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ABSTRACT 

The integration of the Internet of Things (IoT) across various sectors has notably increased 

vulnerability to sophisticated multilayer attacks, compromising multiple security layers and leading 

to significant breaches, including data loss, personal information theft, and financial losses. The 

existing research on multilayer IoT attacks faces gaps in real-world applicability due to reliance on 

outdated datasets and limited focus on adaptive, dynamic approaches to address multilayer 

vulnerabilities. Additionally, the complete reliance on automated processes without integrating 

human expertise in feature selection and weighting processes may affect the reliability of detection 

models. This thesis proposes a novel Semi-Automated Intrusion Detection System (SAIDS), 

integrating efficient feature selection, feature weighting, normalisation, visualisation, and human-

machine interaction to enhance the detection and identification of multilayer attacks, thereby 

improving mitigation strategies. 

This research contributes significantly to IoT security by highlighting the SAIDS framework’s 

ability to efficiently detect and classify multilayer attacks in machine learning models optimising the 

computational process and extracting most significant features extracted out of dataset. By 

incorporating human expertise into the optimised feature analysis process, the proposed system 

enhances the reliability of detection models through binary (attack/no-attack) and multiclass 

classifications (UDP, ICMP, HTTP flood, MITM, TCP SYN, XSS, SQL injection, and Password 

cracking), thereby showing a potential for developing a robust foundation for future research in 

dynamic and adaptive security measures for IoT environments. These findings not only validate 

the practical applicability of SAIDS in real-world scenarios but also propose a standard framework 

for future IoT security enhancements using machine learning methods.   

The SAIDS framework was evaluated using the Edge-IIoTset dataset, a recent IoT dataset. 

Additionally, it was evaluated on a dataset collected from the Cooja simulation platform running 

on the Contiki Operating System for simulated UDP flood attacks, as well as on real IoT devices, 

specifically an ARP poisoning attack on the Xiaomi Redmi Note 9S. Through this evaluation, the 

framework identified 13 significant features from the Edge-IIoTset dataset and seven significant 

features from the simulated environment dataset for the detection and classification of IoT 

multilayer attacks. 
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The research employs various machine learning models, with a focus on K-Nearest Neighbours 

(KNN), which outperformed other classifiers in terms of accuracy, precision, recall, and F1-score 

in binary classification and multiclass classification. It achieved a high accuracy rate of 99% in 

detecting normal traffic, TCP SYN, and ICMP flood, 97% in XSS, and 94% in HTTP flood, SQL 

injection, and password cracking attacks. 
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1 INTRODUCTION TO IOT SECURITY AND 

MULTILAYER ATTACKS 

1.1 OVERVIEW OF IOT SECURITY ATTACKS  

The Internet of Things connects physical objects (sensors and actuators) in our environment to 

the internet, allowing them to communicate with cloud-based applications, and with users. Each 

object is assigned a unique IP address, enabling communication through both wired and wireless 

networks. Consequently, IoT facilitates a myriad of applications that enhance various aspects of 

life including fitness, leisure, transportation, energy, education, and healthcare—through affordable 

devices such as smart meters, wearables, and smartphones. According to the International Data 

Corporation (IDC), the number of IoT devices will reach 55.7 billion by 2025 (Hojlo, 2021). This 

exponential increase in IoT devices is due to the ubiquitous connectivity and decision-making 

capabilities of IoT devices (Anthi et al., 2019).  

Researchers have categorised IoT architecture into several layers: three-layer, four-layer, and five-

layer architectures. Butun, Osterberg and Song, (2020) defined a five-layer architecture including 

the physical, MAC, network, transport, and application layers. Malhotra et al. (2021); Hassija et al. 

(2019) proposed four-layer architectures. Specifically, Malhotra et al. (2021) included the 

perception, network, support, and application layers, while Hassija et al. (2019) included the 

sensing, network, middleware, and application layers. Additionally, researchers such as (Khanam et 

al. (2020); Tahsien, Karimipour and Spachos (2020); Al-Garadi et al. (2020) described a three-layer 

IoT architecture consisting of the perception/physical, network, and application layers. This 

research focuses on the three-layer architecture, consisting of the physical layer, the network layer, 

and the application layer, which is the standard architecture for IoT systems and the most widely 

cited one. The three-layer IoT architecture is illustrated in Figure 1.1. 
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Figure 1.1. The IoT system’s three-layer architecture (Tahsien, Karimipour and Spachos, 
2020). 

A. Physical Layer 

The physical layer is the foundational layer of the IoT architecture. Its primary role is to sense, 

gather, and process information from the surrounding physical environment (Atlam and Wills, 

2019). This layer is crucial as it generates a significant volume of IoT big data. Effective analysis of 

this data can facilitate the development of a context-aware IoT system. The physical layer utilises 

various types of sensors to monitor their surroundings, actuators to perform autonomous actions, 

Radio Frequency Identifications (RFIDs) to identify, track, and monitor IoT devices, and wireless 

sensor networks (WSNs) to provide essential sensing and communication services (Atlam and 

Wills, 2019). 

IoT devices are often resource-constrained, they have limited memory space, and low 

computational capability, and processing capacity. As a result, to transmit the data obtained by the 

sensors, physical layer communication technologies with low energy consumption are required. 
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Examples of such communication protocols include IEEE 802.11ah, IEEE 802.15.4e, and Z-

Wave (Tahsien, Karimipour and Spachos, 2020). 

B. Network Layer 

This IoT layer serves as the backbone for connecting and communicating IoT devices over the 

internet, where the centralised server is located. It is mainly utilised to transfer data and information 

between the physical and application layers using various technologies and protocols, including 

ZigBee, GSM, 2G,3G,4G,5G, LTE, Bluetooth, Wi-Fi, IPV4, IPV6, etc. Additionally, local clouds 

and servers in this layer store and process data, acting as middleware between the network and 

application layers (Tahsien, Karimipour and Spachos, 2020). 

C. Application Layer 

The application layer is the third layer in an IoT system, comprising several mobile and web 

applications that provide various services like smart home control, industrial automation, and 

healthcare monitoring. It serves as the point where users interact with the IoT system, making it 

easy for them to use these services. Common protocols used in this layer include HTTP, MQTT, 

and others, which help devices and applications communicate with each other and share 

information (Tahsien, Karimipour and Spachos, 2020). 

A study by McKinsey highlights the economic impact of IoT, stating that by 2025, IoT could 

contribute between £155 billion and £270 billion per year to the global economy (Manyika et al., 

2015). However, despite this significant contribution, the widespread adoption of IoT devices 

introduces critical challenges, particularly in terms of security and privacy. For instance, researchers 

from Kaspersky claim that in the first six months of 2021, there were 1.5 billion attacks on IoT 

devices that were vulnerable, compared to the 639 million in the previous six months.  

As shown in Figure 1.2, which illustrates the likelihood of cyber security breaches experienced by 

UK businesses from 2017 to 2021, these incidents were not exclusively related to IoT. For large 

businesses, the rate of security breaches has fluctuated, beginning at 46% in 2017, decreasing to a 

low of 32% in 2019, then increasing again to 46% in 2020, and finally slightly decreasing to 39% 

in 2021. In contrast, the rate of security breaches for small businesses has dramatically increased 
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from 19% in 2018 to 26% by the end of 2021 (Department for Digital, Culture, Media & Sport, 

2021). This highlights the need to increase the awareness of cyber security issues, the 

implementation of the General Data Protection Regulation (GDPR), and the adoption of more 

robust security measures for detecting and preventing cyberattacks. 

 
Figure 1.2. The increase of cyber-attacks in UK businesses over time (Department for Digital, 

Culture, Media & Sport, 2021). 

Several factors make the IoT ecosystem a larger attack surface, rendering it an attractive target for 

cyber-attacks. The interconnected nature of IoT devices, as shown in Figure 1.3, means that 

compromising one device can potentially allow attackers to penetrate entire networks, leading to 

widespread security breaches. Moreover, the diverse nature of the IoT ecosystem, with devices 

from different manufacturers operating on varying standards and protocols, complicates the 

implementation of uniform security measures (Malan et al., 2020). 

The IoT system relies on sensors installed in the surrounding environment that capture a variety 

of data, including users’ behaviours, bank records, and other sensitive information, in addition to 

environmental data. 
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Figure 1.3. An example of interconnected IoT devices (Wan et al., 2020). 

Furthermore, the resource and computational power limitations of IoT devices often make the 

implementation of robust security controls infeasible. Many IoT devices are designed with minimal 

security features, frequently lacking robust authentication and data encryption methods, prioritise 

convenience and cost over security (Malan et al., 2020). Additionally, estimations by the National 

Cyber Security Centre, UK, suggest that around 98% of IoT traffic is unencrypted (National Cyber 

Security Centre, 2024). 

Several cyber-attacks have demonstrated the potential consequences of IoT security vulnerabilities. 

For instance, the Mirai botnet attack in 2016 exploited weak default passwords in IoT devices to 

create a massive botnet that launched disruptive Distributed Denial of Service (DDoS) attacks, 

leaving the US East Coast without internet. Similarly, IoT cyber-attacks launched on UK banks 

like Lloyds and Royal Bank of Scotland attempted to cause significant service disruptions by 

blocking access to 20 million UK accounts (Department for Science Innovation and Technology, 

2024).  

In May 2021, the Colonial Pipeline, a major fuel pipeline operator in the U.S., was targeted by the 

DarkSide ransomware group, which primarily used brute force password attacks, leading to 

significant operational disruptions. In response, Colonial Pipeline paid $4.4 million as ransom to 

regain control of their systems. Subsequently, the U.S. Department of Justice seized $2.3 million 
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from the DarkSide group at the time of recovery (Department of Justice, 2021; Beerman et al., 

2023). 

IoT-connected toys are prime targets for attacks that breach the privacy and safety of children. 

These devices often include cameras and microphones that can be exploited for surveillance, 

misuse, or unauthorised communication with children. Fitness devices collect highly personal data, 

such as health records and GPS locations, which are highly attractive to cybercriminals. Attacks 

targeting fitness devices aim to compromise personal information and even allow unauthorised 

tracking of individuals (Burton et al., 2021) . 

1.2 TAXONOMY OF MULTILAYER IOT ATTACKS 

On occasions of multilayer attacks, IoT devices can be affected from the sensor level to the cloud 

level, sometimes simultaneously, making it difficult to monitor and track due to the 

interconnectivity between layers. As mentioned, multilayer attacks can be harmful to IoT devices 

as they aim to exploit more than one layer of IoT architecture. For example, DDoS/DoS, MITM, 

cryptanalysis, eavesdropping and side channel attacks target the Machine-to-Machine (M2M), 

network, and cloud layers of the IoT system. Such attacks can lead to serious problems, such as 

losing control over important data and damaging the reputation and finances of those involved.  

According to the IBM Security X-Force report for 2022, 74% of IoT attacks are caused by Mozi 

botnets launching MITM attacks (IBM Security, 2022). For example, according to the National 

Cyber Security Centre, UK, in 2020, a Russian hacking group leaked documents about a project 

aiming to create an IoT botnet inspired by the Mirai botnet, targeting security cameras and network 

video recorders to perform password attacks and grow the botnet. This botnet, once large enough, 

could launch powerful DDoS attacks, illustrating the significant threat of IoT vulnerabilities being 

exploited by both state and non-state actors (National Cyber Security Centre, 2022). Additionally, 

in 2014, hackers exploited a vulnerability in a Samsung smart refrigerator that enabled them to 

implement a MITM attack and steal users’ Gmail credentials (Park, Chung and DeFranco, 2022). 

Moreover, according to the OWASP IoT Top 10 for 2018, the top vulnerability was weak, 

guessable, or hardcoded passwords, which make these devices easy targets for brute force attacks, 
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and the third vulnerability involved insecure ecosystem interfaces that result in implementation 

injection attacks such as Cross-Site Scripting (XSS) (OWASP, 2019).  

Since IoT systems are vulnerable to different types of attacks, several studies have been carried out 

to identify IoT attacks targeting each layer of the IoT architecture and discuss the possible security 

solutions to tackle these attacks. The surveys by Malhotra et al. (2021); Hassija et al. (2019); Tahsien, 

Karimipour and Spachos (2020) identified attacks targeting the IoT's four-layered architecture. 

Malhotra et al. (2021) highlighted that the physical layer consists of Eavesdropping, Jamming, 

Relay, Node Capture and Cloning attacks. The network layer is susceptible to MITM, routing, 

DDoS, and Sybil attacks. In the support layer, DoS and malicious insider attacks are common. The 

application layer is vulnerable to DoS, Phishing, Malicious Code Injection, and Session Hijacking 

attacks. 

Tahsien, Karimipour and Spachos (2020) presented a detailed list of these attacks, including several 

types of active and passive attacks. The physical device/perception surface includes DoS, 

Eavesdropping, Jamming, Node Capture, Physical Attacks, and others. The network/transport 

surface is commonly targeted by DoS, Sybil, MITM, Eavesdropping, and Spoofing attacks, among 

others. At the cloud services surface, DoS, Session Hijacking, and Malicious and Insider Attacks 

are common at this layer. The web/application surface is vulnerable to DoS, Eavesdropping, 

Malicious Node attacks, and more. The survey by  Hassija et al. (2019) divided the attacks into four 

layers: sensing layer, network layer, middleware layer, and application layer. Additionally, they 

discussed security concerns with the gateways that connect these layers. Moreover, the study 

focuses on addressing DDoS, Eavesdropping, and Spoofing. 

Studies by Ahmad, R. and Alsmadi (2021); Kumar and Sharma (2022); Atlam and Wills (2019) 

addressed cyber-attacks on the three-layer IoT system. In Ahmad, R. and Alsmadi, (2021), the 

physical layer consists of side-channel attack, physical damage, node jamming, eavesdropping, etc. 

The network layer attacks are divided into encryption attacks (MITM, caching, spoofing, session 

hijacking, packet manipulation, cryptanalysis and RFID cloning), DoS/DDoS attacks (packet 

flooding, battery draining, SYN flood, botnet, ping of death, etc), routing attacks (sybil, 

wormhole/sinkhole, forwarding and nmap/port attack), and middleware attacks (brute-force, 

dictionary attack, message replay, etc). The application layer attacks are divided into malware attacks 
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(virus, ransomware, spyware, etc), privacy attacks (spear phishing, phishing, social engineering, etc), 

and code attacks (SQL injection, XSS, malicious script, session hijacking, etc).  

In Kumar and Sharma (2022) taxonomy, the perception layer includes Node Capture, Replay, 

Botnet, Mirai, Eavesdropping, and Side Channel attacks. The network layer is vulnerable to 

DoS/DDoS, MITM, Sybil, Sinkhole, Spoofing, and Data Transit attacks. The application layer 

includes Phishing, Malicious Code Injection, Sniffing, Trust Management, and Policy Enforcement 

attacks. Atlam and Wills (2019), added an encryption attacks category alongside the three layers, 

which includes of cryptanalysis, side channel, and MITM attacks. 

Moreover, Khanam et al., (2020); Mitrokotsa, Rieback and Tanenbaum (2010) added a category 

called encryption or multilayer or dimensional attacks alongside the three-layer IoT attacks. The 

new attack category in Khanam et al. (2020) is called multilayer/dimensional attacks and consists 

of DoS, side channel, MITM, and cryptanalysis attacks. Furthermore, Mitrokotsa, Rieback and 

Tanenbaum (2010) focused on RFID security, including attacks such as covert channels, crypto, 

traffic analysis, side channel, replay, and DoS attacks.  

The above-mentioned studies focused on security attacks that target a single IoT layer, with only 

few studies touching on the topic of multilayer attacks such as Khanam et al. (2020); Mitrokotsa, 

Rieback and Tanenbaum (2010). However, all of them are limited to one or a subset of multilayer 

attacks. This highlights the necessity to have secure measures to protect against different types of 

multilayer attacks and this can be achieved by understanding the comprehensive taxonomy of 

multilayer attacks. 

Figure 1.4 provides a comprehensive taxonomy of multilayer attacks within IoT systems, 

distinguishing them from the single-layer attacks associated with the Physical, Network, and 

Application layers. It focuses on the nature of multilayer attacks that span across these layers and 

describes their behavioural patterns. The red, blue, and green cells in this figure show an overview 

of single-layer IoT attacks that have been reported in the above literature. The grey cells show a 

taxonomy of multilayer IoT attacks. 
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Figure 1.4. The three-layer IoT security attacks including multilayer attacks. 

• Physical Layer Attacks 

The IoT physical layer is vulnerable to a variety of security attacks. These attacks are described as 

follows: 

Physical Damage: Adversaries can physically damage IoT devices, deactivating them and making 

IoT services inaccessible. 

Node Injection Attack: This attack is considered a type of MITM attacks, where the intruder 

deploys a node between two legitimate IoT nodes to intercept the network traffic (Khanam et al., 

2020; Atlam and Wills, 2019). 

Jamming: This attack has significant consequences for IoT devices, as it can quickly drain device 

battery power by stopping data transfer and causing frequent retransmissions. It also has a negative 

impact on IoT networks by disrupting communication, draining energy resources, and reducing 

performance (Idrissi, Azizi and Moussaoui, 2020). 
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RF Interference: In this attack, an attacker uses an RFID tag to send noise signals across the radio 

frequencies used by RFIDs for communication. These noise signals interfere with RFID signals, 

reducing communication quality and affecting IoT sensor availability (Hassija et al., 2019; Tahsien, 

Karimipour and Spachos, 2020). 

Node Tampering (or Node Capture): The attacker targets a sensor node, physically capturing 

and compromising it by attaching cables to its circuit board. As a result, the attacker may alter or 

remove sensitive information on the end node  (Kumar and Sharma, 2022; Atlam and Wills, 2019). 

Booting Attack: During the booting phase, IoT devices are vulnerable to various attacks, and 

attackers may target node devices while they are being restarted. This vulnerability exists because 

built-in security mechanisms are not enabled at that time (Hassija et al., 2019). 

Sleep Deprivation: This is a type of DoS attack where the attacker keeps the nodes running 

continuously by sending an infinite number of seemingly legitimate requests. to This consumes the 

nodes’ batteries, shortening their lifetime and leading to shutdown (Idrissi, Azizi and Moussaoui, 

2020). 

• Network Layer Attacks 

As the backbone of the IoT system, the network layer is exposed to a range of security attacks, as 

detailed below: 

Routing: This is a cyber-attack that effects the routing of messages. As a result, the attacker can 

alter, spoof, reroute, or drop packets at the network layer using such an attack (Mosenia and Jha, 

2017). 

