysis we will also consider the similarity between the
volume evolution during the formation of a query pattern and the one realised
during the formation of each one of the identified target patterns. Apparently,
the corresponding volume series of the above patterns will differ in length. Thus,
the DTW algorithm is adopted, and the cost of each time-warping alignment is
calculated. This cost will be used as a similarity measure in the sense that the
greater this cost is the more different the volume behaviours will be. Considering
not only the price but also the volume similarity, is already justified in the fifth

argument that has been presented in section 2.

4.3. Labelling and predictions

This section presents the labelling procedure that is followed in order to
assign a class to each one of the identified query patterns and their historical
target patterns. The class is assigned by considering the price evolution after
the realisation of each pattern and each pattern is labelled as bullish, bearish or
neutral. Classes assigned to target patterns will be used to make predictions for
the queries, whilst classes assigned to queries patterns will be treated as actual
classes and they will be used to assess the efficacy of these predictions.

The labelling procedure is designed as follows. Following Bulkowski (2005),
ultimate high (low) is defined as the highest high (low) before prices decline
(rise) by at least 20%. After the ending point, t = w;, of a target pattern, [,
we observe the following price behaviour and we identify the time that ultimate
high and low occur (#*" and #" respectively). Apparently, the horizon at which
we examine this behaviour is bounded from time ¢t = w; 4+ 1 until time ¢ = ¢*
which is the ending point of the query pattern. Examining the price behaviour
after the realisation of a target pattern until the ending point of a query, ensures

that predicting the class of the latter will not be influenced by future figures.
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Three classes are considered in the labelling procedure; bullish, bearish and
neutral. A bullish (bearish) pattern should signal a long (short) position, whilst
a neutral pattern does not signal any position. Recall that the ending times of
the patterns have been symbolised as t* for a query and as w; for the target
patterns. Regarding target patterns, the return generated from the open price
at time ¢ = w; + 1 until the time t*® (Eq. (4)) and t" (Eq. (5)), are calculated
considering high and low daily prices accordingly. Regarding query patterns,

Eqgs. (4) and (5) are used after substituting w; with #*, whilst £, ¢ > ¢*.

o—uh Hywn — O‘*’l“fl
r =—FF— (4)
Owl*Jrl
o—ul Ly — Ow7+1
T =—+t= (5)
Owl*Jrl

Subsequently each pattern is labelled according to the following rule. Using the
symbols V and A for the logical ‘Or’ and ‘And’ respectively, a class is assigned

to each pattern according to

Bullish, if (ro=" > 5%) A { (£ < #0) v [(#50 > ) A (ro=4 > —5%)] )}
Bearish, if (ro7v < —5%) A {(t*" > ) v [(#*" <) A (ro7uR < 5%)] }
Neutral, otherwise.

(6)

More precisely, for a pattern to be characterised as bullish it is required that

it should be possible for an investor to generate a positive return at least 5%

by taking a long position at the opening price immediately after the formation

of the pattern and closing this position at the ultimate high whilst the latter
should either occur before the time the ultimate low occurs or, if it does not,
r°~U should fail to generate a return lower than -5%. The choice of 5% is
based on the definition of ‘5% failures’ in Bulkowski (2005). More precisely,

Bulkowski described a failure when prices break out in the expected, according

to the pattern, direction but reach the ultimate high or low less than 5% away

from the breakout. He also assumes that the 5% move is sufficient to cover the

14



cost of trading. The interpretation for the bearish class is analogous. Finally,

patterns classified as neutral do not provide any significant profit since both

o—uh o—ul

r and r are not, greater or equal to the threshold of 5%.