Sybil Attack: In this attack, a single malicious node hides its original identity by claiming several 

identities and relocates throughout the network, causing the malicious node to remove the original 

nodes from the routing table (Tahsien, Karimipour and Spachos, 2020). 

Sinkhole Attack: This is a routing attack in IoT systems where the attacker creates a flood of 

network traffic using fake routing information to disrupt connectivity (Kumar and Sharma, 2022). 
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Selective Forwarding Attack: This attack involves a malicious node selectively forwarding some 

packets while dropping others during transmission, thereby creating a gap in the IoT network 

(Tahsien, Karimipour and Spachos, 2020). 

Blackhole Attack: The objective of this attack is to drop all normal packets encountered in the 

network. Initially, the intruder sends out malicious routing data to establish a direct path to the 

target. The sender then selects the malicious path for packet transmission and begins sending the 

packets after receiving a fake reply from the attacker. Then, the attacker begins to drop all packets 

routed through the malicious path. 

Hello Flood Attack: In this attack, a malicious node transmits “HELLO PACKETS” to all other 

nodes in the network, claiming to be their neighbour. The attacker's goal is to exhaust the IoT 

network by sending a flood of route requests (Mosenia and Jha, 2017). 

RFID Cloning: This is an attack on RFID tag where data is copied from one RFID tag to another. 

Although the two RFID tags contain identical data, the original RFID ID is not duplicated  

(Khanam et al., 2020). 

• Application Layer Attacks 

The most common IoT application layer attacks are listed below: 

Phishing Attack: This is a type of social engineering attack that targets IoT users, using infected 

emails or phishing websites to obtain login credentials, such as passwords and credit card details. 

Malware, Spyware, Ransomware, Worms and Viruses: The purpose of these attacks is to 

compromise the system's confidentiality. They are most commonly seen in the form of spam, 

Trojans, and other malware (Khanam et al., 2020). 

• MultiLayer Attacks 

Many attacks on IoT security are not limited to a single layer. Attacks that affect multiple layers, 

such as the physical, network, and application layer, are classified as multilayer attacks. These 
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attacks, including encryption attacks (side channel, eavesdropping, MITM, and cryptanalysis), 

DoS/DDoS, replay, and code injection attacks, are described in more detail below. 

A. Encryption attacks 

The intruder uses encryption attacks to compromise the three layers of the IoT system by breaking 

the encryption algorithms that safeguard the communication channels between IoT devices. 

Examples of such attacks include side channel, eavesdropping, cryptanalysis, and MITM attacks 

(Khanam et al., 2020; Deogirikar and Vidhate, 2017; Yang et al., 2017). 

Side Channel Attack: In these attacks, the attackers target encryption devices in order to 

obtain encryption keys and steal sensitive information. Power consumption attacks, timing attacks, 

and electromagnetic attacks are examples of these attacks. 

Eavesdropping: There are two ways to implement eavesdropping attacks whether in active 

or passive mode. In passive mode, the attacker listens to the data exchanged between two legitimate 

devices and gains the encryption key needed to decrypt confidential data, resulting in an invasion 

of users' privacy without their awareness. An example of active eavesdropping is the MITM attack, 

which will be discussed in the next point. 

MITM Attack: This is an active attack, where the attacker acts as a router between two nodes 

exchanging sensitive information, allowing the attacker to capture the encryption key to decrypt 

and modify the data. As shown in Figure 1.5, a node injection attack is a type of MITM attack that 

compromises the IoT physical layer. Examples of MITM attacks that target the network layer 

include ARP poisoning, ICMP redirection, port stealing, DHCP spoofing. DNS spoofing and 

session hijacking target the IoT application layer. 

Cryptanalysis: This attack is different from other encryption attacks, the attacker attempts to 

decrypt sensitive data without acquiring the encryption key. As shown in Figure 1.5, examples of 

cryptanalysis attacks include ciphertext-only attacks, known-plaintext attacks, chosen-plaintext 

attacks, and brute-force attacks such as FTP and SSH-patator.  
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B. Dos/DDoS Attack:  

This attack involves overwhelming the target IoT device or network with a large amount of flood 

traffic by initiating a 3-way TCP handshake but not completing the final stage (ACK) to make the 

service unavailable for future requests, even from legitimate users. A botnet attack involves a group 

of IoT devices infected with malware, which can be used to launch DoS/DDoS attacks (Khanam 

et al., 2020). As shown in Figure 1.5, sleep deprivation and sensor data flooding are examples of 

DoS/DDoS attacks at the physical layer. Internet Control Message Protocol (ICMP), Transmission 

Control Protocol (TCP SYN), User Datagram Protocol (UDP) and Hello Floods compromise the 

network layer. Lastly, heartbleed, goldenEye, slowloris, slowhttptest, zero-day, Hypertext Transfer 

Protocol (HTTP), and Domain Name System (DNS), floods exploit the application layer (Ferrag 

et al., 2020). 

C. Replay Attack:  

An adversary compromises both the IoT physical and network layers using this attack to obtain 

sensitive information and mislead the receiving device. They do this by storing the transmitted data 

and rebroadcasting it later to one or more parties, which results in the exhaustion of system 

resources such as processors, batteries, and memory (Khanam et al., 2020; Kumar and Sharma, 

2022). 

D. Code Injection Attacks:  

Cybercriminals target both the IoT physical and application layers with this attack. At the physical 

layer, the attacker physically injects malicious code, such as malware, into IoT nodes, forcing them 

to execute specific actions or even gain access to the IoT system (Atlam and Wills, 2019). As seen 

in Figure 1.5, SQL injection, XSS and malicious scripts are types of code injection attacks that can 

target the IoT application layer. For example, attackers may use XSS to inject malicious scripts into 

a trustworthy website, potentially compromising IoT applications. If an XSS attack is successful, it 

can lead to IoT account hijacking, revealing users' information and possibly crippling the IoT 

system (Malhotra et al., 2021). 
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• Common Patterns in Multilayer Attacks 

There are common patterns in these multilayer attacks, as shown in Figure 1.5. For instance, 

eavesdropping, MITM and replay attacks are interception attacks targeting data confidentiality, 

where an unauthorised user gains access to sensitive data, IoT devices, and applications. In 

addition, DoS/DDoS attacks can be considered interruption attacks that compromise the 

availability of services by flooding the network with massive amount of traffic, causing disruption 

in IoT network operations. Furthermore, code injection attacks are fabrication attacks that target 

data integrity by creating illegitimate information within the IoT system. Cryptanalysis and side 

channel attacks exploit data confidentiality by compromising cryptographic algorithms to obtain 

sensitive information. 

Moreover, these multilayer attacks share specific technical patterns across IoT layers. Attacks such 

as DoS/DDoS, replay, and sleep deprivation aim to exhaust system resources at different layers. 

For example, DoS/DDoS attacks flood the network and application layers with excessive requests, 

while sleep deprivation depletes battery life at the physical layer. These attacks lead to abnormal 

system behavior, such as high CPU/memory usage, excessive network traffic, or rapid battery 

depletion. Code injection attacks (e.g., node injection at the physical layer, SQL/XSS injection at 

the application layer) follow similar patterns by compromising IoT devices through the injection 

of malicious code into the system. Flooding attacks such as TCP SYN flood, ICMP flood, HTTP 

flood, UDP flood, Hello flood, and sensor data flooding overwhelm the IoT system with 

unnecessary requests or data. These attacks result in high traffic volumes, large packet sizes, or 

repeated communication attempts across various layers. 

Attacks like MITM, eavesdropping, cryptanalysis, and side channel specifically target the 

cryptographic mechanisms that secure communication between IoT layers. These attacks exploit 

weaknesses in encryption processes, compromising confidentiality and integrity. Additionally, these 

multilayer attacks share common features in the protocols they exploit. For instance, HTTP 

flooding, session hijacking, and code injection all target vulnerabilities in HTTP traffic. Whether 

by overwhelming the server (HTTP flooding), intercepting session tokens (MITM), or injecting 

malicious input (code injection), they rely on manipulating or overloading HTTP requests. 
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Furthermore, attacks like TCP SYN flood, MITM, and replay share a common characteristic in 

their reliance on incomplete TCP handshakes. In SYN flooding, the attacker sends SYN packets 

without completing the connection, exhausting server resources. In MITM, the attacker intercepts 

the handshake to manipulate or eavesdrop on the session. Replay attacks manipulate session traffic 

by replaying or retransmitting TCP packets.
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Figure 1.5. Classification and patterns of multilayer attacks in IoT systems. 
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1.3 TECHNOLOGIES TO DETECT IOT MULTILAYER 

ATTACKS 

In 2024, the UK introduced new laws mandating that IoT devices adhere to minimum security 

standards. For example, manufacturers should not set default passwords that are common or 

simple, such as 'admin' or '12345'. They must publish clear contact details so that any bugs, 

vulnerabilities, or security issues can be promptly reported and addressed. Additionally, they are 

required to inform consumers about the minimum duration for which security updates will be 

provided for their devices (Department for Science Innovation and Technology, 2024). 

• Non-ML based Security Solutions 

Traditional security methods have been integral to the defence against IoT cyber threats. Among 

these, packet filtering and firewalls stand out. These techniques work by examining data packets 

moving in and out of a network and enforcing security rules to either allow or block traffic 

(Chaabouni et al., 2019). This helps prevent unauthorised access and malicious data from 

compromising the network. 

Encryption is another critical traditional method, which helps maintain confidentiality and user 

privacy by employing cryptographic protocols to secure data during transit. Protocols such as 

Transport Layer Security (TLS), Secure Shell (SSH), and Hypertext Transfer Protocol Secure 

(HTTPS) ensure that data and code are encrypted before transmission, protecting them from 

interception and tampering. Encryption methods rely on using pairs of public and private keys to 

verify that data originates from legitimate sources and remains unaltered  (Chaabouni et al., 2019). 

Furthermore, there are several studies that have focused on detecting and mitigating multilayer 

attacks using other traditional techniques, such as distributed cross-layer approaches, behaviour-

based anomaly detection techniques, and distributed mobile agents.  
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Studies by Bansal et al. (2011); Mahale et al. (2017); Bansal, Divya and Sofat (2010) have focused 

on detecting packet dropping, route misdirection, and Dos/DDoS attacks, in wireless mesh 

networks using cross-layer interaction techniques. For instance, Bansal et al. (2011) focused on 

detecting multilayer attacks in wireless mesh networks (WMNs). Packet dropping and route 

misdirection attacks target the routing layer, while shorter than Distributed Coordination Function 

Inter Frame Spacing (DIFS) time attacks, oversized Net Allocation Vector (NAV) attacks, and 

reduced backoff attacks target the MAC layer. The authors suggested a distributed cross-layer 

approach that utilises both network and MAC layer parameters for detection, as shown in Figure 

1.6.  

Figure 1.6. Framework for IoT IDS (Bansal, D., Sofat and Kumar, 2011). 

Similarly, Bansal, Divya and Sofat (2010) proposed a framework that utilises cross-layer interactions 

for detecting DoS attacks, including collision attacks, packet dropping and misdirection attacks. 

Mahale et al. (2017) proposed an advanced cross-layer technique, which combines a device-driver 

packet filter and a remote firewall to mitigate DDoS attacks. Their approach dynamically adjusts 

network parameters in response to the attack. The authors use metrics such as the total number of 

packets, forwarded packets, and dropped packets to evaluate the effectiveness of their approach in 

filtering malicious traffic. 
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Other studies have focused on detecting multilayer attacks in mobile ad hoc networks. For 

example, Sodagudi and Rao (2014) focused on detecting DDoS attacks, specifically black hole 

attacks, and MITM attacks, specifically ARP cache poisoning attacks. The authors proposed 

behaviour-based anomaly detection techniques to detect these multilayer attacks. They developed 

MBHARP (Malicious Black hole attack with routing protocol), as shown in Figure 1.7, an approach 

to identify black holes, and the DL2MITM detection (Data link layer MITM attack) technique to 

detect MITM attacks.  

Figure 1.7. MBHARP framework (Sodagudi and Rao, 2014). 

Mythili and Seetha (2021) proposed a novel approach called MPDDMA to detect multilayer packet 

dropping attacks using distributed mobile agents, which can detect such attacks in different layers 

and communicate with each other to identify the source of the attack. The authors used NS2 

software to implement their approach. The metrics used to evaluate the MPDDMA approach 

include detection delay, detection accuracy, Packet Delivery Ratio (PDR), and total packets 

dropped. Based on these metrics, as the number of malicious nodes increases, the detection delay 

rises, detection accuracy drops from around 98% to above 80%, the PDR declines from 0.99 to 

0.36, and the total packets dropped increases from 2 to 453 packets. 
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Both Mythili and Seetha (2021); Mahale et al. (2017) used evaluation metrics to demonstrate the 

effectiveness of their approaches. Mythili and Seetha (2021) showed that their approach achieved 

detection accuracy between 80% and 98%. In contrast, Mahale et al. (2017), while reporting the 

number of packets dropped, did not address key metrics for evaluating IDS performance, such as 

detection rate, false positive rate, or false negative rate. The other researchers—Bansal et al. (2011); 

Bansal, Divya and Sofat (2010); Sodagudi and Rao (2014)—while providing valuable insights into 

the design of multilayer attack intrusion detection systems on wireless mesh networks (WMNs) 

and mobile ad hoc networks, did not offer an evaluation of their proposed solutions. 

Despite the effectiveness of traditional security measures, they face significant challenges in IoT 

environments due to high false positive and false negative rates, and limited device processing 

power and storage, which restricts their ability to handle the computational demands of robust 

encryption and packet filtering. These methods are static, making them less responsive to dynamic 

multilayer attacks, as they require manual updates to adapt to new threats. While they are effective 

in NS2 simulations, they struggle with real-world complexities like interference and evolving attack 

patterns.  

• Machine learning Based Solutions 

To address the challenges of the traditional security methods, the application of machine learning 

has emerged as an essential advancement in enhancing IoT security. Machine Learning (ML) 

techniques offer significant advantages over traditional methods by providing the capability to learn 

from large datasets, identify complex patterns, reduce false alarms, operate efficiently on resource-

constrained devices, detect IoT security attacks, and adapt to new threats in real-time. 

The primary idea behind ML is to use datasets to train models, thereby improving their decision-

making and predictive accuracy in identifying specific tasks. For instance, when a machine learning 

model identifies a malicious IP address trying to make a connection, it can detect the attack and 

block it, thereby preventing potential data breaches Sarker et al. (2020). Therefore, alongside the 

traditional approaches, the application of ML and Deep Learning (DL) in detecting IoT attacks has 

been demonstrated by researchers. Chen et al. (2020); Hussein et al. (2022); Kethineni and 

Pradeepini (2024) provide ML and DL models to tackle IoT attacks. For example, Chen et al. 
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(2020) proposed a machine learning-based system for detecting DDoS attacks in IoT 

environments. They utilised different techniques to identify several types of DDoS attacks, 

including sensor data flood in the physical layers and UDP flood, TCP SYN, and ICMP (Ping of 

death) in the network layer. Their approach involved IoT security authentication, rules of the SDN 

controller, and supervised learning models such as the decision tree. The authors employed manual 

feature selection based on the attack type. Their work demonstrates the potential of machine 

learning algorithms in accurately detecting various DDoS attacks with an accuracy of around 97% 

in IoT networks.  

A study by Hussein et al. (2022) proposed an Intrusion Detection System based on a Random 

Forest machine learning classifier. Their model focused on detecting intrusions in IoT 

environments, such as MITM attacks, specifically ARP spoofing; DoS attacks, specifically UDP, 

HTTP, and SYN flooding; port scanning; and brute force attacks. The authors used the IoTID20 

dataset to train their classifier and achieved accuracy ranges from 78.1% to 95.2% in identifying 

the attack types. In Kethineni and Pradeepini (2024), the authors proposed an Intrusion Detection 

System (IDS) based on the integration of a Convolutional Neural Network (CNN) with a 

Bidirectional Gated Recurrent Unit (Bi-GRU) to identify Distributed Denial of Service (DDoS) 

attacks in smart agriculture. The authors demonstrated the effectiveness of their proposed model 

using the ToN-IoT and APA-DDoS datasets, achieving high detection accuracy in identifying 

DDoS attacks. 

In the existing state-of-art literature, studies focused on developing frameworks that incorporated 

machine learning models for single layer attacks identification, particularly DoS attacks, and have 

demonstrated high performance Chen et al. (2020); Hussein et al. (2022); Kethineni and Pradeepini 

(2024); Keserwani, et al. (2023); Tareq et al. (2022); Khacha et al. (2022); Al Nuaimi et al. (2023); 

Samin et al. (2023); Ullah et al. (2023); Ferrag et al. (2022). Those studies have not explored the 

detection and classification of multilayer IoT attacks, sometimes the overall training model is based 

on obsolete dataset which will make the IoT devices vulnerable to the new types of attacks. Besides, 

most of the studies have explored manual feature selection methods and a limited number of 

studies have investigated the tuning of the hyperparameters of the models used. Nonetheless, there 

remains a significant need for developing a robust and adaptive framework to detect a wider range 

of multilayer IoT attacks that exceed the constraints of current IDSs. 
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1.4 RESEARCH MOTIVATION 

The rapid proliferation of IoT devices has introduced significant cybersecurity challenges, 

particularly with multilayer attacks that target multiple layers of IoT architecture simultaneously. 

These attacks include encryption attacks, distributed denial of service attacks, replay attacks, and 

code injection attacks. 

The motivation for this research is closely aligned with the United Nations Sustainable 

Development Goal (SDG) 9: Industry, Innovation, and Infrastructure. This goal emphasises the 

importance of building resilient infrastructure, promoting inclusive and sustainable 

industrialisation, and fostering innovation. A critical aspect of achieving these objectives is ensuring 

the security and robustness of the infrastructures that support modern innovations and industrial 

systems. 

Machine learning offers promising capabilities for enhancing cybersecurity by providing real-time 

detection and mitigation of complex threats. This research aims to leverage ML techniques to 

effectively identify and respond to multilayer IoT attacks. By improving the accuracy and efficiency 

of intrusion detection, this research contributes to building secure and resilient infrastructures, 

thereby supporting the broader objectives of SDG 9. 

1.5 RESEARCH QUESTION 

The following is the research question addressed by this study: 

How can Machine Learning techniques be used effectively to detect Multilayer security 

attacks? 
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1.6 RESEARCH AIM AND OBJECTIVES 

This aim of this study is to develop a Semi-Automated Intrusion Detection System (SAIDS) that 

integrates efficient feature selection, feature weighting, normalisation, visualisation, and human-

machine teaming to detect and identify multilayer attacks, enhancing mitigation strategies. 

The objectives of this research work are as follows: 

Obj1: Investigate the existing machine learning algorithms and identify the current limitations 

of the standard framework for detecting IoT multilayer security attacks while 

optimising the number of most significant features in machine learning models 

through feature selection and weighting methods. 

Obj2: Develop and optimise the parameters of SAIDS to enhance the accuracy of detecting 

multilayer IoT attacks. 

Obj3: Performance testing of the proposed framework on simulated multilayer attacks and on 

real world to evaluate its effectiveness. 

1.7 THESIS STRUCTURE 

The thesis is organised into six comprehensive chapters as shown in Figure 1.8: 

 Chapter 2: State-of-the-Art Research on Multilayer Attacks in IoT Security - This chapter provides 

comprehensive review of related studies on the role of machine learning in enhancing IoT security, 

explores feature selection and weighting techniques, and relevant IoT datasets. Additionally, it 

identifies gaps in current research and highlights areas requiring further exploration and 

developments. 

Chapter 3: Methodology for Advanced IoT Multilayer Attacks Detection - This chapter introduces 

the experimental tools and methodological framework used to develop the IoT multilayer detection 

and identification system. It details the processes involved in sourcing IoT security datasets, data 

preprocessing, feature selection, and weighting. Additionally, it discusses the use of machine 

learning models, the identification of optimal features, the integration of human insights into 
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the system, and key aspects of model training, including performance evaluation metrics. 

 
Figure 1.8. Diagram showing the thesis structure and chapter contents with the corresponding 

objective numbers. 
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Chapter 4: Experimental Results and Settings - It explores the development and application of the 

SAIDS, focusing on hyperparameter tuning of machine learning models and summarising the 

implementation results. 

Chapter 5: Evaluation of the Proposed SAIDS Across Diverse Datasets - It examines the 

effectiveness of the SAIDS through simulated and real-time attack scenarios. This chapter 

discusses the robustness and adaptability of SAIDS across different IoT environments. 

Chapter 6: Conclusion and Future Work – This chapter summarises the thesis, highlighting the key 

contributions and insights derived from the research. This chapter also discusses the research 

implications and proposes potential future research directions. 

 

 

 



 

26 

2 STATE-OF-ART RESEARCH ON MULTILAYER 

ATTACKS IN IOT SECURITY 

As shown in Figure 2.1, this chapter provides a comprehensive review of the literature on the role 

of ML in detecting multilayer IoT attacks. It also examines the datasets used to train ML models, 

as well as feature selection and weighting techniques. The chapter concludes by identifying gaps in 

existing research and highlighting the need for flexible ML models and comprehensive 

computational frameworks to address these multilayer IoT security challenges.  

Figure 2.1. Structure of the literature review chapter and its sections. 
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2.1 ROLE OF MACHINE LEARNING IN ENHANCING IOT 

SECURITY 

This section provides an overview of existing datasets used in Intrusion Detection Systems for 

detecting IoT cyber-attacks, distinguishing between datasets created from IoT devices and those 

that are not. It also reviews various ML techniques that have been proposed for detecting multilayer 

attacks to secure IoT systems, ensuring the confidentiality, integrity, and availability of data, as well 

as protecting user privacy. For a full analysis and summary of the existing studies, refer to Appendix 

1. 

2.1.1 Existing Datasets for IoT Intrusion Detection 

Systems 

Table 2.1 provides a comprehensive overview of existing datasets used particularly in Intrusion 

Detection Systems for detecting IoT cyber-attacks. As shown in the table, widely used datasets in 

network security research, such as KDDCUP 1999, NSL-KDD, UNSW-NB15, CICIDS2017, and 

CICDDoS2019, are not specific to IoT systems. In contrast, the BoT-IoT, ToN-IoT, Edge-

IIoTset, and BoTNeT-IoT datasets are specifically designed for IoT systems, containing the unique 

characteristics of IoT traffic. 

Table 2.1. Summary of datasets used in IoT intrusion detection systems. 

Dataset  Year IoT Specific Total Features 
KDDCUP 99 Vibhute et al. (2024) 1999 No 41 
NSL-KDD Aljawarneh et al. 

(2018) 
2009 No 43 

UNSW-NB15 Ahmad, Z. et al. (2021) 2015 No 49 
CICIDS2017 Salman et al. (2022) 2017 No 80 
BoT-IoT Peterson et al. (2021) 2018 Yes 45 
BoTNeT-IoT Belkacem (2024) 2018 Yes 23 
CICDDoS2019 Rehman et al. (2021) 2019 No 86 
ToN-IoT Alsaedi et al. (2020) 2020 Yes 44 
Edge-IIoTset Ferrag et al. (2022) 2022 Yes 61 

The BoT-IoT dataset, introduced in 2018, contains 45 features and includes data on DoS and 

DDoS attacks from multilayer attacks. Similarly, the BoTNeT-IoT dataset, also released in 2018, is 
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limited to only two botnet attacks (Mirai and Gafgyt) and includes just 23 features. On the other 

hand, the ToN-IoT dataset, introduced in 2020, represents a more comprehensive IoT dataset with 

44 features, designed to capture a broad range of IoT traffic and various types of multilayer attacks. 

Lastly, the Edge-IIoTset dataset, released in 2022, is particularly focused on Industrial IoT (IIoT) 

environments, providing 61 features that address the complexity of real IoT device traffic and 

include most of the multilayer attacks.  

2.1.2 Dos/DDoS Attacks Detection Using ML 

The detection of DoS/DDoS attacks has been extensively studied, employing various machine 

learning and deep learning techniques, as shown in Table 2.2. In Priya et al. (2020) , the authors 

applied three classification algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), Naïve 

Bayes (NB) for the detection of DDoS attacks. They created their own dataset and utilised two 

features, delta time and packet size, to distinguish DDoS packets. The proposed approach can 

detect various types of DDoS attack in an IoT network with a detection accuracy of 98.5%. 

However, as they used a simulation tool (hping3) to generate DDoS attacks and trained their model 

on detecting these attacks, their model is limited to detecting attacks produced by hping3 and may 

not be capable of detecting attacks generated by other tools or real IoT devices. Ravi and Shalinie 

(2020) proposed a Learning-Driven Detection Mitigation (LEDEM) model that employs a Semi-

supervised Deep Extreme Learning Machine (SDELM) to detect DDoS attacks on IoT servers. 

The researchers created their own dataset and used the UNB-ISCX dataset to evaluate their model 

and compared the results with cutting-edge solutions. The proposed model achieved a reported 

accuracy of 96.28%. However, the model detects the DDoS attacks according to the training data 

and was unable to detect untrained attacks. 
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Table 2.2. Attacks, layers, datasets, ML algorithms, and features considered in reviewed 

studies. 

Ref. Attacks and 
Layers 

Dataset ML Algorithm Features Accuracy 

Priya et al. 
(2020) 

DDoS attacks on 
network layer 

Own dataset NB, KNN, RF 2 98.50% 

Ravi and 
Shalinie, 
(2020) 

DDoS attacks on 
network layer 

Primary: own 
dataset, 
Secondary: 
UNBISCX 

semi-supervised ML 155 96.28% 

Rehman et 
al. (2021) 

DDoS attacks on 
network layer 

CICDDoS2019 GRU, NB and SMO - 99.69% 

Moustafa, 
et al. (2019) 

Botnet attacks on 
application layer 

UNSW-NB15, 
NIMS botnet 

NB, DT and ANN 36 98.29% – 
99.54% 

Sangodoyin 
et al. (2021) 

DDoS flooding 
attacks on network 
layer 

Own dataset QDA, NB, KNN, and 
CART 

- 98% 

Chkirbene 
et al. (2020) 

DDoS attacks on 
network and 
application layer 

UNSW-NB15 DT and CART algorithms 13 95.37% 

Doshi, et al. 
(2018) 

DDoS attacks on 
the network layer 

Own dataset KNN, SVM, DT, RF, and 
DNN 

5 99% 

Chen et al. 
(2020) 

DDoS attacks on 
Multilayer 

Own dataset DT - 99.98% 

Salman et 
al. (2022) 

DoS attacks on 
network layer 

Primary: own 
dataset, 
secondary: 
CICIDS2017 

DT, RF, and deep learning 
models 

39 97% 

Hady et al. 
(2020) 

MITM attack on 
network layer 

Own dataset RF, DNN, SVM, and 
ANN 

34 92.44% 

Mukhtar et 
al. (2020) 

Side channel 
attacks 

Own datasets CNN 800 67% 

Gad, et al. 
(2021) 

Attacks on network 
and application 
layers 

ToN-IoT Logistic Regression, NB, 
DT, SVM, KNN, RF, 
AdaBoost, XGBoost 

20 98.60% 

Makkar et 
al. (2021) 

Spam attacks on 
application layer 

REFIT smart 
home 

Bayesian Generalised LM, 
Boosted LM, xgboost, 
Generalised LM, and 
bagged model 

15 79.8% – 
91.8% 

Zolanvari et 
al. (2019) 

Injection attacks on 
application layer 

Own datasets SVM, KNN, NB, RF, DT, 
LR, and ANN. 

23 F1-score: 
96.81% 

 

Similarly, Rambabu and Venkatram (2021) developed a ML model to identify DDoS attacks on 

IoT networks called Ensemble Classification Using Traffic Flow Metrics (ECTFM). Their 

approach used the KNN algorithm to reduce the high dimensionality of the training data by 

partitioning it into multiple clusters. The authors used the DEFCON, ADFA, LBNL, KYOTO, 

and CICIDS2017 datasets as inputs to their algorithm and achieved 95% accuracy. Rehman et al. 
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(2021) proposed a model to detect DDoS called DIDDOS (Detection and Identification of 

Distributed Denial of Service). The authors utilised the Gated Recurrent Unit (GRU) a type of 

Recurrent Neural Network (RNN), Sequential Minimal Optimisation (SMO), and NB. The 

CICDDoS2019 dataset was used to evaluate the proposed system, and the reported accuracy of 

the GRU model is 99.69%. The key strength of their model is its ability to detect new attacks that 

did not occur in the training dataset. 

In the study by Al-Yaseen, Othman and Nazri (2017), the authors proposed a multi-level hybrid 

Intrusion Detection System (IDS) that employs a Support Vector Machine (SVM) and Extreme 

Learning Machine (ELM) to enhance the detection of DoS, User-to-Root (U2R), and Remote-to-

Local (R2L) attacks. To improve the IDS performance, a modified K-means approach was used to 

reduce the size of the training dataset, balance the dataset for training the SVM and ELM, as well 

as reduce classifier training time. The suggested model increased overall performance and achieved 

an accuracy of 95.75% with a false alarm rate of 1.87%, according to experimental results on the 

KDD CUP 1999 dataset.  

Moreover, Moustafa, Turnbull and Choo (2019) developed an ensemble learning algorithm called 

AdaBoost. The model integrates NB, Decision Tree (DT) and Artificial Neural networks (ANN) 

algorithms to identify botnet attacks that compromise the protocols of IoT networks. The authors 

used the UNSW-NB15 and NIMS botnet datasets, focusing on three network protocols: DNS, 

HTTP, and Message Queue Telemetry Transport (MQTT). The ensemble model achieved a 

detection rate between 95.25% and 99.86% and a false positive rate between 0.01% and 0.72% for 

DNS and HTTP data sources. However, their model may not be able to identify malicious attacks 

such as zero-day attacks and newer threats because it assumes that the incoming packets conform 

to the MQTT, DNS, and HTTP protocols. 

Studies by Bagaa et al., 2020; Sangodoyin et al. (2021) propose ML frameworks for quickly detecting 

and preventing security attacks such as DDoS in SDN environments. Bagaa et al. (2020) built their 

novel security framework based on the NSL-KDD dataset and evaluated it in a smart building 

scenario. Also, they employed a one-class SVM algorithm for detecting anomalous behaviours: 

DDoS, Probe, U2R and R2L, their proposed model achieved a high detection accuracy of 99.71%. 
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Despite the high accuracy of detection, their model may not be suitable for modern IoT networks 

as they used an outdated dataset.  

Sangodoyin et al. (2021) built their dataset in a simulated environment and covers HTTP, UDP 

and TCP flooding attacks that were launched using Low Orbit Ion Cannon. Their SDN system 

consists of 16 hosts and 10 OpenFlow switches, connected via a 100 Mbps link. Quadratic 

discriminant analysis (QDA), NB, KNN, and CART are the ML algorithms used in their study. 

Although all the ML algorithms were highly effective at detecting and classifying DDoS flooding 

attacks, CART showed the best performance with a reported accuracy of 98%. However, the 

training time, which is around 12.4 ms, is considered high for real-time IoT systems (Zainudin, 

Ahakonye et al., 2023). 

Chkirbene et al., (2020) proposed a hybrid anomaly-based IDS that combines CART and RF 

algorithms. For feature selection, the RF technique was employed to reduce the dataset’s 

dimensions to the most important attributes. Different IoT attack classes, such as reconnaissance, 

DoS, wormhole, and backdoor, were identified using the CART classifier. The proposed system 

was tested using the UNSW-NB15 dataset, and the results showed that the system achieved an 

accuracy of 95.37%. Despite its high detection rate, the model was unable to identify various attacks 

due to a lack of training data for specific types of attacks, including DoS, wormhole, shellcode, and 

backdoor. 

Moreover, the three studies below have been conducted on detecting three different types of DDoS 

attacks: TCP SYN flooding, UDP flooding, and HTTP flooding. The first study was conducted by 

Doshi, Apthorpe and Feamster (2018). The authors proposed a binary classification model for 

distinguishing between benign and malicious DDoS attacks. They also employed five IoT-specific 

network behaviours (such as packet size, regular time intervals between packets, protocols used, 

bandwidth, and a limited number of endpoints) to guide feature selection. Additionally, they 

deployed a variety of ML algorithms, including KNN, SVM, DT, RF, and Deep Neural Networks 

(DNN) algorithms to detect DDoS attacks, including HTTP GET flood, TCP SYN flood, and 

UDP flood. The authors created their own dataset using Raspberry Pi v3 and several IoT devices, 

such as a YI home camera, a Belkin smart switch and a blood pressure monitor. They then tested 
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the deep learning and machine learning models on the generated dataset and achieved a detection 

accuracy higher than 99%.  

In the study by Cvitic et al. (2022), the authors proposed a DDoS detection model based on four 

IoT device classes (very high, high, medium, and low level of traffic predictability) using a boosting 

technique for Logistic Model Trees (LMT), which is a combination of Logistic Regression (LR) 

and DT. The authors built four primary datasets (C1DDOS, C2DDOS, C3DDOS, and C4DDOS) 

by connecting 41 smart home devices and introducing the three mentioned DDoS attacks. A 

secondary dataset from the University of New South Wales, consisting of 28 IoT devices and 

containing normal and legitimate traffic, was also used Sivanathan et al., (2019). Their model 

achieved an accuracy between 99.92%–99.99%.  

Lastly, Salman et al. (2022) created their own dataset using data collected from seven IoT devices. 

The authors utilised DT, RF, and DL models for identifying IoT devices and detecting the above-

mentioned three DDoS attacks. They also used the CICIDS2017 dataset for non-IoT devices with 

abnormal traffic, which contains several types of attacks: web attack, infiltration, brute force, DoS, 

port scan, DDoS, heartbleed, and botnet. The results showed that the RF classifier outperformed 

other algorithms, achieving a device-type identification accuracy of 94.5%, traffic-type classification 

accuracy of 93.5%, and abnormal traffic detection accuracy of 97%. However, their approach may 

not be able to identify new devices. 

2.1.3 MITM Attacks Detection Using ML 

Several studies have addressed the detection of MITM attack using different ML models, as shown 

in Table 2.2. In Saharkhizan et al., (2020), the authors proposed an enhanced DL model for 

intrusion detection by combining a Decision tree with a Long Short-Term Module (LSTM). They 

used a simulated dataset by Frazão et al., (2019), which includes four cyberattack categories: MITM, 

Ping DDoS, TCP SYN DoS attacks, and Modbus query flood attacks. The proposed mechanism’s 

accuracy reached 99%. However, the detection complexity of the proposed model is high.  

In the study by Hady et al. (2020), the authors built a real-time testbed called Enhanced Healthcare 

Monitoring System (EHMS) in which several sensors were placed on a patient’s body to monitor 
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the patient’s biometrics and collect network flow measurements, which were then forwarded to a 

remote server for further analysis and actions. The authors used four machine learning algorithms 

for MITM attack detection: RF, DNN, SVM, and ANN. According to their findings, the SVM 

algorithm outperformed the others, with an accuracy of around 92.44 %. 

2.1.4 Side Channel Attacks Detection 

Furthermore, three additional studies have addressed side channel attacks using ML algorithms. 

Illuri (2021) integrated a ML model with chaotic logistic maps for detecting side channel attacks. 

The authors utilised ELMs to distinguish between correct and incorrect sub-keys, making side 

channel attacks impossible. The suggested model was able to detect side-channel attacks with 95% 

accuracy. The sensitivity analysis showed a result of 99.7% after applying the chaotic methodology 

to medical image datasets, such as MRI, mammogram, and diabetic retinopathy images. 

Mukhtar et al. (2020) proposed a Convolutional Neural Network (CNN) model for detecting side 

channel attacks. The suggested CNN model uses Principal Component Analysis (PCA) as a pre-

processing step to select the best features, and the Synthetic Minority Oversampling Technique 

(SMOTE) was utilised to balance the data. The suggested approach is less computationally complex 

than existing deep learning-based models and performs more efficiently in terms of time. However, 

the reported accuracy of the model is only 67%.  

Mukhtar et al. (2019) used ML algorithms to protect systems from side channel attacks by focusing 

on recovering secret key information from leaked power signals. The authors achieved this by 

employing the double-and-add-always algorithm to encrypt the data using a secret key. 

Classification algorithms such as NB, SVM, RF, and Multi-Layer Perception (MLP) were analysed 

with the ECC datasets, and the model achieved an accuracy of 90%. 
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2.1.5 Other Multilayer Attacks Detection 

Various studies have focused on the detection of other multilayer attacks, presented in Figure 2.2, 

by leveraging different machine learning models. 

Figure 2.2. Other multilayer attacks. 