For a given value of 7, the subsequence DTW will identify a set of historical
subsequences which will be the most similar to a particular query pattern. This
set will be composed by patterns that may have been realised in any of the
price series of our dataset, at any time prior the formation of the query pattern.
Adopting also the DTW algorithm on the volume series, allows the introduc-
tion of an additional threshold, dubbed 7, that will be used for defining the
maximum acceptable volume similarity cost. Setting lower values for =, will
filter further the initial set of target patterns, reducing their number for each
query case. The predicted class to be assigned to a each @ pattern will be the
class that the majority of the corresponding target patterns had been allocated
to. However, the proportion of target patterns allocated to the neutral class
is minor since it occurs only when the pattern is identified at the end of the
training period and prices follow a ‘parallel’ trend. Thus, no query patterns are
allocated to the neutral class and predictions are confined between the bullish
and bearish classes. The labelling procedure is also adopted to query patterns
in order to identify their actual class. Hence, for a given number of Qs the over-
all accuracy of the algorithm can be computed by calculating the proportion of
the correct class assignments (for both bullish and bearish classes) to the total
number query patterns considered. Bullish and bearish precisions will also be
estimated which are performance measures that focus on each class separately

(see section 5).

5. Main results

The whole test period we consider in this study spans from 1-Jan-2010 until
31-Dec-2015 (2010-2015). This test period will be used to assess the performance
of our proposed methodology. Recall that the preceding period, from 3-Jan-
2006 until 31-Dec-2015, is also considered but only for the identification of

15



target patterns. This is to ensure that there will be sufficient historical data
to identify target patterns, especially for these queries that will appear at the
beginning of the test period. Section 5.1 provides a first, overall picture of the
proposed algorithm’s ability to predict bullish and bearish classes, for various
combinations of 7, and 7. Subsequently, the whole test period is split into two
subperiods of equal length; the 1%¢ subperiod (2010-2012) and the 2"? subperiod
(2013-2015). Section 5.2 repeats the procedure adopted in section 5.1 for the
first subperiod. In addition, three characteristic combinations of 7, and 7, are
identified which produce optimal results. Finally, Section 5.3 focuses on the
second subperiod, and presents more detailed results for the aforementioned

threshold combinations.

5.1. Results for the whole test period

The total number of Qs in the whole test period is 6,588. Having identified
these queries, it is now possible to implement the subsequence DTW algorithm.
However, since the price threshold 7, (see Eq. (2)) has not been defined yet, we
initially request from the algorithm to identify for each query pattern, the three
most similar historical subsequences in each one of the 640 stock price series.
Thus, for each Q pattern, 640 x 3 = 1,920 target patterns are identified, and
the corresponding price and volume similarity costs to their Qs are calculated.
The term ‘price’ similarity cost for a target pattern, I, refers to the warping
cost JNM? that results from the optimal alignment between this target pattern
and its query, after adopting the subsequence DTW algorithm (see section 4.2),
whilst the term ‘volume’ similarity cost refers to the alignment (warping) cost
between the corresponding volume series of these patterns which results after
implementing the DTW algorithm.

The performance of the proposed methodology is assessed for 10,000 com-
binations of 7, and 7, which is presented on an 100 x 100 grid in Fig. 1. The
empirical distributions of the similarity costs for all target patterns were highly
skewed to the right. Thus, for a better illustration, the grid is structured by us-

ing the percentiles of the cost’s empirical distributions, rather than using equal
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distance values within the minimum and maximum values of these distributions.

Each percentile represents a similarity cost threshold that is used in order
to consider the class assigned to a target pattern in predicting the class of its Q
pattern. In other words, a target pattern is considered only if its price similarity
and its volume similarity to the @ pattern are less than the values indicated
by the corresponding percentiles. In general, when higher percentiles are used,
more target patterns are considered for predicting each @ pattern’s class, and
thus the performance of more Q patterns is likely to be assessed.

The top-right corner of Fig. 1(a) corresponds to the extreme case where the
100*" percentiles are used and the number of @ patterns considered takes its
maximum value of 6,588. Moving towards lower percentiles, the filters adopted
become stricter and less target patterns are considered per case. Apparently, if
there are no target patterns for a particular query, there cannot be a prediction
for its class, and such cases are discarded. The overall effect to the number of
Qs considered after applying these filters is illustrated in Fig. 1(a).