In  Gad, Nashat and Barkat (2021), the authors illustrated a ML-based IDS for Vehicular Ad Hoc 

Networks (VANETs) based on the ToN-IoT dataset, which is an updated version of the NSL-

KDD dataset. The ToN-IoT contains the most recent attack types, such as MITM, DoS, DDoS, 

ransomware, password cracking attack, scanning, injection, backdoor, and XSS. To address the 

class imbalance problem, the authors used SMOTE and employed the Chi-Square technique for 

feature selection. They also compared the performance of several ML algorithms, including LR, 

NB, DT, SVM, KNN, RF, AdaBoost and Extreme Gradient Boosting (XGBoost). The results 

revealed that the XGBoost classifier outperformed the other algorithms with an accuracy of 

98.60%. 

(Makkar et al. (2021) proposed an ML framework for identifying web spam attacks in IoT devices. 

Five ML models (Bayesian Generalised Linear Model, Boosted Linear Model, XGboost, 

Generalised Linear Model, and bagged model) were evaluated in their method using a variety of 

input features, such as Gain Ratio (GR) and Information Gain (IG), and symmetrical uncertainty. 

The authors validated their proposed framework using the REFIT smart home dataset. The 
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accuracy of the proposed method ranged from 79.8% to 91.8% for the five machine learning 

models. Zolanvari et al. (2019) proposed a Machine learning anomaly-based Intrusion Detection 

System to detect several Industrial IoT attacks, such as command injection, backdoor, and SQL 

injection attacks, using seven algorithms, including DT, SVM, NB, LR, RF, KNN and ANN. The 

system’s results showed that the RF classifier outperformed the others, achieving an F-measure 

value of 96.81%.   

Moreover, two studies conducted by Anthi et al. (2019); Sarkar et al. (2021) addressed three 

multilayer attacks: replay, DoS/DDoS, and MITM attacks. Anthi et al. (2019) proposed a three-

layer anomaly-based IDS for smart home networks of IoT devices, using nine supervised 

classification algorithms (NB, J48, Zero R, Bayesian Network (BN), One R, LR, SVM, MLP, and 

RF) to detect IoT network attacks, such as DoS, MITM, replay, spoofing and reconnaissance. The 

system’s performance revealed that the J48 classifier outperformed the others in terms of F-

measure, with values ranging from 90% and 98%. Sarkar et al. (2021) proposed a comprehensive 

technique for securing IoT devices based on a nature-inspired Gravitational Search-guided artificial 

neural key. Artificial neural network synchronisation is employed in their approach to develop a 

neural key exchange protocol for cryptographic purposes between two IoT devices over a public 

channel. The values α1, α2, α3, β, and γ were calculated to enable resistance against attacks, 

including session hijacking, impersonation, replay, brute force, DDoS, Geometric, MITM, and 

social engineering. The findings revealed that if these attacks are carried out, there is a 0% chance 

of success.  

2.2 FEATURE SELECTION TECHNIQUES FOR IOT 

SECURITY ATTACKS 

The importance of feature selection is critical in machine learning models, particularly because real-

world data often contains noise, including irrelevant information about the problem. By employing 

feature selection, the computational load for training those machine learning models with a large 

number of features is not only reduced, but noise in the data can also be filtered out, ensuring that 

the models focus on the most relevant information. As shown in Table 2.3, researchers have 
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explored different wrapper and filter feature selection methods such as the bijective soft set 

technique, correlation, fast-based-correlation feature (FCBF) algorithm, Information Gain (IG), 

and Gain Ratio (GR), which have proven beneficial in accurately identifying botnet, DoS, DDoS, 

and MITM attacks in IoT networks. 

The bijective soft set technique manages uncertainty and reduces dimensionality through bijective 

mappings. Correlation identifies features with the strongest linear relationship to the target, while 

the FCBF, a correlation-based approach, selects the optimal set of features by retaining those with 

high correlation to the class label and removing less important ones. It uses symmetrical uncertainty 

to assess how much each feature contributes to prediction. Mutual information evaluates the 

dependence between variables, selecting features that share the most information with the target. 

Information Gain measures a feature's ability to improve predictive accuracy by reducing 

uncertainty, though it can sometimes favour features with many categories. Gain Ratio improves 

on Information Gain by normalising it, ensuring that features with more categories do not receive 

unfair preference, leading to a more balanced feature selection process Shafiq et al. (2020); Egea et 

al. (2018). 

Table 2.3. Overview of the used feature selection methods. 

Feature Selection Methods 

• Bijective Soft Set Technique. 
• Correlation. 
• fast-based-correlation feature algorithm. 
•  Mutual Information. 
• Gain Ratio. 
• Information Gain. 

As shown in Table 2.4, Shafiq et al. (2020) focused on detecting botnet attacks in IoT networks 

through effective feature selection. They employed a wrapper feature selection method called the 

bijective soft set technique and introduced a new feature selection metric called CorrACC, where 

several machine learning classifiers were utilised to analyse the approaches using the BoT-IoT 

dataset. The decision tree and Random Forest classifiers proved to be effective by selecting seven 

significant features for identifying botnet attacks in IoT traffic, with an accuracy rate of over 95%. 
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Additionally, Su, He and Wu, (2022) assessed multiple machine learning algorithms such as DT, 

RF and gradient boosting algorithm to predict IoT network attacks. Their research focused on 

identifying three types of IoT attacks: MITM, DoS, and scan attacks. To select the most effective 

10 features associated with these attacks from the IoT2020 dataset, a correlation technique (with a 

threshold of 0.6) was used. It was found that the decision tree algorithm was generally the most 

accurate classifier, but the random forest algorithm had better AUC scores. The classifiers achieved 

an accuracy between 87% and 91% in detecting MITM attacks, and 99% in detecting DoS attacks. 

Similarly, Egea et al. (2018) introduced FCBFiP, a novel feature selection method based on the 

modification of the fast-based-correlation feature (FCBF) algorithm. The aim was to detect DoS 

attacks using features from the KDD99 dataset. This technique divided the feature space into 

fragments to enhance correlation and improve machine learning applications. The experimental 

results showed the effectiveness of FCBFiP FCBFiP in reducing the 41 features into 20, achieving 

an F1 score of 99% in identifying DoS and other cyber-attacks on IoT devices, while also showing 

improvements in execution time. 

Table 2.4. Summary of Feature Selection Techniques in IoT Threat Detection. 

Ref. Focus of Study Dataset Used Feature 
Selection 
Method 

Number of 
Features 

Accuracy 

Shafiq et al. 
(2020) 

Detecting botnet 
attacks in IoT 
networks 

BoT-IoT Bijective soft set 
technique, DT and 
RF 

7 >95% 

Su, He and Wu 
(2022) 

Predicting MITM, 
DoS, and scan 
attacks in IoT 
networks 

IoT2020 Correlation  10 87%-91% 
(MITM), 99% 
(DoS) 

Egea et al. 
(2018) 

Detecting DoS 
attacks 

KDD99, 
CNAE-9, 
LSVT voice 

FCBF algorithm 
modification 
(FCBFiP) 

20 F1-score: 99% 

Alalhareth and 
Hong (2023) 

Detecting various 
cyberattacks in 
IoMT networks 

WUSTL-
EHMS-2020 

Enhanced MI  10 92% - 94% 

Nimbalkar and 
Kshirsagar 
(2021) 

Detecting DoS and 
DDoS attacks in IoT 
networks 

BoT-IoT & 
KDD Cup 
1999 

GR and IG 16 & 19 99% 

Albulayhi et al. 
(2022) 

Detecting DDoS 
and DoS attacks 

NSL-KDD & 
IoTID20 

GR and IG 11 & 28 
(IoTID20), 15 
& 25 (NSL-
KDD) 

99.98% 
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The research by Alalhareth and Hong (2023) enhanced the Mutual Information (MI) feature 

selection method for detecting various cyberattacks in IoT networks, specifically targeting the 

Internet of Medical Things (IoMT). Using the WUSTL-EHMS-2020 dataset, which includes 

patients' biometric data and spoofing attacks, the authors demonstrated the effectiveness of their 

method. They reduced the number of features from 44 to 10 and employed several machine 

learning classifiers, including SVM, LR, RF, DT, and LSTM, to evaluate the selected features. By 

using only the selected 10 features, these models achieved an accuracy between 92% and 94% in 

detecting the spoofing attack. 

The research done by Nimbalkar and Kshirsagar, (2021); Albulayhi et al. (2022) applied Gain Ratio 

and Information Gain as feature selection methods for detecting DoS and DDoS attacks in IoT 

networks. In Nimbalkar and Kshirsagar, (2021), the authors used only 16 features for detecting the 

mentioned attacks, and their system achieved an impressive 99% accuracy and detection rate on 

the BoT-IoT dataset. Similarly, on the KDD Cup 1999 dataset, with the use of 19 features, the 

system achieved the same high accuracy and detection rates.  

Similarly, Albulayhi et al., (2022) introduced a new feature selection approach that integrates gain 

ratio and information gain, utilising mathematical techniques such as intersection and union rules. 

Their approach was used to identify relevant features from the NSL-KDD and IoTID20 datasets 

for detecting DDoS and DoS attacks. They evaluated their approach using four machine learning 

algorithms: DT, KNN, Bagging, and ANN. The results showed that their approach resulted in 11 

and 28 relevant features from the IoTID20 dataset and 15 and 25 relevant features from the NSL-

KDD dataset. Furthermore, the classification accuracy achieved by their approach was high, 

around 99.98%. 

Although these existing feature selection methods can extract significant features from datasets, it 

remains unclear which is the most effective. Also, each feature selection method has its pros and 

cons, even the accuracy of those methods invariably depends on the training dataset. The aim of 

this research is to ascertain the optimal number of significant features, irrespective of all feature 

selection methods used, by incorporating multiple feature selection methods in the decision-

making process. 
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2.3 METHODS OF FEATURE WEIGHTING IN DETECTING 

IOT THREATS 

To scrutinise significant features through feature selection methods, employing feature weighting 

proves valuable by assigning scores/weights to each feature, indicating its significance in detecting 

IoT attacks within a dataset. As shown in Table 2.5, research has been carried out to develop 

advanced feature weighting methods for phishing site detection in smart cities. 

Table 2.5. Summary of feature weighting methods in IoT threat detection. 

Ref. Method Dataset Used Accuracy 

Sujatha et al. (2023) GWO and Firefly Algorithm  Own dataset 95.75% 

Swathi et al. (2023) Particle Swarm Optimisation  Own dataset 93% 

Khan, Sohail and Nazir 
(2022) 

Statistical Aggregation and Multi-
objective Optimisation 

Not specified 85% 

Subramani and Selvi 
(2023) 

Rule-based techniques and Multi-
Objective Particle Swarm 
Optimisation  

KDD '99 Cup and 
CIDD 

F1-score: 94.51% (DoS) 

Sujatha et al. (2023) presented a novel feature weighting method using hybrid bio-inspired 

algorithms, specifically Gray Wolf Optimisation (GWO) and Firefly Algorithm (FF). This 

technique significantly enhances the performance of an ANN used for classification, demonstrating 

a detection accuracy of 95.75%. In contrast, the Particle Swarm Optimisation (PSO)-based feature 

weighting method developed by Swathi et al. (2023) achieved 95% accuracy during training and 

93% accuracy in detection during testing, along with an impressive 98.4% accuracy rate in locating 

untrustworthy sites. Both studies underscore the effectiveness of employing feature weighting 

techniques in the domain of cybersecurity, particularly in the detection of phishing sites in smart 

city environments. Complementing these studies, research by Khan, Sohail and Nazir (2022) 

focuses on IoT device security, employing a statistical aggregation (SA) and multi-objective 

optimisation method (based on the ratio analysis) for feature weighting of security authentication 

features. This method demonstrates a substantial accuracy improvement, reaching 85%. 

Moreover, the study conducted in Subramani and Selvi (2023) explains a combination of rule-based 

techniques and Multi-Objective Particle Swarm Optimisation for feature selection. They also 
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enhance attack detection in IoT-based wireless sensor networks by employing an advanced 

Multiclass Support Vector Machines classifier. To validate the effectiveness of their approach, the 

authors conducted experiments using the KDD '99 Cup and CIDD datasets, showcasing that their 

methodology not only enhances intruder detection accuracy but also effectively reduces false-

positive rates. By using this approach, the authors achieved an F1-score of 94.51% in detecting 

DoS attacks.  

The above-mentioned studies primarily focus on specific attacks on specific applications (e.g., 

phishing site detection in smart cities) or outdated datasets (e.g., KDD '99 and CIDD). There is a 

gap in research regarding the applicability of these feature selection and weighting methods across 

diverse IoT environments and attack vectors, especially for multilayer attacks. Additionally, there 

is a notable absence of discussion on incorporating human expertise in the loop of feature selection 

and weighting processes, which could enhance the interpretability and reliability of the detection 

models, especially in complex scenarios where automated methods might struggle. Despite the 

severe impact of these multilayer attacks on various IoT devices, there is currently no 

comprehensive framework for their detection and mitigation. 

2.4 OVERVIEW OF IOT DATASETS UTILISED IN 

MULTILAYER ATTACK RESEARCH 

A dataset in the context of cybersecurity refers to a collection of data specifically used to train, test, 

and evaluate IDS using ML and DL models. Such datasets are critical for detecting cybersecurity 

attacks on various systems, including IoT infrastructures. However, the reliance on these datasets 

arises from the impracticality of using real network traffic data publicly due to privacy concerns. 

Consequently, there is a continuous need to generate new datasets that can effectively reflect the 

dynamic and evolving landscape of IoT security threats, ensuring that detection models remain 

effective under varied and realistic conditions. 

The most frequently utilised datasets in research, aimed at detecting both single and multilayer IoT 

attacks, include NSL-KDD, BoT-IoT, UNSW-NB15, ToN-IoT and Edge-IIoTset. 
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• NSL-KDD Dataset 

The NSL-KDD has a total of 25,192 records (13,449 instances are normal and 11,743 instances 

are abnormal traffic) with 41 features, and the attack category consists of Probe, DoS, R2L and 

U2R  (Aljawarneh, Aldwairi and Yassein, 2018). As discussed in section 2.1, authors such as Bagaa 

et al. (2020); Albulayhi et al. (2022) have utilised this dataset.  

Furthermore, Aljawarneh, Aldwairi and Yassein (2018) developed a hybrid intrusion detection 

model using the NSL-KDD dataset to address both binary and multiclass classification problems. 

The study's primary objective was to create a system capable of efficiently estimating the intrusion 

scope threshold degree by utilising the most relevant features from network transaction data. The 

41 features in the dataset were reduced to 8 significant features using the vote algorithm and 

information gain technique. The proposed model integrates several machine learning algorithms to 

detect DDoS, Probe, R2L and U2R attacks, including NB, J48, Random Tree, REP Tree, Meta 

Pagging, Decision Stump, and AdaBoostM1 classifiers. The experimental results demonstrated the 

model's efficacy, achieving a high accuracy rate of 99.81% for binary classification and 98.56% for 

multiclass classification. 

Similarly, Liang et al. (2019); Tang et al. (2016) employed the NSL-KDD dataset in their 

approaches. Liang et al. (2019) proposed a multi-agent intrusion detection system for IoT networks, 

based on blockchain and DNN. All communications between agents are recorded on the 

blockchain, which secures the system against attacks such as DDoS, Probe, U2R, and R2L, with a 

DNN utilised for intrusion detection. The DNN model achieved an accuracy rate of 98%. 

Additionally, Tang et al. (2016) proposed an anomaly-based intrusion detection system that 

employs DNN to detect DDoS attacks in network traffic. And the authors utilised only 6 of the 

dataset's 41 features, achieving an accuracy rate of 75.75%. 

In other studies, AL-Hawawreh, Moustafa and Sitnikova, (2018); Tama, Comuzzi and Rhee (2019) 

utilised the NSL-KDD dataset in conjunction with the UNSW-NB15 dataset in their models for 

detecting Backdoors, DoS, Reconnaissance, Worms, DDoS, Probe, R2L and U2R attacks. AL-

Hawawreh et al. (2018) developed a deep learning-based anomaly detection model for Internet 

Industrial Control Systems (IICSs). The suggested model used both a Deep Auto-Encoder (DAE) 
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and a DNN algorithm, achieving an exceptionally high performance with a 99% detection rate and 

a 1.8% false positive rate. Tama et al. (2019) developed a two-level classifier and hybrid feature 

selection strategy for IDS in IoT. The model integrates the Rotation Forest and bagging algorithms 

as a two-level classifier, while particle swarm optimisation, genetic, and ant colony algorithms were 

employed in a hybrid feature selection technique. The proposed model achieved an accuracy rate 

of 85.8%. 

• BoT-IoT Dataset 

The BoT-IoT dataset involves a total of 73 million records, of which 9,543 instances are normal 

and the remainder represent abnormal traffic. It includes three dependent attributes (attack/normal 

traffic, attack category, and attack subcategory) and 43 independent attributes (invalid features, 

standard features, and calculated features) grouped into three categories. The attack categories 

include information theft, reconnaissance, DoS, and DDoS, while the attack subcategories include 

data theft, OS fingerprinting, keylogging, TCP, HTTP, UDP, and service scanning (Peterson, Leevy 

and Khoshgoftaar, 2021). 

Shafiq et al. (2020); Nimbalkar and Kshirsagar (2021) utilised the BoT-IoT dataset in their proposed 

models as discussed in section 2.2. Furthermore, Ferrag et al. (2020) used the BoT-IoT dataset 

along with the CICIDS2017 dataset in their proposed intrusion detection system for IoT networks, 

called RDTIDS, which is located in the fog computing layer to detect DDoS attacks. In their model, 

they employed the REP Tree, and JRip algorithm classifiers to feed the Forest PA classifier. Using 

the BoT-IoT dataset and the CICIDS2017 dataset, the proposed model achieved high accuracies 

of 96.995% and 96.665%, detection rates of 95.175% and 94.475%, and false alarm rates of 1.120% 

and 1.145%, respectively. 

Finally, Alhowaide, Alsmadi and Tang (2021) used the BoT-IoT dataset along with NSL-KDD, 

UNSW-NB15, and BoTNetIoT datasets to train and evaluate their proposed ensemble model for 

securing IoT networks, called the Model Selection Method (MSM). The proposed model utilised a 

total of 15 different classifiers, including both ensemble and traditional classifiers. The authors also 

utilised 5-fold cross-validation, which divides the datasets into 80% for training and 20% for testing 

resulting in model accuracies ranging from 93% to 100%. 
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• UNSW-NB15 Dataset 

The UNSW-NB15 dataset includes 82,332 records in the testing dataset and 75,341 records in the 

training dataset, covering both normal and abnormal traffic. It also includes 49 features and nine 

attack categories, including DoS, shellcode, backdoors, reconnaissance, fuzzers, Analysis, generic, 

exploits, and worms Ahmad, Z. et al. (2021). As discussed in section 2.1, and the current section 

2.4, authors such as Moustafa, Turnbull and Choo (2019); Chkirbene et al. (2020); AL-Hawawreh, 

Moustafa and Sitnikova (2018); Alhowaide, Alsmadi and Tang (2021) have utilised the UNSW-

NB15 dataset. 

(Ahmad, M. et al. (2021) utilised the UNSW-NB15 dataset, proposing feature clusters specifically 

focused on Flow, MQTT, and TCP protocols. By clustering features, they effectively addressed 

common issues such as data imbalance, overfitting, and the curse of dimensionality. They applied 

supervised ML algorithms, including RF, SVM, and ANN to these clusters. Using these algorithms, 

they extracted 18 TCP features, 13 Flow & MQTT features, and 11 top features selected from both 

TCP and Flow & MQTT. Their proposed model reported classification accuracies of 96.96% with 

Flow and MQTT features, 91.4% with TCP features, and 97.54% with the top features. 

• ToN-IoT Dataset 

The ToN-IoT dataset has 223,390,21 records of normal and attacks data, with 44 features. It also 

has two categories class label and attack categories such as MITM, DoS, DDoS, ransomware, 

password cracking attack, scanning, injection, backdoor, and XSS. Several researchers, including 

(Kethineni and Pradeepini (2024); Gad, Nashat and Barkat (2021) have used this dataset as 

discussed in Sections 1.3 and 2.1. 

Moreover, Alotaibi and Ilyas (2023) utilised the ToN-IoT dataset to train their proposed model, 

which integrates four machine learning models—Random Forest, Decision Tree, Logistic 

Regression, and K-Nearest Neighbor—into two ensemble techniques: stacking and voting. This 

methodology significantly improved the effectiveness of the Intrusion Detection System, achieving 

a remarkable accuracy rate of 98.63%. 
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• Edge-IIoTset Dataset 

The Edge-IIoTset dataset was created in 2022 by Ferrag et al. (2022) and is applicable for IoT and 

industrial Internet of things (IIoT) applications. It includes data related to 14 different attack types, 

generated from more than 10 types of IoT devices, including sensors and detectors. These attacks 

include Backdoor Attack, DDoS HTTP Flood Attack, DDoS ICMP Flood Attack, DDoS TCP 

SYN Flood Attack, DDoS UDP Flood Attack, MITM Attack, OS Fingerprinting Attack, Password 

Attack, Port Scanning Attack, Ransomware Attack, SQL Injection Attack, Uploading Attack, 

Vulnerability Scanner Attack, and XSS Attack. The dataset consists of 20,952,648 records across 

five attack categories: injection, malware, DoS and DDoS, MITM attacks, and information 

gathering. Additionally, it includes 63 features Ferrag et al. (2022). The dataset has been cited in 

multiple studies, including works by Keserwani, Aggarwal and Chauhan (2023); Tareq et al. (2022); 

Khacha et al. (2022); Al Nuaimi et al. (2023); Samin et al. (2023); Ullah et al. (2023); Ferrag et al. 

(2022). 

The paper by Keserwani, Aggarwal and Chauhan (2023) presents an approach to detect and classify 

attacks on IoT networks. Their research utilises DT, RF, and ensemble techniques, specifically 

CatBoost and XGBoost, trained on the Edge-IIoTset Dataset. Through manual feature selection, 

they managed to reduce the features to 20 significant features. The results showed that XGBoost 

is the most effective model, achieving an accuracy rate of 97.99%. Tareq et al. (2022) utilised two 

CNN models, DenseNet and Inception Time, for detecting IoT cyber-attacks through a multi-class 

classification approach. These models were tested on the Edge-IIoTset, ToN-IoT, and UNSW-

NB15 datasets. The authors used all 63 features of the Edge-IIoTset dataset and implemented 

hyperparameter tuning on the models used. Additionally, when employing the Edge-IIoTset 

dataset with the Inception Time approach, the highest accuracy achieved was 94.94%. 

Moreover, Khacha et al. (2022) proposed a model that combines CNN and LSTM techniques to 

efficiently detect and classify cyber-attacks in IIoT networks. The proposed CNN-LSTM model 

was trained on the Edge-IIoTset dataset, with hyperparameter tuning implemented to optimise 

performance. Notably, the model achieved high accuracies in binary and multi-class classification, 

demonstrating its effectiveness in distinguishing between various types of cyber threats. Al Nuaimi 

et al. (2023) evaluated the performance of six different algorithms—J48, PART, BayesNets, 
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AdaBoost, LogitBoost, and Attribute Selected Classifier (ASC)—on the Edge-IIoTset dataset for 

binary-class and multi-class intrusion detection in IoT/IIoT systems. Automated techniques from 

WEKA were employed for hyperparameter tuning. The models used achieved an accuracy higher 

than 85.40%. 

Samin et al. (2023) evaluated Naïve Bayes and Decision Tree classifiers on the Edge-IIoTset to 

detect IoT cyber-attacks. Through manual feature selection, they reduced the number of significant 

features in the dataset to 46. The experimental results demonstrated that the DT classifier 

outperformed the NB model, achieving an accuracy of 72%, while NB achieved a lower accuracy 

of 47%. Ullah et al. (2023) introduced a multi-head attention-based gated recurrent unit (MAGRU) 

to detect malicious activities in IIoT environments. The MAGRU was evaluated using two datasets: 

Edge-IIoTset and MQTTset. The authors used the SMOTE technique for data balancing and the 

extremely gradient boosting (XGBoost) model for feature selection in their framework, filtering 

out significant features with an importance score greater than zero. This process resulted in 31 

features from the Edge-IIoTset and 20 features from the MQTTset. The proposed model achieved 

high results in precision, recall, F1-score, and accuracy across both datasets. 

Ferrag et al. (2022), who introduced the Edge-IIoTset dataset, used centralised learning and 

federated learning to evaluate their effectiveness in detecting and identifying malicious activities in 

IoT and IIoT environments. In centralised learning, they employed SVM, DT, KNN, RF, and 

DNN for binary-class and multiple-class (6 and 15 classes) classification. The authors reduced the 

63 features to 46 significant features using manual approaches and implemented hyperparameter 

tuning on the models used. The results show that the models achieved a high accuracy rate for 

binary-class classifiers. However, the multi-class classification results were considerably lower, 

ranging from 67.11% to 85.62% using DT, RF, SVM, and KNN, with the highest being 96.01% 

for DNN, and between 92% to 96% in Federated learning. 

As shown in Table 2.6, the NSL-KDD, UNSW-NB15 and BoT-IoT datasets are often used to 

train models for multilayer DDoS attack detection. Other available public datasets such as 

CICDDoS2019, CICIDS2017, KDD CUP 1999, BoTNetIoT, NIMS botnet, MQTTset, APA-

DDoS, ToN-IoT and Edge-IIoTset are used for the detection of DoS, DDoS, MITM, and other 
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attacks. However, not all of these datasets are related to IoT environments. Table 2.7 presents a 

brief analysis of these datasets. 

Table 2.6. NSL-KDD and BoT-IoT dataset. 
Ref. ML Techniques IoT Attacks Other Datasets  
NSL-KDD dataset 
Aljawarneh et al. (2018) NB, J48, Random Tree, REP 

Tree, Meta Pagging, Decision 
Stump, AdaBoost  

DDoS, Probe, R2L, U2R  __ 

Liang et al. (2019) DNN DDoS, Probe, R2L, U2R  __ 
Tang et al. (2016) DNN DDoS __ 
AL-Hawawreh et al. 
(2018) 

DAE and a DNN  Backdoors, DoS, 
Reconnaissance, Worms, DDoS, 
Probe, R2L, U2R  

UNSW-NB15 

Tama et al. (2019) Rotation Forest and Bagging  Backdoors, DoS, 
Reconnaissance, Worms, DDoS, 
Probe, R2L, U2R  

UNSW-NB15  

BoT-IoT dataset 
Shafiq et al. (2020) NB, RF, DT, BN, RF DDoS __ 
Nimbalkar et al. (2021) JRip  DDoS KDD Cup 1999  
Ferrag et al. (2020) REP Tree, Jrip, Forest PA DDoS/DoS, slowloris, Port 

Scan, Slowhttptest, GoldenEye, 
Heartbleed, Infiltration 

CICIDS2017  

Alhowaide et al. (2021) 15 Different Classifiers DDoS and zero-day NSL-KDD, UNSW-
NB15, BoTNetIoT 

UNSW-NB15 dataset 
Ahmad et al. (2021) RF, SVM, ANN reconnaissance, DoS, wormhole, 

backdoor 
__ 

Moustafa et al. (2019) NB, DT and ANN botnets NIMS botnet 
Chkirbene et al. (2020) CART and RF reconnaissance, DoS, wormhole, 

backdoor 
__ 

ToN-IoT dataset 
Alotaibi and Ilyas (2023) RF, DT, Logistic Regression, 

and KNN 
MITM,DoS,DDoS, ransomware, 
password cracking, scanning, 
XSS injection, backdoor  

__ 

Kethineni and 
Pradeepini (2024) 

CNN and Bi-GRU DDoS APA-DDoS 

Gad et al. (2021) LR, NB, DT, SVM, KNN, 
RF, AdaBoost, XGBoost 

VANETs Cyber attacks NSL-KDD dataset 

Edge-IIoTset dataset 
Keserwani et al. (2023) DT, RF, CatBoost, XGBoost IoT/IIoT Cyber attacks __ 
Tareq et al. (2022) DenseNet and Inception 

Time 
IoT/IIoT Cyber attacks ToN-IoT, and 

UNSW-NB15 
Khacha et al. (2022) CNN and LSTM IoT/IIoT Cyber attacks __ 
Al Nuaimi et al. (2023) J48, PART, BayesNets, 

AdaBoost, LogitBoost, 
Attribute Selected 

IoT/IIoT Cyber attacks __ 

Samin et al. (2023) DT, NB IoT/IIoT Cyber attacks __ 
Ullah et al. (2023) XGBoost, multi-head 

attention, and gated recurrent  
IoT/IIoT Cyber attacks MQTTset  

Ferrag et al. (2022) SVM, DT, KNN, RF, ANN, 
and federated learning 

Injection, malware, DoS, DDoS, 
MITM, information gathering 

__ 



 

47 

As shown in Table 2.7, datasets like KDDCUP 99, NSL-KDD, UNSW-NB15, BoT-IoT, 

BoTNeT-IoT, and CICDDoS2019 are limited to only one type of multilayer attack, specifically 

DoS/DDoS. In contrast, datasets such as CICIDS2017, ToN-IoT, and Edge-IIoTset cover a 

broader range of IoT attacks, including more sophisticated multilayer threats like SQL Injection, 

XSS, and MITM. 

Table 2.7. Analysis of datasets used for detecting IoT attacks. 

Dataset Total Number of Attacks Multi-layer Attacks 

KDDCUP 99 4 DoS 
NSL-KDD 4 DoS 
UNSW-NB15 9 DoS 
CICIDS2017 14 DoS, XSS, SQL Injection 
BoT-IoT 10 DoS, DDoS 
BoTNeT-IoT 2 DoS, DDoS 
CICDDoS2019 12 DDoS 
ToN-IoT 9 DoS/DDoS, Password Cracking 

Injection, XSS, MITM 
Edge-IIoTset 14 DoS/DDoS, SQL Injection, 

XSS, MITM, Password Cracking 
 

2.5 CHAPTER SUMMARY 

As the current trend of the industrial revolution is based on Industry 4.0, the applications of IoT, 

smart automation, and web 3.0 have been diversified and driven by AI as a backbone. Each layer 

of the IoT architecture is now exposed to different types of security threats. The future of the IoT 

relies on a robust security framework, as protecting IoT systems from these attacks is a challenging 

task, especially when those attacks can affect multiple layers.  

The literature review presented various types of security attacks and provided a taxonomy of attacks 

that can compromise multiple layers of IoT systems. Developed technologies and computational 

frameworks have been reviewed to tackle these attacks, and datasets have been investigated for 

training and evaluating ML models in terms of their features and the types of attacks they can be 

used for. Despite the advantages of recent ML approaches and the high detection accuracy in 

detecting multilayer attacks, gaps and challenges still exist, as identified through this research.  
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• Benchmark Dataset  

One challenge in the detection of multilayer IoT security attacks is the lack of benchmark datasets. 

Many researchers have had to create their own datasets for training and testing their models, 

making it difficult to compare the effectiveness of models proposed by different researchers, as 

well as view the datasets and the extracted features. While the majority of the ML models reported 

in the literature have achieved good accuracy figures, it is challenging to verify whether the models 

will perform well on other datasets.  

Very few datasets that include both normal traffic and multilayer attacks have been made publicly 

available. However, these are outdated and do not accurately represent the characteristics of today’s 

traffic, as seen in newer devices and network services. Even more recent databases rarely contain 

any IoT traffic. It is essential to obtain datasets with traffic produced by IoT devices to develop 

anomaly detection systems that can profile legitimate traffic for IoT devices.  

Furthermore, available datasets often have a limited number of features relevant to one or a subset 

of security attacks. For example, the NSL-KDD, BoT-IoT and UNSW-NB15 datasets have been 

commonly used to identify multilayer IoT attacks such as DDoS attacks, but it is unclear whether 

the data contains all the relevant features for other types of multilayer attacks. Creating and 

publishing benchmark datasets would benefit the entire research community. 

• Feature Extraction on Semi-structured Data  

ML algorithms require structured data as input, so the data has to be transformed into a structured 

table before being input into ML algorithms. This is challenging because IoT data often contains 

both structured and semi-structured information. Unlike structured data, where each attribute can 

be regarded as a feature for analysis, it is non-trivial to identify meaningful features from semi-

structured information and transform the relevant data into structured columns. Developing 

effective computational methods that can identify and extract meaningful or relevant features from 

the semi-structured information is one of the keys to the success of intrusion detection. Human 

expert knowledge and machine-learned knowledge can both be helpful in the feature identification 

process. 
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• Flexible ML Models for the Detection of Different Types of Attacks  

Some of ML models are less flexible in detecting new attacks, new types of attacks, or attacks 

targeting new devices. Additionally, the detection complexity and training time for some models 

are high for real-time IoT systems. 

Another characteristic of multilayer IoT attacks is their complexity. A large variety of attacks exist, 

each of which may be relevant to a specific set of features that may or may not exist in the data. 

There is a need for a one-size-fits-all solution that works effectively in detecting all possible 

multilayer IoT attacks. A possible solution to this problem is to develop an approach that first 

helps identifies key features and patterns that characterise different types of attacks. By then 

identifying the common features between these attacks, such information can be used as prior 

knowledge before training ML models for intrusion detection. This approach enables the 

development of flexible machine learning models that are not only created to detect the studied 

multilayer attacks but also robust enough to adapt to new types of these multilayer attacks by 

focusing on these common features. 

• Computational Framework  

Like many other knowledge discovery applications, IoT intrusion detection involves several stages, 

including focusing, data processing, data transformation, modelling, and evaluation. Most existing 

IDS rely on pre-processed data and pre-trained models, and therefore do not include components 

to cover all the above-mentioned stages. Many of them lack flexibility in feature selection, feature 

weighting, scaling, selection of distance metrics, tuning hyperparameters, handling real-time threats, 

and adjusting the models according to evolving changes. A generic computational framework that 

covers every stage of the knowledge discovery process with flexible options will provide a more 

systematic and effective solution to the problem.  

Although these existing feature selection methods can extract significant features from datasets, it 

remains unclear which is the most effective. Also, each feature selection method has its pros and 

cons, even the accuracy of those methods invariably depends on the training dataset. The aim of 

this research is to ascertain the optimal number of significant features, irrespective of all feature 
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selection methods used, by incorporating multiple feature selection methods in the decision-

making process. 

The above-mentioned studies primarily focus on specific attacks on specific applications (e.g., 

phishing site detection in smart cities) or outdated datasets (e.g., KDD '99 and CIDD). There is a 

gap in research regarding the generalisability of these feature selection and weighting methods 

across diverse IoT environments and attack vectors, especially for multilayer attacks. Additionally, 

there is a notable absence of discussion on incorporating human expertise in the loop of feature 

selection and weighting processes, which could enhance the interpretability and reliability of the 

detection models, especially in complex scenarios where automated methods might struggle. 

Despite the severe impact of these multilayer attacks on various IoT devices, there is currently no 

comprehensive framework for their detection and mitigation. 

In this research, the latest and most comprehensive benchmark IoT cybersecurity dataset Edge-

IIoTset dataset is utilised. While previous studies have employed this dataset to detect intrusions 

in IoT and industrial IoT systems Keserwani et al.(2023); Tareq et al, (2022); Khacha et al., 2022; 

Al Nuaimi et al. (2023); Samin et al. (2023); Ullah et al. (2023); Ferrag et al. (2022) these studies 

have not extensively explored the detection and classification of multilayer attacks, nor have they 

extensively applied feature weighting techniques. Instead, most studies have explored manual 

feature selection methods, with only one exception employing XGBoost as the feature selection 

method. Additionally, a limited number of studies have investigated the tuning of the 

hyperparameters of the models used. 
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3 METHODOLOGY FOR ADVANCED IOT 

MULTILAYER ATTACKS DETECTION 

This chapter presents the comprehensive methodology employed in developing the IoT multilayer 

detection and identification system. As shown in Figure 3.1, it covers the experimental tools used, 

the structural framework of methodology, and its specific implementation using the Edge-IIoTset 

dataset. 

Figure 3.1. Thesis structure showing Chapter 3’s placement within the overall project. 
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3.1 METHODOLOGICAL FRAMEWORK  

This section discusses the procedural methodology for developing the IoT multilayer SAIDS 

system. This includes incorporating systematic integration of feature selection, feature weighting, 

and a semi-automated approach in the overall framework where human expertise and machine 

learning algorithms work together, as illustrated in Figure 3.2. The term "semi-automated" reflects 

the system's use of both machine learning algorithms and human insight, combining automation’s 

efficiency with expert feedback to ensure accuracy and relevance. This approach enhances the 

overall efficacy of the IoT multilayer detection system through the strengths of both human 

judgment and algorithmic precision. 