In a similar manner, Fig. 1(b) shows the overall accuracy for each threshold
combination. It is clear that when strict price similarity thresholds are con-
sidered (roughly less than the 10" percentile) the algorithm performs poorly
showing and overall accuracy of less than 50%. Relaxing this threshold by using
values between the 10" and 30" percentiles allows the algorithm to consider
more target patterns and its predictive performance is being improved. At this
level of 7,, it is also obvious that adopting a 7, from the range between the 15
and 50" percentiles enhances even further the performance of the algorithm
since it considers target patterns which are similar to the Qs in terms of both
the price and the volume. Relaxing further the threshold values and moving
towards the upper right corner of the grid shows that the performance of the
algorithm is deteriorated but still showing an overall accuracy that is marginally
above the level of 50%. This performance behaviour could be mainly attributed
to the fact that while increasing the number of target patterns for making pre-
dictions, at some point the algorithm starts to select target patterns that do

not contribute positively to the predictive performance. These additional tar-
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Fig. 1. The different number of query patterns that are considered for various
combinations of price and volume similarity cost thresholds, and the corresponding

overall accuracies for the period 2010-2015.

get patterns are less similar to the queries compared to those that had been
obtained by adopting stricter threshold values.

It is important to note that the overall accuracies presented in Fig. 1(b)
are not comparable each other in terms of their significance since they result
from different numbers of @ patterns. Thus, we proceed with the following
hypothesis test where we test the null hypothesis that the true probability of
the algorithm predicting bullish and bearish trends correctly is 50%, against
the alternative hypothesis that this true probability is greater than 50%. The

p-values from this test are illustrated in Fig. 2 and were calculated by
p—value =1- FBino(k; n, p)a (7)

where Fgino is the binomial cumulative distribution function, k is the number of
successful predictions out of the n number of @ patterns and p = 0.5. For better
illustration, in Fig. 2, black dots signify the cases where p-value < 0.05 and the
null hypothesis is rejected for a 95% confidence level. It is clear that significant
cases appear when 7, takes values roughly greater than the 20" percentile. It
is also worth noting that when volume similarities are not considered (100"
percentile for volume similarity cost), the performance of the algorithm is not

significant. Clearly, these results highlight the importance of considering volume

18



Percentile for price similarity cost threshold

09
08
07
06
@
052
z
04 =
03
02
0.1

Fig. 2. The p-values resulting from testing the null hypothesis that the algorithm has an

20 40
Percentile for volume Slml\arlly cost (hreshcld

overall accuracy of 50% against the alternative that its overall accuracy is greater than 50%,
for various combinations of 7, and 7. Statistically significant cases for a 5% significance level

are emphasised with black dots.

similarity in charting, and supports the fifth argument presented in section 2.

5.2. Results for the subperiod 2010-2012

Regarding the subperiod 2010-2012, Fig. 3(a) is similar to Fig. 1(a) showing
that when similarity thresholds take lower values, fewer @ patterns are consid-
ered, since those for which the algorithm does not find any target patterns are
being discarded. Fig. 3(b) illustrates the algorithm’s overall accuracy for various
combinations of 7, and 7, which takes values above 50% in the vast majority of
cases. The cases were the algorithm performs poorly (less than 50%) are those
were very strict similarity thresholds (values less than those that correspond to
the 10" percentiles) are adopted.

Fig. 4(a) presents the corresponding p-values of the same one-side hypothesis
test used in Fig. 2 and highlights the significant cases for a significance level
a = 5%. Applying a k-means clustering method on the significant cases of this
grid allows us identify three clusters (Fig. 4(b)) with their centroids. These
three cases represent combinations of high price and volume cost thresholds
(cluster 1), low price and volume cost thresholds (cluster 2) and finally price cost
threshold with high values but volume cost thresholds with low values (cluster
3). Table 1 presents the percentiles of the thresholds 7, and 7, of these three

characteristic cases along with their actual values. In the following sections, the
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4. p-values (as for Fig. 2 but for the period 2010-2012) are illustrated in Fig.