To support the development and evaluation of the SAIDS, Python 3 on Google Colab, a cloud-

based Jupyter Notebook environment, was selected. This platform was chosen for its robust 

capabilities in machine learning, data processing, feature selection, feature weighting, and 

visualisation, all of which are critical factors for the successful implementation of the proposed 

framework. 

Figure 3.2. Semi-automated intrusion detection system (SAIDS). 

 

Identifying Optimal Features Based 
on Accuracy 
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A. Datasets Selection 

The methodology starts with selecting the data from various sources while considering specific 

criteria. These criteria include IoT-specific recent datasets, datasets related to multilayer attacks, 

and considerations for the maximum number of features that can be processed by ML algorithms.  

B. Data Pre-Processing 

Pre-processing is critical to transform the raw dataset for further analysis, ensuring that algorithms 

have quality data to learn from. This stage includes handling missing data and converting categorical 

data into a numerical format understandable by machine learning algorithms through label 

encoding. Additionally, it transforms semi-structured IoT data into structured data by utilising 

human expert knowledge to extract meaningful features from raw data. It also involves 

standardising data to a common scale across all features, typically resulting in a dataset with a mean 

of zero and a standard deviation of one or normalising the data to a range between 0 and 1. Both 

techniques help in improving the performance and speed of machine learning algorithms. Finally, 

it involves mitigating data imbalances to avoid bias towards a particular class, which is common in 

IoT security where attacks are rarer than normal events. 

C. Feature Selection 

After pre-processing, the next step is to filter the significant features to predict the target variable 

from the dataset. Irrelevant or redundant features may increase computational complexity, and 

sometimes negatively impact the model’s performance. The process begins with the identification 

of features common to multilayer attacks. Subsequently, various feature selection methods are 

applied to determine the most significant of common features. 

The approach of identifying common features between multilayer attacks has been selected in the 

SAIDS framework because, as mentioned in section 1.2, multilayer attacks share several common 

characteristics. For example, multiple attack types, such as HTTP Flooding, Session Hijacking, 

and Code Injection, exploit vulnerabilities in the HTTP protocol, while attacks like SYN Floods 

and MITM attacks target the incomplete TCP handshake. By focusing on these shared features, 

the SAIDS framework can detect a range of attack types that exhibit similar underlying behaviors. 



 

54 

This not only improves the efficiency of the detection system but also reduces the computational 

complexity, as the model is able to concentrate on the most relevant and impactful features. 

D. Feature Weighting 

During this stage, weights are assigned to each of the selected features, aiding the machine learning 

algorithms to prioritise the most significant features throughout the learning process.  

E. Classification of Attacks 

Machine Learning models were used to help in identifying the most important features for both 

classification tasks, namely; binary and multiclass classifications. This stage is essential for the 

development of the semi-automated tool.  

F. Identifying Optimal Features Based on Accuracy 

All these stages, starting from data pre-processing to classification, are bundled as a package. A 

semi-automated tool is created for visualising the impact of sequentially adding top-weighted 

features into ML classifiers. This tool aids in guiding the selection of the most significant features 

that contribute to a higher accuracy rate. The visualisations assist the feature selection for both 

binary classification and multiclass classification. 

G. Human Interaction 

The inclusion of expert feedback in the SAIDS by integrating human and machine learning 

approaches, where cybersecurity experts evaluate the semi-automated tool's output and provide 

feedback. This feedback is essential for the models' enhancement, as it can be used to adjust the 

feature selection process, and model parameters, or to interpret the results from the ML algorithms. 

H. Models Predictions 

The proposed framework incorporates two classification tasks: binary classification to distinguish 

between normal IoT traffic or malicious attacks, and multi-classification, for predicting multiple 

types of IoT attacks. If the IoT traffic is flagged as malicious to multilayer attacks, the system 



 

55 

further investigates to identify the type of multilayer attacks through multiclass classification. Also, 

the system is designed to easily integrate and add classifiers as needed. For the specific use case in 

this study, classifiers such as Decision Tree, K-Nearest Neighbors, Naive Bayes, Random Forest, 

and Artificial Neural Network were utilised as they are suitable for this prototype. 

3.2 IMPLEMENTATION OF SAIDS ON THE EDGE-IIOTSET 

DATASET 

This section describes the practical application of the proposed methodology for the detection and 

classification of multilayer attacks within IoT networks using the Edge-IIoTset dataset, as 

described in Figure 3.3. The rationale behind selecting this dataset is that it is the latest and most 

comprehensive benchmark IoT cybersecurity dataset, including most of the multilayer attacks from 

real traffic of IoT devices. 

Figure 3.3. Implementation of SAIDS to Edge-IIoTset dataset. 
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The following pseudocode explains the Implementation of SAIDS to Edge-IIoTset dataset in more 

detail. Refer to Appendix 2 for more information on the tools used. 

Algorithm: SAIDS 
Input: Dataset D 
 Feature Set F = {f1, f2, ..., fM} 
 Top Features to Select T 
Output: Optimal Features F_opt 
 Best ML Model M_best 
Begin: Step 1:  Preprocess (D) 
 Step 2:  F_common = IdentifyCommonFeatures(D) 
 Step 3:  Initialise containers: 
   F_ranked = {} 
   F_normalised = {} 
   Scores_Sum = {} 
   F_combined = {} 
 Step 4:  Feature Selection and Normalisation: 
   for each fs_method in [MI, IG, DTE, Chi², PCA, RF]: 
   F_scores = FeatureSelection (D, F_common, method=fs_method) 
   F_ranked[fs_method] = SortFeatures (F_scores, descending=True) 
   F_normalised[fs_method] = Normalise(F_scores) 
      for each feature in F_normalised[fs_method]: 
                if feature not in Scores_Sum: 
                    Scores_Sum[feature] = F_normalised[fs_method] [feature] 
                else: 
 Scores_Sum[feature] += F_normalised[fs_method] [feature] 
 Step 5:  Calculate Combined Scores: 
   for feature in Scores_Sum: 
      F_combined[feature] = Scores_Sum[feature] / len(F_normalised) 
 Step 6:  Sort Features by Combined Scores: 
    F_sorted = SortFeatures (F_combined, descending=True) 
    F_weighted = F_sorted 
 Step 7:  Model Training and Selection: 
    M_best_acc = 0 
    F_opt = [] 
    M_best = None 
    for N in range (1, T+1): 
      F_subset = F_weighted [: N] 
      for M in [DT, KNN, NB, RF, ANN]: 
   M_tuned = HyperparameterOptimisation (M, F_subset) 
   M_trained = Train (M_tuned, F_subset) 
   M_metrics = Test (M_trained, F_subset) 
   if M_metrics['accuracy'] > M_best_acc: 
 M_best_acc = M_metrics['accuracy'] 
 M_best = M_trained 
 F_opt = F_subset 
   end if 
 end for 
    end for 
 Step 8:  VisualiseImpact(F_opt) 
 Step 9:  HumanExpertReview (F_opt, M_best) 
 Step 10: FinaliseModel (M_best, F_opt) 
   Return (F_opt, M_best) 
End  
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3.2.1 Data Pre-processing 

This stage focuses on preparing the Edge-IoTset dataset for analysis. As discussed in section 2.4, 

the Edge-IIoTset dataset has a total of 63 features, including the "Attack_label" and "Attack_type" 

features. These features are presented in Table 3.1. The following steps outline the data pre-

processing procedure. 

Table 3.1. List of 63-features of the Edge-IIoTset dataset. 

N. Feature Name Description N. Feature Name Description 

1 frame.time Arrival Time 33 tcp.payload TCP payload 

2 ip.src_host IP Source Host 34 tcp.seq TCP Sequence Number 

3 ip.dst_host IP Destination Host 35 tcp.srcport TCP Source Port 

4 arp.dst.proto_ipv4 ARP Target IP address 36 udp.port UDP Source or Destination Port 

5 arp.opcode ARP Opcode 37 udp.stream UDP Stream index 

6 arp.hw.size ARP Hardware size 38 udp.time_delta UDP Time since previous frame 

7 arp.src.proto_ipv4 ARP Sender IP address 39 dns.qry.name DNS Name 

8 icmp.checksum ICMP Checksum 40 dns.qry.name_len DNS Name Length 

9 icmp.seq_le ICMP Sequence Number 41 dns.qry.qu DNS "QU" question 

10 icmp.transmit_timest
amp 

ICMP Transmit Timestamp 42 dns.qry.type DNS Type 

11 icmp.unused ICMP Unused 43 dns.retransmission DNS Retransmission 

12 http.file_data HTTP File Data 44 dns.retransmit_request DNS query retransmission 

13 http.content_length HTTP Content length 45 dns.retransmit_request
_in 

DNS Retransmitted request 

14 http.request.uri.query HTTP Request URI Query 46 mqtt.conack.flags MQTT Acknowledge Flags 

15 http.request.method HTTP Request Method 47 mqtt.conflag.cleansess MQTT Clean Session Flag 

16 http.referer HTTP Referer 48 mqtt.conflags MQTT Connect Flags 

17 http.request.full_uri HTTP Full request URI 49 mqtt.hdrflags MQTT Header Flags 

18 http.request.version HTTP Request Version 50 mqtt.len MQTT Msg Len 

19 http.response HTTP Response 51 mqtt.msg_decoded_as MQTT Message decoded as 

20 http.tls_port HTTP Unencrypted HTTP protocol 
detected over encrypted port 

52 mqtt.msg MQTT Message 

21 tcp.ack TCP Acknowledgment Number 53 mqtt.msgtype MQTT Message Type 

22 tcp.ack_raw TCP Acknowledgment number (raw) 54 mqtt.proto_len MQTT Protocol Name Length 

23 tcp.checksum TCP Checksum 55 mqtt.protoname MQTT Protocol Name 

24 tcp.connection.fin TCP Connection finish (FIN) 56 mqtt.topic MQTT Topic 

25 tcp.connection.rst TCP Connection reset (RST) 57 mqtt.topic_len MQTT Topic Length 

26 tcp.connection.syn TCP Connection establish request 
(SYN) 

58 mqtt.ver MQTT Version 

27 tcp.connection.synac
k 

TCP Connection establish 
acknowledge 

59 mbtcp.len Modbus Length 

28 tcp.dstport TCP Destination Port 60 mbtcp.trans_id Modbus Transaction Identifier 

29 tcp.flags TCP Flags 61 mbtcp.unit_id Modbus Unit Identifier 

30 tcp.flags.ack TCP Acknowledgment 62 Attack_label 0 indicates normal and 1 indicates 
attacks 

31 tcp.len TCP Segment Len 63 Attack_type Attack categories 
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A) Renaming Features 

The "Attack_label" feature includes both normal and abnormal traffic (attacks), presented as 0 and 

1 respectively in the dataset. This feature was renamed into "Label".  

B) Feature Modification 

The "frametime" feature was split into two separate attributes: "frame.time_WithoutIP" and 

"frame.time_WithIP". This division was essential because the original attribute contained both IP 

addresses and timestamps and it increased the total number of features in the dataset from 63 to 

64. 

• "frame.time_WithoutIP" includes only the timestamps, with the IP addresses replaced with 

1. The timestamps were converted into integers using the datetime package. 

• "frame.time_WithIP" had 0 values replaced with 1, 6 values replaced with 2, timestamps 

replaced with 3, and IP addresses converted into integers using the Excel Add-in 

(ip2location-ip-conversion). 

C) Categorical Data Encoding 

Label encoder which is inspired by (Rashid et al., 2023) was used to encode the categorical 
variables. 

• The "Attack_type" feature, which includes 14 different types of IoT cyber-attacks; 

however, the aim of this research is to focus on multilayer-related attacks. This means 

narrowing down the analysis to eight specific attacks and then encoding them. The eight 

multilayer attacks are: DDoS_TCP (DDoS TCP SYN Flood), DDoS_UDP, 

DDoS_HTTP, DoS_ICMP, MITM (ARP and DNS Spoofing), Password (Password 

Cracking), SQL injection, and XSS attacks. The distribution of the dataset’s traffic can be 

seen in Figure 3.4a and 3.4b. 
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- DDoS_TCP was encoded as 1, DDoS_UDP as 2, DDoS_HTTP as 3, 

DDoS_ICMP as 4, SQL injection as 5, XSS attacks as 6, MITM as 7, and Password 

cracking as 8. 

  
(a) (b) 

Figure 3.4. Distribution of traffic (a) normal and multilayer attacks (b) normal and attack 

types. 

• In "http.request.method", values (Get, Trace, Post) were encoded into 1, 2, and 3, 

respectively. 

• In "tcp.srcport", values (_googlecast_tcp.local, Desktop_UHF0SF2, 

Desktop_UHF0SF2.local) were encoded into 1, 2, and 3, respectively. 

• In "mqtt.msg", values (32322e, 32342e, 32332e) were encoded into 1, 2, and 3, respectively. 

• String values like (http/1.1) in "http.request.version" were replaced with 1, and (MQTT) in 

"mqtt.protoname" and (Temperature_and_humidity) in "mqtt.topic" were also replaced 

with 1. 

• The "http.request.uri.query" feature values like (id=%28SELECT%20, id=2%20, 

id=3%20, etc.,) were replaced with 1, 2, 3, etc. 

• URLs in the "http.request.full_uri" feature, such as 

(http://192.168.0.128/dvwa/vulnerabilities/), were replaced with 1, 2, 3, etc. 

http://192.168.0.128/dvwa/vulnerabilities/
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• String values in the "tcp.options" feature starting with (0101050a, 0101080, etc.,) were 

converted into 1, 2, 3, etc. 

• String values in the "tcp.payload" feature starting with 0, 1, 2, etc., were converted into 100, 

101, 102, etc. 

• The "http.file_data" feature values like (400 Bad Request, 404 Not Found, etc.,) were 

converted into 1, 2, 3, etc. 

D) Handling IP Addresses 

IP addresses in features like "ip.src_host", "ip.dst_host", "arp.dst.proto_ipv4", 

"arp.src.proto_ipv4", and "http.referer" were converted into numbers using the Excel Add-in 

(ip2location-ip-conversion). 

E) Removing Unnecessary Features 

Upon investigation, 10 features (icmp.transmit_timestamp, icmp.unused, http.tls_port, 

dns.qry.type, dns.retransmission, dns.retransmit_request_in, mqtt.msg_decoded_as, mbtcp.len, 

mbtcp.trans_id, and mbtcp.unit_id) were found to have zero values in the entire dataset and were 

therefore removed. Including such features would introduce noise, leading to potential overfitting 

and reduced model performance. Additionally, removing these features improves computational 

efficiency and simplifies the dataset, making it easier to manage. This resulted in a reduction of the 

total features from 64 to 54, including the Label and Attack_type in the Edge-IIoTset dataset. 

F) Dataset Splitting 

To evaluate the effectiveness of the classification models, the dataset was divided into a training 

set and a testing set, with 70% of the data allocated for training and 30% for testing, as 

recommended by (Samin et al., 2023; Ullah et al., 2023). 
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G) Standardisation and Balancing 

The Z-score method was chosen for standardisation to ensure consistency across all features. 

Standardising the dataset using Z-scores transforms the data in each feature to have a mean of 0 

and a standard deviation of 1. This is important for ML algorithms that are sensitive to the scale 

of data, such as k-nearest neighbours model (Dini et al., 2023). By standardising the features, we 

ensure that each feature contributes equally to the analysis, preventing features with larger scales 

from dominating the model. 

The Synthetic Minority Over-sampling Technique (SMOTE) was applied to address the issue of 

imbalanced data distribution, as it is widely used by researchers, as discussed in section 2.1. It 

increases the representation of the minority class, resulting in a more balanced dataset and 

enhancing the model's ability to learn from all classes, thereby improving overall performance and 

robustness (Samin et al., 2023; Maghrabi, 2024). 

3.2.2 Feature Selection  

This stage includes the identification of common features between multilayer attacks and the 

utilisation of various feature selection methods on the common features. 

3.2.2.1 Identifying common features 

This stage aims to identify the features that are commonly found in multilayer attacks. As shown 

in Figure 3.5, this approach begins by iterating over the "attack_type" feature to separate the data 

based on the nature of the network activity. Following the categorisation, a list of attributes 

corresponding to each type of attack was compiled. These features have diverse characteristics, 

such as traffic volume, packet size, and distinct behavioural patterns, which help distinguish 

malicious traffic from normal traffic. Then, the frequency of each attribute’s occurrence was 

counted. This quantification step aids in assessing the distribution of features associated with each 

attack type. Attributes that appear more frequently suggest a pattern that may be characteristic of 
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a particular form of attack. From the final 54 features of the original 64 features (including "label" 

and "Attack_type"), 34 features have been identified as common features, as shown in Table 3.2. 

 
Figure 3.5. Identifying common features between multilayer attacks. 

Table 3.2. Thirty-four common features between multilayer attacks. 

No. Feature Name No. Feature Name No.  Feature Name 

1 frame.time_WithoutIP 13 arp.dst.proto_ipv4 25  tcp.connection.rst 
2 frame.time_WithIP  14 arp.opcode 26  tcp.connection.syn 
3 ip.src_host 15 arp.hw.size 27  tcp.connection.synac 
4 ip.dst_host  16 arp.src.proto_ipv4 28  tcp.dstport 
5 tcp.len 17 http.request.method 29  tcp.flags 
6 tcp.options 18 http.request.full_uri 30  tcp.flags.ack 
7 tcp.payload 19 http.request.version 31  udp.stream 
8 tcp.seq 20 http.response 32  http.file_data 
9 tcp.srcport 21 tcp.ack 33  http.content_length 
10 udp.port 22 tcp.ack_raw 34  icmp.seq_le 
11 udp.time_delta 23 tcp.checksum    
12 dns.qry.name 24 tcp.connection.fin    

3.2.2.2 Integration of Feature Selection Methods 

Feature selection plays a crucial role in enhancing the performance of ML models, mitigating the 

risk of overfitting, and speeding up the training process. By identifying and employing the most 
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relevant features, models can be trained more effectively to detect complex patterns associated with 

multilayer attacks in IoT systems (Al Sukhni et al., 2023). 

Six feature selection methods were employed in this research to provide a diverse set of techniques 

for analysing the strength of the relationship between each of the 34 common features of multilayer 

IoT attacks and the target variable "label". These methods include Mutual Information (MI), 

Information Gain (IG), Decision Tree Entropy (DTE), Principal Component Analysis (PCA), Chi-

Square (Chi²), and Random Forest (RF). As demonstrated in Chapter 2, these methods have been 

extensively employed by researchers for IDS due to their effectiveness in handling diverse data 

types, including both numerical and categorical variables. Additionally, their ability to reduce the 

dimensionality of the feature space enhances the efficiency of the classification algorithm (Göcs 

and Johanyák, 2023). 

A. Mutual Information (MI) 

Mutual information is a measure of information between two random variables and is helpful in 

detecting both linear and non-linear relationships between variables. The mutual information 

between two random variables X and Y is calculated using Equation (1) (Sulaiman and Labadin, 

2015): 

𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) = ∑𝑝𝑝 (𝑥𝑥,𝑦𝑦)log 
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(y)

 (1) 

Where: 

- MI(X, Y) represents the mutual information between two variables X and Y. 

- p(x, y) is the joint probability for x ∈ X and y ∈Y. 

Based on the MI scores in Figure 3.6, the features "frame.time_WithoutIP" and "tcp.dstport" show 

the strongest relationship with the target variable "label". To accurately decide and select the 

insignificant features, this research utilised a permutation test as suggested by (François, Wertz and 

Verleysen, 2006), with the number of permutations set to 1000 to calculate the p-values. The 

permutation test is a statistical method that assesses the significance of the mutual information 

score by comparing it to scores derived from data generated under the null hypothesis (where the 

features and the target variable are independent).  



 

64 

 

Figure 3.6. Mutual information scores of features for the target variable. 

Figure 3.7 presents the 34 common features with their p-values. Features with p-values greater than 

or equal to 0.05 were considered to be irrelevant and excluded from further analysis. This threshold 

was chosen because the p-values of eight features were higher than their mutual information scores, 

as shown in Table 3.3, indicating that their relationship with the target "label" variable was not 

significant. As a result, features such as "'tcp.connection.synack", "arp.opcode", "udp.time_delta", 

"arp.src.proto_ipv4", "udp.port", "http.file_data", "tcp.connection.fin", and "arp.hw.size" were 

excluded. This approach of implementing the permutation test resulted in reducing the significant 

features to 26. 

 

Figure 3.7. P-values of features for significance testing with the target variable. 
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Table 3.1. Feature selection decisions based on mutual information scores and p-values. 

Feature Name Mutual Information Score P-Value Decision 
frame.time_WithoutIP 0.446368 0 Keep 
tcp.dstport 0.441615 0 Keep 
tcp.srcport 0.403821 0 Keep 
tcp.ack 0.328572 0 Keep 
tcp.seq 0.32686 0 Keep 
ip.src_host 0.294443 0 Keep 
ip.dst_host 0.214121 0 Keep 
tcp.flags 0.152636 0 Keep 
tcp.len 0.139283 0 Keep 
tcp.payload 0.12627 0 Keep 
tcp.ack_raw 0.109191 0 Keep 
tcp.options 0.105654 0 Keep 
tcp.checksum 0.085841 0 Keep 
tcp.flags.ack 0.065424 0 Keep 
frame.time_WithIP 0.044193 0 Keep 
icmp.seq_le 0.043087 0 Keep 
udp.stream 0.038415 0 Keep 
tcp.connection.syn 0.009105 0 Keep 
http.response 0.006775 0 Keep 
http.request.version 0.006665 0 Keep 
http.request.method 0.005857 0 Keep 
http.request.full_uri 0.004189 0 Keep 
dns.qry.name 0.004078 0 Keep 
http.content_length 0.003954 0 Keep 
tcp.connection.fin 0.00332 0.005 Exclude 
http.file_data 0.002897 0.043 Exclude 
arp.dst.proto_ipv4 0.002617 0 Keep 
arp.hw.size 0.002185 1 Exclude 
tcp.connection.rst 0.001981 0 Keep 
arp.opcode 0.001852 0.267 Exclude 
tcp.connection.synack 0.000222 0.183 Exclude 
udp.port 0.00009 0.395 Exclude 
arp.src.proto_ipv4 0 0.397 Exclude 
udp.time_delta 0 1 Exclude 

B. Information Gain (IG) 

Information Gain quantifies how much information each feature provides for predicting the target. 

Features that provide more information have a higher information gain value and can be considered 

significant, while those with lower values can be eliminated. This research utilised the 

InfoGainAttributeEval attribute evaluator, alongside the ranker search method in Weka, to 

consider all possible subsets of features, evaluate them based on their information gain with respect 

to the target variable "Label", and then list the results in rank order based on their information gain 

scores. The formula for calculating IG is as follows (Kurniabudi et al., 2020). 
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𝐼𝐼𝐼𝐼(𝐻𝐻,𝐶𝐶) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻) −  �
|𝐻𝐻𝐻𝐻|
|𝐻𝐻|𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐶𝐶)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻𝐻𝐻) (2) 

Where: 

- C represents the feature, while H stands for the dataset. 

- v represents a potential value for feature C, and Values(C) is the collection of all 

possible values for feature C. 

- |Hv| is the count of samples associated with the value v. 

- |H| indicates the total number of samples in the dataset. 

- Entropy (Hv) is entropy calculated for the samples of v. 

Entropy(H) is measured using the following formula, where c represents the count of values within 

the classification class and Pi represents the number of samples for class i (Kurniabudi et al., 2020). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻) =  � −𝑃𝑃ᵢ𝑙𝑙𝑙𝑙𝑙𝑙₂𝑃𝑃ᵢ
𝑐𝑐

ᵢ
 (3) 

Figure 3.8 shows that "arp.src.proto_ipv4", "arp.opcode", and "arp.hw.size" have information gain 

scores of zero, indicating that they do not provide any information that can be used to classify the 

data. The remaining 31 features are considered the most significant for the classification task. 

 

Figure 3.8. Information gain scores of features for the target variable. 

C. Decision Tree Entropy (DTE) 

DTE is one of the feature selection methods utilised in this research. This method involves training 

a Decision Tree classifier using the entropy criterion to assess the importance of each feature. The 
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results in Figure 3.9 show that only 7 out of 34 features are considered significant using this 

technique, with "tcp.srcport" and "tcp.dstport" having relatively higher entropy scores. 

Additionally, "ip.src_host", "frame.time_WithoutIP", "frame.time_WithIP", "udp.time_delta", and 

"ip.dst_host" suggest an essential role in the classification process.  

It is important to note that the remaining features with an entropy score of 0.000000 had no impact 

on the decision-making process of the classifier and do not contribute to distinguishing between 

different classes. 

 

Figure 3.9. Decision tree entropy scores of features for the target variable. 

D. Chi-Square (Chi2) 

Chi-square is another method used in this research to determine the statistical relationship between 

each feature and the target variable. This method involves calculating the chi-square scores for each 

feature. Ranking the features based on these scores allows researchers to identify the features that 

have a stronger association with the target variable "Label". A greater Chi² score indicates a stronger 

significance between the feature and the target variable. The following formula is used to calculate 

the Chi² scores (Hurtik, Molek and Perfilieva, 2020). 

𝐶𝐶ℎ𝑖𝑖2 = �
(𝑂𝑂 − 𝐸𝐸)2

𝐸𝐸
 (4) 

Where: 

- O is the observed value and E is the expected value. 
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The results of Chi² in Figure 3.10 show that all features are important, with higher Chi² scores 

indicating a stronger connection to the target. For example, "frame.time_WithIP" and 

"tcp.ack_raw" have higher Chi² scores and demonstrate a stronger relationship with the target 

variable "Label". 

 

Figure 3.10. Chi-square scores of features for the target variable. 

E. Principal Component Analysis (PCA) 

Principal Component Analysis is employed in this research to decrease the dimensionality of the 

feature space in order to improve the efficiency of the classification algorithms. PCA scores are 

calculated using the covariance matrix (Bolboacă et al., 2011). A visualisation of the feature names 

and their PCA scores using a bar chart is conducted, as shown in Figure 3.11(Bolboacă et al., 2011) 

Figure 3.11 shows that the feature "frame.time_WithoutIP" has the highest PCA score of around 

0.142, followed by 'frame.time_WithIP', which has a score of 0.09. These two features are the most 

influential in the reduced feature space. On the other hand, features with lower PCA scores, closer 

to zero, have less impact on the overall variance in the dataset. For example, "icmp.seq_le" has a 

PCA score of 3.118535e-18, which is extremely close to zero, indicating that it does not contribute 

significantly to the target variable "Label" and is excluded. However, the remaining 33 out of 34 

features are significant and provide useful information for classification. 
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Figure 3.11. PCA scores of features for dimensionality reduction. 

F. Random Forest 

Finally, the Random Forest method, which integrates feature importance as part of its algorithm, 

is utilised in this research to evaluate the importance of each feature in predicting the target variable 

"Label". This feature selection method is effective due to its ability to handle large datasets with a 

diverse range of data types, including both numerical and categorical variables. The results, as 

shown in Figure 3.12, indicate that the highest Random Forest scores are for the features 

"tcp.dstport" and "tcp.srcport", both with a score around 0.2, suggesting that they are significant 

to the prediction of the target variable. On the other hand, the seven features "arp.src.proto_ipv4", 

"udp.port", "http.request.version", "arp.hw.size", "dns.qry.name",  "http.content_length", 

"udp.time_delta" have scores of zero, indicating that they do not contribute meaningfully to the 

classification task. These seven features are excluded, leaving 27 out of the 34 features as significant.  
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Figure 3.12. Random forest feature scores for predicting the target variable. 

3.2.3 Feature Weighting 

Since each feature selection method has its strengths and weaknesses, this research incorporates 

the benefits of the six feature selection methods discussed in section 3.3.2 and combines their 

scores to identify multilayer attacks. The proposed approach aligns with the ensemble feature 

selection approach presented by (Göcs and Johanyák, 2023), which strengthens the advantages of 

each method while mitigating their weaknesses. By combining the scores of various ranking 

methods, weights can be assigned to the features to make the final feature selection more robust 

and less influenced by any single ranking method. 

To assign weights to the features, the scores obtained from the six feature selection methods are 

first normalised using the Min-Max normalisation technique to ensure comparability. Min-Max 

normalisation is chosen following the approach of (Zainudin, Akter et al., 2023; Alalhareth and 

Hong, 2023). The normalisation formula is as follows: 

Normalised Score =
𝑋𝑋 − min (𝑋𝑋)

max(𝑋𝑋) − min (𝑋𝑋)
 (5) 

 



 

71 

Where: 

- X is the original score value. 

- max (X) is the maximum value of the score. 

- min(X) is the minimum value of the score. 

The normalised scores from all feature selection methods are then combined to calculate a final 

score for each feature. The combined score (arithmetic mean) is calculated using the following 

formula, which averages the normalised scores from the feature selection methods: 

Combined Score = �
𝑋𝑋𝑋𝑋
𝑛𝑛

𝑛𝑛=𝑁𝑁

𝑛𝑛=1

 
(6) 

Where:  

- X is the normalised score of each feature selection method and n is the number of feature 

selection methods used. 

As a result, features are ranked based on their combined scores, with higher scores indicating 

greater importance. Lastly, each feature is assigned a weight equal to its combined score. 

Table 3.2 and Figure 3.13 present the sorted weights of the features based on their importance. 

They show that "tcp.srcport" has the highest weight of around 0.7, followed by "tcp.dstport" at 

around 0.62 and "frame.time_WithoutIP" at 0.54. This feature weighting is a strategic step, allowing 

machine learning models to prioritise features that are consistently identified as significant across 

six feature selection techniques. 
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Table 3.2. Feature weights analysis based on their importance. 

Feature Name Feature Weights Feature Name Feature Weights 

tcp.srcport 0.6968 udp.time_delta 0.0464 
tcp.dstport 0.6273 dns.qry.name 0.0417 
frame.time_WithoutIP 0.5413 arp.opcode 0.0334 
ip.src_host 0.3976 icmp.seq_le 0.033 
tcp.seq 0.3893 udp.stream 0.0326 
tcp.ack 0.337 http.request.method 0.0242 
frame.time_WithIP 0.3123 arp.hw.size 0.0239 
tcp.options 0.254 arp.src.proto_ipv4 0.023 
ip.dst_host 0.2453 http.request.full_uri 0.0221 
tcp.ack_raw 0.2232 http.request.version 0.0218 
tcp.len 0.206 tcp.connection.rst 0.0191 
tcp.payload 0.1888 http.response 0.0191 
tcp.flags 0.1714 tcp.connection.syn 0.0176 
tcp.checksum 0.0906 tcp.connection.fin 0.0106 
tcp.flags.ack 0.0662 tcp.connection.synack 0.0078 
udp.port 0.0561 http.file_data 0.0048 
arp.dst.proto_ipv4 0.0558 http.content_length 0.0036 

 

 

 

 

 

 

 

 

 

Figure 3.13. Feature weights analysis based on their importance. 
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3.2.4 Machine Learning Models and Performance 

Evaluation Metrics 

Five machine learning classification algorithms are employed in SAIDS to evaluate the selected 

features from the "Edge-IIoTset" dataset in detecting multilayer IoT attacks. These algorithms 

include Decision Tree (DT), K-Nearest Neighbors (KNN), Naive Bayes (NB), Random Forest 

(RF), and Artificial Neural Network (ANN). These models are chosen for this research due to their 

effectiveness in detecting IoT security attacks, as discussed in Chapter 2, and their performance 

results based on empirical testing. The utilisation of diverse models enables the comparison of 

results across multiple models, ensuring the robustness and applicability of the findings, and 

identifying feature combinations that enhance the models' accuracy. 

This research consists of two classification stages: binary and multiclass classifications. The binary 

classification stage is used to classify the network traffic as normal or as multilayer IoT attack 

categories. If the traffic is flagged as abnormal (multilayer IoT attacks), the system proceeds to the 

second stage, the multiclass classification, to identify the specific type of multilayer attacks. 

Several evaluation metrics are used to full understand and evaluate the effectiveness of the 

classification algorithms across various attack types. These metrics include accuracy, Precision (Pr), 

Recall (Rc), F1-score (F1), and AUC for both training and testing datasets. The utilisation of the 

AUC metric serves (Albulayhi et al., 2022) to assess the presence of overfitting and underfitting in 

machine learning models. This approach is essential because a model prone to overfitting may fail 

to detect new types of attacks that were not present in the training data, while an underfitting model 

may not detect even the known attacks.  
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3.2.5 Semi-automated tool for Identifying Optimal 

Features 

After feature weighting, a semi-automatic feature selection tool is developed to visualise the test 

accuracy of the machine learning algorithms. This tool adds the top-weighted features one after 

another for both binary and multiclass classification to identify the most significant features. 

Figures 3.14, 3.15, 3.16, and 3.17 illustrate the model’s testing accuracy using various feature sets, 

ranging from 1 to 34, and a separate set of 62 from the Edge-IIoTset dataset. 

• Binary classification 

Figure 3.14 presents the testing accuracies for ML models (DT, KNN, NB, RF, and ANN) for 

binary classification. Each model's performance varies across different feature sets, with a colour 

scale from red to green indicating accuracy levels. Red represents lower accuracy, while green 

represents higher accuracy. Among these models, the KNN model consistently outperforms the 

others in this task. For the full results of the testing accuracies for ML models for binary 

classification, refer to Appendix 3. 

The detailed performance of KNN is shown in Figure 3.15, which highlights the binary 

classification results. Initially, the KNN model achieves an accuracy of 91.05% for the first feature 

set. As additional features are incorporated, the accuracy significantly improved, reaching nearly 

perfect performance (around 100%) for feature sets 2 to 13. This suggests that these features are 

highly informative for the binary classification task. However, after 13-feature set, there is a 

noticeable decline in accuracy to approximately 98%. This reduction could be due to the 

introduction of noise or irrelevant information from the additional features, which can confuse the 

model and decrease its performance. 
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Figure 3.14. Model accuracies for binary classification across different feature sets. 

Figure 3.15. Visualising binary classification using KNN model. 
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• Multiclass Classification 

Figure 3.16 mirrors the structure of Figure 3.14 but focuses on multiclass classification. It 

demonstrates that the KNN model again outperforms the other models, achieving high accuracy. 

For the full results of the testing accuracies for ML models for multiclass classification, refer to 

Appendix 3. 

To delve deeper into the KNN model's performance in multiclass classification, Figure 3.17 is 

presented. The testing accuracy starts at a low of 52% with only one feature and increases 

significantly as more features are added, reaching a peak at the 9-feature set with an accuracy of 

around 96%. After the 9-feature set, there is a notable drop in accuracy at feature set 10. A slight 

recovery is seen at the 13-feature set with an accuracy of 90%, followed by another drop. From 

feature set 14 onward, the accuracy stabilises within the mid-85% range, with minor increases but 

no return to the peak levels seen with feature sets 9 or 13. These critical feature sets, 9 and 13, are 

detailed in Tables 3.5 and 3.6, respectively. 

 
Figure 3.16. Model accuracies for multiclass classification across different feature sets. 
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Figure 3.17. Visualising multiclass classification using KNN model. 

Table 3.3. The 13-Feature set for Detecting and Identifying Multilayer Attacks. 

No. Feature Name No. Feature Name 
1 frame.time_WithoutIP 8 tcp.seq 
2 frame.time_WithIP  9 tcp.srcport 
3 ip.src_host 10 tcp.ack 
4 ip.dst_host  11 tcp.ack_raw 
5 tcp.len 12 tcp.dstport 
6 tcp.options 13 tcp.flags 
7 tcp.payload   

 

Table 3.4. The 9-feature set for detecting and identifying multilayer attacks. 

No. Feature Name No. Feature Name 
1 frame.time_WithoutIP 6 tcp.options 
2 frame.time_WithIP  7 tcp.payload 
3 ip.src_host 8 tcp.seq 
4 ip.dst_host  9 tcp.srcport 
5 tcp.len   
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3.3 CHAPTER SUMMARY 

This chapter presents a robust methodology for developing a Semi-Automated Intrusion Detection 

System (SAIDS) aimed at identifying multilayer IoT attacks. By integrating a range of experimental 

tools and methodologies, including advanced machine learning techniques, comprehensive feature 

selection, and weighting strategies, the research ensures high detection accuracy and efficiency. The 

methodological framework leverages the strengths of both human expertise and machine learning 

algorithms, enhancing the overall effectiveness of the intrusion detection system. 

The successful implementation on the Edge-IIoTset dataset further validates the proposed 

approach, demonstrating its capability to address the complexity and diversity of multilayer IoT 

threats effectively. This dataset, known for its comprehensive representation of IoT cybersecurity 

threats, provided a solid foundation for testing and fine-tuning the SAIDS. 