4(a). Fig. 4(b) illustrates three clusters of the significant cases and their centroids.

performance of the algorithm will be assessed in more detail, for these three

threshold combinations, for the period 2013-2015.
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Table 1. Percentiles of 7, and 7y for the three centroids presented in

Fig. 4(b) along with their values.

Centroid of Cluster  Price Threshold  Volume Threshold

PCTL? Value PCTL Value

1 R9th 225402  77th 42.0205
2 44th 11.0251 27tk 28.0557
3 88tk 21.8989 38tk 31.4274

2 Percentile.

5.3. Results for the subperiod 2013-2015

In this section we scrutiny further the performance of the algorithm for
the period 2013-2015 considering the three threshold combinations identified in
the first subperiod (see Table 1). These combinations correspond to the three
centroids of the three clusters of significant cases that were identified in section
5.2. Now, the algorithm is not restricted to search for the three most similar
subsequences in each stock series for each @ pattern. Rather, it searches for
all historical subsequences in all stock series for each @ pattern that satisfy a
particular threshold combination. Apparently this is a more realistic approach
allowing class predictions to be based on more ‘relevant’ information.

In order to assess the predictive performance per case, the overall accuracy
is calculated as the proportion of the correct predictions to the total number
query patterns considered. Furthermore, the overall accuracy is broken down
by examining the bullish and bearish precisions. More precisely, the bullish
(bearish) precision is the percentage of Q patterns classified as bullish (bearish)
whose true class is bullish (bearish). In addition, we test the null hypothesis
that these performance measures equal to 50% against the alternative that they
are greater than 50% by using Eq. (7) to calculate the corresponding p-values.
Results are presented in table 2.

During the subperiod 2010-2012, the overall accuracy of these three threshold

combinations was statistically significant greater than 50%. However, Table 2
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Table 2. Predictive performance for the three centroids of Fig. 4(b).

Overall Bullish Bearish

Panel A: Centroid 1

Correct Predictions 1,525 630 895

Total Predictions 3,080 1,347 1,733
Performance Measure (%)  49.51 46.77 51.64
p-value 0.6994 0.9905 0.0818

Panel B: Centroid 2

Correct Predictions 910 397 513
Total Predictions 1,814 843 971
Performance Measure (%)  50.17 47.09 52.83
p-value 0.4533  0.9509  0.0361

Panel C: Centroid 3

Correct Predictions 1,457 605 852

Total Predictions 2,942 1,289 1,653
Performance Measure (%)  49.52 46.94 51.54
p-value 0.6907 0.9851  0.1004

shows that the corresponding performance measures for the period 2013-2015
are not significant. Breaking down the overall accuracy into bullish and bearish
precisions it is clear that this is mainly attributed to the poor bullish predictive
performance, where all cases generate bullish precisions lower than 50%. On the
contrary, bearish precisions are greater than 50% with relatively low p-values.
For brevity reasons, in the rest of this section we will focus on the combi-
nation of thresholds that corresponds to the centroid of the second cluster and

explore further its performance.® Recall that the second centroid was the one

3The corresponding results for centroids 1 and 3 are available upon request.
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where lower values for 7, and 7, were used. This means that predictions for
query patterns had to rely on historical subsequence that were more similar
to the queries compared with the required similarity in centroids 1 and 3. In
other words, the algorithm is more selective in which queries to make predic-
tions and thus the total number of predictions is significantly lower than the
corresponding total number of predictions made in the other two cases.

A further examination of the target patterns, based on which predictions
were made, showed something interesting. Recall that the algorithm made pre-
dictions for 1,814 queries. However, for each prediction the number of target
patterns considered, differed significantly. More precisely, there were many cases
where the prediction of a particular @ pattern’s class was based on just a few
number of target patterns (1-10), whereas in other cases the number of target
patterns was thousands. In practice, we could argue, that a technician would
not consider the cases where there was not significant number of historical sub-
sequences similar to the query pattern under consideration. In order to gain
better insights in the effect that the number of target patterns has, we intro-
duce a new threshold, 7,,, which represents the minimum required number of
target patterns for making a prediction.

Fig. 5 presents the aforementioned performance measures for various values
of 7, (from 0 until 5,000 with a step of 10). More precisely, Figs. 5(a), 5(b)
and 5(c) present the effect of this threshold to the overall accuracy, the bearish
precision and the bullish precision respectively. One-tailed critical values that
signify the rejection region for the null hypothesis are also provided and were
estimated by, 1 — Fy.\, (a,n — k,k + 1), where Fy\, is the Beta inverse cumu-
lative distribution function, « is the significance level, n is the number of trials
and k is the number of successes. Setting k = n/2 and for significance levels 1%,
5% and 10% shows whether the null hypothesis can be rejected for confidence
levels 99%, 95% and 90% respectively. It can also be seen that these critical
values distance more from the level of 50% as higher values of 7, are considered.
The reason for this is that when using higher values for 7,, each performance

measure is calculated on less predictions, and thus the performance measures
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Fig. 5. Performance measures for 7, = 11.0251, 7, = 28.0557 and for various values
of . Dashed lines are the one-tailed critical values that signify the rejection area

for significance levels of 1%, 5% and 10%. The right vertical axis shows the p-values.

should be improved further to reject the null for a given confidence level. Finally,
p-values are also illustrated for a better understanding of the performance of the
algorithm since they provide the marginal significance levels where we would be
indifferent between rejecting and not rejecting the null hypothesis.

Fig. 5(a), shows that the overall accuracy of the algorithm becomes signif-
icantly greater than 50% (for a confidence level of 90%) if the user sets 7, to
take values between roughly 250 and 3,000. When 7, takes even higher values
the performance of the algorithm deteriorates as indicated by the corresponding
high p-values. The effect that this threshold has at the performance of the al-

gorithm can be interpreted as follows. Initially when 7, takes very small values,
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the overall accuracy is calculated by considering also cases where predictions
are made based on just a few target patterns. This contradicts with the main
assumption of TA, that history tends to be repeated. In other words, for a query
subsequence to be considered as a chart pattern there must be evidence from
the historical price series that ‘enough’ similar subsequences occurred. Setting
a higher value for 7, discards these problematic cases enhancing at the same
time the performance of the algorithm. However, setting even higher values
for 7, excludes Q patterns where the number of target patterns was enough
to make accurate prediction, and thus the performance starts to exacerbate.
Another interpretation that could be given to the latter point is based on the
‘self destructive’ nature of a technical trading rule (Timmermann and Granger,
2004). According to this, a forecasting pattern, will self destruct after the time
that is broadly used. When 7, takes higher values (greater than roughly 3,000
in our results), @ patterns that remained for assessment are those for which the
algorithm found a great number of similar reference patterns. It can be argued
that these cases may represent patterns that have been occurred so many times
in the past that the market started to recognise them and thus their predictive
power eroded or even vanished.

Regarding the bearish precision, the algorithm predicts significantly better
than 50% even if no 7, is used (see Table 2). However, the use of this threshold
enhances even further the bearish precision moving the p-values below 1% when
the 7, takes values again between roughly 250 and 3,000 (Fig. 5(b)). It is also
worth to note the bearish precision of 58.08% that is produced when 7, = 1,570
compared to the precision of 52.83% when no 7, is used. Bearish precision
deteriorates for even greater values of 7, similarly to the effect that larger
values of 7, have on the overall accuracy. However, p-values still remain lower
than 1.5%. Finally, Fig. 5(c) illustrates the performance of bullish predictions
which is not significantly greater than 50% even though it does improve slightly
when 7, is set to take values around 400.

The effect that 7, has on the other two cases (centroids 1 and 3) is similar, in

the sense that as it takes greater values the performance measures are initially
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improved whilst adopting even greater values affects these measures negatively.

However, in the case of centroid 2, the performance of the algorithm is superior.

6. Additional results

This section presents a profitability analysis in order to see how the above
performance measures are interpreted in terms of potential profits. For this
assessment we adopt the following trading rule. When the algorithm makes
a bullish (bearish) prediction, a long (short) trading position is taken at the
open price of the following day. This position is closed on the earlier time
between the time a stop loss condition is triggered and the time the ultimate
high (low) is realised. In our analysis we have considered various values for
stop loss orders plus a case without a stop loss condition. Apparently, it is
practically impossible for someone to systematically close the initial position at
the ultimate locals. However this approach will illustrate the average maximum
potential profit that can be exploited through the proposed algorithm although
the probability of realising this in practice is zero. Fig. 6 illustrates the average
maximum trading profit following bearish signals, when 7, and 7, take values of
the second centroid, for various values of 7, and for stop loss orders of 1%, 3%,
5% and 7%. Increasing the value of the stop loss seems to initially decrease the
average maximum profitability.* However, the case where no stop loss condition
is used can be treated as a case where the stop loss order is set at a very high level
that is never reached. Hence, using greater than 7% stop loss orders increases
the maximum potential profitability up to the extreme case where no stop loss
is considered. Overall, Fig. 6 shows that this average maximum profitability

fluctuates mainly between 12.5% and 15%.

4This is aligned with other empirical results such as those reported by Arévalo et al. (2017)
and Wu et al. (2017). Although different trading strategies had been used in these studies,

the aforementioned authors found superior profitability for smaller stop loss levels.
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Fig. 6. Profitability of bearish signals when 7, and 7 take values of the 2¢ centroid.

In order to assess statistically these returns we adopt the following pro-
cedure. Each return reported in Fig. 6 resulted by adopting three different
thresholds. The first two, 7, and 7, are constant whilst the third one, m,,
takes the values presented in section 5.3. Recall that, increasing the value of
Ty, the number of predictions is decreased. Thus, for every case we randomly
select with replacement a number of days which equals to the number of the
corresponding predictions made. The ultimate lows after these days are iden-
tified by adopting the procedure described in section 4.3. The aforementioned
trading rule is adopted and the average maximum profit per trade is calculated.
This procedure is repeated 1,000 times and the profitability resulting from our
methodology is compared with the distribution of the average maximum returns
that was generated by taking randomly short positions. With this comparison,
simulated p-values are estimated. These p-values are fractions indicating the
proportion of average maximum profits which resulted from random short posi-
tions that are greater than the mean maximum return realised from the initial
methodology. The proposed algorithm would be considered profitable at a sig-

nificance level of a% if these simulated p-values are less than a%. The p-values
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when stop loss orders of 1%, 3%, 5% and 7% are all lower than 1% indicating
that our results for bearish signals are statistically significant. The case of no
stop-loss is also statistically significant although the p-values fluctuate below
the 5% level. However, the profitability of bullish signals is not statistical sig-
nificant where p-values take high values. The same analysis has been carried
for the other two centroids and results were similar. More precisely, maximum
potential profits from bearish signals were statistically significant, whilst those

from bullish signals were not.

7. Conclusions and discussion

Heretofore, charting has been a common tool for making trading decisions
whilst its efficacy has been under academic scrutiny. However, the subjective na-
ture of TA, which mainly resides in the identification and interpretation of spe-
cific technical patterns, places significant barriers in assessing the predictability
of TA. In order to mitigate this problem, various pattern recognition techniques,
that identify specific technical patterns, have been historically developed, which
remove a part of this subjectivity and allow for more objective assessments of
the predictability of such technical patterns.

The contribution of this paper is two-fold. First, to the best of our knowl-
edge, we formally state and justify for the first time a set of five common char-
acteristics that technicians consider in practice. Secondly, we propose an algo-
rithmic pattern recognition scheme which captures these characteristics. Our
methodology is mainly based on the DTW algorithm and two of its modifica-
tions; the subsequence DTW and the derivative DTW. The approach followed in
this study differs from that used in other studies. More precisely, our proposed
methodology is not designed to identify specific technical patterns. Rather,
it is designed to capture these common characteristics of the entire family of
technical patterns and assess the performance of charting from a more general
perspective.

While assessing the performance of the proposed algorithm, three different
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thresholds had been used; the maximum accepted price and volume similarity
cost thresholds (7, and 7, respectively), and the minimum number of target
patterns required (7,) for predicting the class of a query pattern. We have
explored the overall accuracy of the algorithm for various combinations of the
first two thresholds and identified three clusters where the algorithm performed
statistically significant: (a) when 7, and 7, take relative high values, (b) when
they both take relative low values and (c) when 7, takes relative high values but
Ty takes low values. For the three centroids representing these three clusters the
performance of the algorithm was assessed in more detail. Our results indicate
that the class predictability of the proposed algorithm is statistically significant
only in the case of bearish classes. We found that maximum potential profits
generated after the bearish predictions were also statistically significant. Fi-
nally, we showed that the algorithm’s performance measures (especially those
for bearish classes) can be further improved with the introduction of the third
threshold,r,,. We believe that this study can have valuable and practical im-
plications in the academia and the financial industry in general. Our results
suggests that TA in principal may add value in the trading decisions. We hope
that this study will motivate future research to move towards more comprehen-
sive assessments of the predictive performance of charting. We also believe, that
our proposed algorithmic scheme may be used to design new pattern recognition

trading rules with the view to supporting trading decision systems in the future.
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Appendix A Subsequence DTW

This section presents an illustrative example for the methodology described
in section 4.2. Fig. A.1 presents the daily, close price series for the Air Products
& Chemicals Inc® traded in NYSE for the period from 3-Jan-2006 until 17-
Jan-2014 (2,025 observations). It also presents the query pattern that will be
used in the subsequence DTW algorithm and the three most similar historical
subsequences that will be identified. The query pattern has been identified
following the procedure described in section 4.1 and spans from 9-Jan-2013

(t = 1,767) until 2-May-2013 (¢* = 1,845).
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Fig. A.1. Example of three identified historical subsequences similar to a query pattern on

a stock price series.

Fig. A.2 presents the subsequence DTW algorithm. The longer sequence,
Yix1.845 (Fig. A.2 (c)), results by standardising the derivative (Keogh and
Pazzani, 2001) of the smoothed initial price series. The query pattern Qixr9
corresponds to the last 79 observations of Y (Fig. A.2 (a)). In order to identify
the three historical subsequences which are more similar to the @ pattern, the
cost matrix is calculated and presented in Fig. A.2 (b). Subsequently the accu-
mulated cost matrix, D, is calculated by adopting Eq. (1) which is presented in
Fig. A.2 (e). Fig. A.2 (d) presents the total costs of all optimal warping paths,

5Bloomberg Ticker: APD US Equity
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Table A.l. Starting, ending points and warping costs for the three
target patterns of Figs. A.1 and A.2.

l o wi d(79,wy)
1 331 (27-Apr-2007) 380 (9-Jul-2007) 13.51
2 900 (30-Jul-2009) 948 (7-Oct-2009) 10.74

3 1,251 (20-Dec-2010) 1,316 (24-Mar-2011) 13.28

d79ym, where m = 1,2,---,1,845. Observations w}, wi and wj realise the
minimum warping costs with values 13.51, 10.74 and 13.28 respectively. These
points signify the ending times of the three most similar subsequences to the
query pattern. In other words, if we had set a marginally higher value than
13.51 for the threshold 7, the algorithm would still have returned these specific
subsequences. The warping paths for these three ending points are defined by
Eq. (3) and are illustrated in Fig. A.2 (e) on the accumulated cost matrix.
This paths are used to identify the starting points af, a3 and «f for the three
subsequences. Table A.2 presents the aforementioned information regarding the
three identified target patterns. Finally, Fig. A.2 (f) duplicates Fig. A.2 (c)
with the difference that the similar subsequences are highlighted.
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Fig. A.2. The subsequence DTW algorithm.
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