This implementation includes: 

• Feature Selection Methods: MI, IG, DTE, Chi², and RF. 

• Machine Learning Models: DT, KNN, NB, RF, and ANN. 

• Evaluation Metrics: Accuracy, Precision, Recall, F1-score, and Area Under the Curve. 

The feature selection process for the binary classification effectively reduces the total number of 

features from 62 to 34-common features. Then feature selection models reduce the 34-common 

features to enhance model performance. Figure 3.18 visualises the reduced features of each feature 

selection method, providing a clear representation of the effectiveness of each method in extracting 

the informative features. 
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Figure 3.18. Feature selection methods and their reduced features. 

In the feature weighting step, features are assigned weights based on their importance across the 

six feature selection methods. The highest-weighted features are: tcp.srcport, tcp.dstport, and 

frame.time_WithoutIP. 

The KNN model consistently outperforms the other models in both binary and multiclass 

classification tasks when using the semi-automated tool. In the KNN model, the 13-feature set in 

the binary classification marks a critical threshold where the KNN model's accuracy slightly 

declines, indicating the introduction of potentially noisy features. Additionally, feature set 9 shows 

the highest accuracy for multiclass classification, suggesting a highly effective but possibly 

oversimplified model. The slight reduction in accuracy at 13-feature set might indicate that 

additional features could potentially improve the model’s ability to identify a broader spectrum of 

multilayer attacks. 

To enhance the evaluation of 13-feature set for binary classification and feature sets 13 and 9 for 

multiclass classification, a thorough analysis is implemented in the next chapter. This involves 

comparing different evaluation metrics for each class, specifically precision, recall, F1-score, and 

AUC for both training and testing datasets. This comprehensive assessment is crucial for a full 

understanding of the model’s effectiveness across various attack types. 
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4 EXPERIMENTAL RESULTS AND SETTINGS 

As shown in Figure 4.1, this chapter presents the implementation results, showcasing the 

performance of five fine-tuned machine learning models—RF, DT, KNN, ANN, and NB 

classifiers—in classifying IoT network traffic into normal and multilayer attacks (identifying the 

specific types of attacks) by employing SAIDS on the Edge-IIoTset dataset. It also details the 

hyperparameter tuning process for the ML training models. 

Figure 4.1.  Thesis structure showing Chapter 4’s placement within the overall project. 
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4.1 HYPERPARAMETER TUNING OF MACHINE LEARNING 

MODELS 

Hyperparameter tuning is a critical step in optimising machine learning models to ensure their best 

performance, particularly in complex tasks like detecting multilayer attacks in IoT networks. In this 

research, hyperparameter tuning is employed to enhance the models used in the Semi-Automated 

Intrusion Detection System (SAIDS). Initially, Grid Search was employed for tuning the 

hyperparameters, but due to its time-consuming nature, the approach was shifted to Random 

Search. This decision is in line with the observations made by (Ali et al., 2023), who highlighted 

the slow performance of Grid Search. Random Search offers a faster alternative by sampling a 

fixed number of parameter settings from the specified distributions. This method significantly 

reduces computational time while still effectively identifying the optimal hyperparameters, thus 

improving the models' accuracy and reducing error rates (Ali et al., 2023). The random search is 

conducted using the RandomizedSearchCV class from the scikit-learn library. Upon completion of 

the search process, the best parameters are extracted from the RandomizedSearchCV object, as 

presented below. 

Table 4.1. Hyperparameters tuning for DT, RF, KNN, ANN, and NB models. 

Model Parameters Settings 

DT Criterion entropy 
Maximum Depth 5 
Minimum Samples Split 10 
Maximum Features sqrt 
Minimum Samples Leaf 4 

RF Criterion gini 
Maximum Depth 10 
Number of Estimators 10 

KNN Number of Neighbors 5 
Power Parameter (p) 1 
Distance Metric manhattan 

ANN  Activation Function ReLU 
Optimiser adam 
Evaluation Metrics accuracy  
Number of Epochs 10 
Batch Size 32 
Loss Function (Binary) binary_crossentropy 
Loss Function (Multiclass) categorical_crossentropy 
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4.2 IMPLEMENTATION RESULTS 

This section provides a comprehensive evaluation of the five ML models using their optimised 

hyperparameters. The analysis begins with detecting multilayer attacks through binary classification 

based on the accuracy, using both the full set of 62 features and a reduced set of 34 common 

features from the Edge-IIoTset dataset and the most significant features identified by each feature 

selection method applied to the reduced 34 common features dataset. This is followed by a detailed 

assessments of the full set of 62 features, 34 common features, and feature sets 13 and 9, as 

identified in section 3.3.5, utilising precision, recall, F1-score, and AUC for both training and testing 

datasets for multiclass classification to identify the specific types of multilayer attacks. The goal is 

to determine the most effective feature combinations for accurate and robust multilayer attack 

classification. 

4.2.1 Feature Selection Outputs for Detecting Multilayer 

Attacks 

From the data shown in Table 4.2 of the binary classification based on accuracy, utilising a reduced 

feature set of 34, it is evident that there is a significant increase in accuracy for the DT model, 

which increased to 99.87% with the 34 features from 94.3% with all 62 features. The RF classifier 

also experienced a gain in performance, improving to 95.78% accuracy from 94.58%. The ANN 

classifier also showed a notable increase in accuracy, up to 86.41% from 76.1% when the feature 

set was reduced. This demonstrates that a reduced set of 34 features can enhance the predictive 

capabilities of machine learning models for IoT network traffic by eliminating noise and irrelevant 

data.  

Also, from the analysis of feature selection methods (MI, IG, DTE, PCA, Chi², and RF), it is 

apparent that the models achieve high accuracy rates when employing the feature selection method 

MI with the permutation test. This suggests that using MI for feature selection, with just 26 

features, is an effective strategy for enhancing the accuracy of ML models. Following MI is IG with 

31 features, which also shows good performance. Both the Chi² method and the utilisation of all 

34 features achieved good results; this is because the Chi² method considers all 34 features to be 
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relevant and significant, resulting in their effective performance. However, the DTE method is the 

least effective in feature selection. Within the MI feature selection technique, the ANN model 

demonstrated the highest accuracy at 99.83%. The KNN model follows closely with an accuracy 

of 97.95%, and the DT model achieves a third-best accuracy of 97.10%. On the other hand, the 

RF model shows slightly lower performance with an accuracy of 95.55%, and the NB model 

records the lowest accuracy at 61.18%. 

Table 4.2. Comparative accuracy analysis of ML models using different feature selection methods 

for binary classification. *Values for MI, highlighted in yellow, indicate the best feature selection 

method. MI is tested with 26 significant features, IG with 31 features, DTE with 7 features, Chi² with 34 

features, PCA with 33 features, and FR with 27 features. 

  FS Methods 

Machine  
Learning Model MI IG Chi² PCA RF DTE All 34 All 62 

DT 97.10 85.74 99.87 99.87 94.32 71.03 99.87 94.3 

RF 95.55 98.41 95.78 98.46 84.9 99.84 95.78 94.58 

KNN 97.95 97.89 97.89 84.84 97.88 99.93 97.89 98.4 

ANN 99.83 98.88 86.41 80.56 92.25 92.92 86.41 76.1 

NB 61.18 61.19 61.22 43.96 61.31 38.48 61.22 66.77 
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4.2.2 Semi-automated tool Outputs for Identifying 

Multilayer Attacks 

4.2.2.1 62-Features for Identifying IoT Multilayer Attacks 

In the initial evaluation using all 62 features for classifying multilayer IoT attack types, as shown in 

Table 4.3, it is found that KNN and RF algorithms exhibit the highest overall performance with 

high precision, recall, F1-scores, testing accuracy, AUC (both training and Testing) ranging from 

99% to 100%. As shown in Figure 4.2, KNN performs well in detecting DDoS_TCP, 

DDoS_UDP, DDoS_ICMP, and MITM, while RF performs particularly well in classifying 

DDoS_UDP, DDoS_ICMP, and Password attacks. NB also shows strong performance, especially 

for DDoS and MITM attacks, with consistent high accuracy (ranging from 80% to 100%) and 

AUC scores (76% to 100%). While DT and ANN demonstrate good overall accuracy (75% to 

100%) and AUC (75% to 1.00). 

Figure 4.2. Performance Analysis of ML algorithms using 62-features. 
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Table 4.3. Performance of ML algorithms for multilayer IoT attack classification using 62-

features.  *Yellow highlights indicate worst predictions. 

Alg Metric Normal DDoS_TCP                        DDoS_UDP                       DDoS_HTTP        
           

DDoS_ICMP                        SQL 
injection         

XSS 
attacks                       

MITM                                Password                        

NB 

Pr 0.99 0.46 1.00 0.34 0.96 0.69 0.75 1.00 1.00 

Rc 0.38 1.00 1.00 0.98 1.00 0.15 0.05 1.00 0.99 

f1 0.54 0.63 1.00 0.50 0.98 0.25 0.09 1.00 1.00 

Acc. 0.85 0.88 1.00 0.80 0.99 0.91 0.90 1.00 0.99 

AUC Training 0.76 0.96 1.00 0.88 0.99 0.94 0.89 1.00 0.99 

AUC Testing 0.76 0.94 1.00 0.89 0.99 0.93 0.88 1.00 0.99 

RF 

Pr 0.92 0.89 1.00 0.32 1.00 0.00 0.00 0.66 1.00 

Rc 0.85 0.91 1.00 0.99 1.00 0.00 0.00 1.00 1.00 

f1 0.88 0.90 1.00 0.49 1.00 0.00 0.00 0.79 1.00 

Acc. 0.94 0.98 0.99 0.79 1.00 0.90 0.90 0.99 0.99 

AUC Training 0.92 0.98 1.00 0.87 1.00 0.86 0.83 1.00 0.99 

AUC Testing 0.92 0.97 1.00 0.88 1.00 0.87 0.84 1.00 0.99 

DT 

Pr 0.63 0.88 1.00 0.59 1.00 0.00 0.28 0.46 1.00 

Rc 0.94 0.88 0.90 0.34 1.00 0.00 0.48 1.00 0.49 

f1 0.75 0.88 0.95 0.43 1.00 0.00 0.35 0.63 0.66 

Acc. 0.85 0.97 0.98 0.91 1.00 0.90 0.83 0.98 0.95 

AUC Training 0.90 0.99 0.99 0.85 1.00 0.81 0.82 0.99 0.97 

AUC Testing 0.92 0.99 0.99 0.86 1.00 0.75 0.81 0.99 0.96 

ANN 

Pr 0.78 0.81 1.00 0.42 0.84 0.01 0.26 1.00 0.35 

Rc 0.50 0.99 0.99 0.70 1.00 0.00 0.54 1.00 0.22 

f1 0.61 0.89 0.99 0.53 0.91 0.00 0.35 1.00 0.27 

Acc. 0.83 0.99 0.99 0.93 0.99 0.90 0.84 0.99 0.87 

AUC Training 0.94 0.99 1.00 0.92 1.00 0.92 0.89 1.00 0.88 

AUC Testing 0.92 0.99 1.00 0.92 1.00 0.92 0.84 1.00 0.84 

KNN 

Pr 0.97 1.00 1.00 0.70 1.00 0.66 0.75 0.99 0.68 

Rc 0.95 1.00 1.00 0.69 1.00 0.80 `0.93 1.00 0.41 

f1 0.96 1.00 1.00 0.69 1.00 0.72 0.83 1.00 0.51 

Acc. 0.98 0.99 0.99 0.93 1.00 0.94 0.96 0.99 0.92 

AUC Training 0.99 1.00 1.00 0.98 1.00 0.99 0.99 1.00 0.98 

AUC Testing 0.99 0.99 0.99 0.90 1.00 0.96 0.98 1.00 0.85 
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4.2.2.2 34-Common Features for Identifying IoT Multilayer 

Attacks 

A similar evaluation is conducted using the 34 common features for identifying multilayer IoT 

attacks, as illustrated in Table 4.4. KNN and RF continue to exhibit the highest accuracy in 

detecting specific attacks, similar to the initial evaluation using 62 features. 

Table 4.4. Performance of ML algorithms for multilayer IoT attack classification using 34-

common features. *Yellow highlights indicate worst predictions. 

Alg Metric Normal DDoS_TCP                        DDoS_UDP                       DDoS_HTTP        
           

DDoS_ICMP                        SQL 
injection         

XSS 
attacks                       

MITM                                Password                        

NB 

Pr 0.99 0.41 1.00 0.33 0.96 0.64 0.78 1.00 1.00 
Rc 0.22 1.00 1.00 0.97 1.00 0.17 0.07 1.00 0.99 
f1 0.36 0.58 1.00 0.49 0.98 0.27 0.13 1.00 1.00 

Acc. 0.81 0.86 1.00 0.79 0.99 0.90 0.91 1.00 0.99 
AUC Training 0.71 0.96 1.00 0.90 0.99 0.94 0.88 1.00 0.99 
AUC Testing 0.71 0.93 1.00 0.92 0.99 0.92 0.87 1.00 0.99 

RF 

Pr 0.69 0.52 1.00 0.50 0.99 0.33 0.00 0.69 1.00 
Rc 0.54 0.60 1.00 0.27 1.00 0.92 0.00 1.00 1.00 
f1 0.60 0.55 1.00 0.35 1.00 0.49 0.00 0.81 1.00 

Acc. 0.83 0.90 0.99 0.90 0.99 0.81 0.90 0.99 0.99 
AUC Training 0.86 0.89 1.00 0.87 1.00 0.85 0.82 0.99 0.99 
AUC Testing 0.86 0.87 1.00 0.87 1.00 0.85 0.78 0.99 0.99 

DT 

Pr 0.74 1.00 1.00 0.50 1.00 0.46 0.54 1.00 1.00 

Rc 0.92 0.31 1.00 0.27 1.00 0.89 0.38 1.00 1.00 

f1 0.89 0.47 1.00 0.35 1.00 0.60 0.44 1.00 1.00 
Acc. 0.90 0.93 1.00 0.90 1.00 0.88 0.91 1.00 0.99 

AUC Training 0.94 0.96 1.00 0.90 1.00 0.92 0.90 1.00 1.00 
AUC Testing 0.92 0.93 1.00 0.90 1.00 0.93 0.90 1.00 1.00 

ANN 

Pr 0.67 0.68 1.00 0.23 0.99 0.53 0.18 0.96 0.38 
Rc 0.57 0.99 1.00 0.23 1.00 0.72 0.22 1.00 0.08 
f1 0.62 0.81 1.00 0.23 1.00 0.61 0.20 0.98 0.13 

Acc. 0.83 0.95 0.99 0.84 0.99 0.90 0.82 0.99 0.90 
AUC Training 0.92 0.99 1.00 0.83 1.00 0.93 0.90 1.00 0.85 
AUC Testing 0.92 0.99 1.00 0.83 0.99 0.93 0.85 1.00 0.84 

KNN 

Pr 0.97 1.00 1.00 0.68 1.00 0.66 0.75 0.99 0.68 
Rc 0.94 1.00 1.00 0.68 1.00 0.80 `0.92 1.00 0.41 
f1 0.96 1.00 1.00 0.68 1.00 0.72 0.83 1.00 0.51 

Acc. 0.97 0.99 0.99 0.93 1.00 0.94 0.96 0.99 0.92 
AUC Training 0.99 1.00 1.00 0.98 1.00 0.98 0.99 1.00 0.98 
AUC Testing 0.99 0.99 0.99 0.90 0.99 0.96 0.98 1.00 0.85 
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Figure 4.3. Performance Analysis of ML algorithms using 34-features. 

• Performance Analysis with 62 Features 

As shown in Figure 4.4, it is found that RF, DT, and ANN models fail to distinguish SQL injection 

attacks, with precision, recall, and F1-scores for these attacks as low as zero. The RF model also 

fails to detect XSS attacks, exhibiting similarly low values for precision, recall, and F1-scores. NB 

shows poor performance in detecting both XSS attacks and SQL injection attacks, further 

highlighting the need for optimisation or alternative approaches to enhance detection accuracy for 

these specific types of attacks. 

• Performance Analysis with 34 Features 

In this evaluation, as shown in Figure 4.5, it is discovered that the RF model fails to detect XSS 

attacks, as evidenced by zero values in precision, recall, and F-measure. Both NB and ANN 

demonstrate lower performance in detecting XSS attacks. Additionally, NB struggles with detecting 

SQL injection attacks, and ANN shows lower performance in detecting password attacks. These 

observations indicate that the models still face challenges in identifying specific multilayer IoT 

attacks even with a reduced feature set. 

These performance issues with the RF, NB, DT and ANN models in detecting specific multilayer 

IoT attacks (XSS, SQL injection, and password attacks) using both the full 62 features and the 

reduced 34 common features suggest a need for refinement.  
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Figure 4.4. Performance analysis of ML models on all 62-features for multilayer 

attack identification. 

 

Figure 4.5. Performance analysis of ML models on 34-common features for 

multilayer attack identification. 
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4.2.2.3 Comparison Between 13-feature and 9-feature sets in 

Identifying IoT Multilayer Attacks  

As shown in the following Tables 4.5 and 4.6, which represent the analysis of ML models' 

performance using various evaluation metrics on 13-feature and 9-feature sets for multilayer attack 

identification demonstrates good performance. The models perform well with both feature sets for 

the attack types of DDoS (TCP, UDP, HTTP, and ICMP). This indicates that the critical features 

for detecting these attacks are included in both the 9-feature and 13-feature sets. However, the 

models are not performing well for password, MITM, XSS, and SQL injection-related attacks, as 

well as for normal traffic detection. 

For the 13-feature set (Table 4.5), the NB model displays notably low precision, recall, and F1-

score values —2%, 4%, and 3% respectively—in detecting XSS attacks, indicating a high rate of 

false positives and false negatives. The testing accuracy is 72%, and the AUC shows a reasonable 

score in training but experiences a drop in testing from 76% to 68%. This decline could suggest 

potential overfitting. 

In contrast, as demonstrated in Table 4.6, the 9-feature set exhibits significantly poorer 

performance across several models, such as NB, RF, and ANN, in distinguishing normal traffic, 

XSS, SQL injection, and password attacks compared to the 13-feature set. While all the metric 

values for NB in detecting XSS remain very low, they are consistent with those of the 13-feature 

set. Additionally, for NB in detecting SQL injection, despite high AUC scores of 97% for both 

training and testing and an accuracy of 90%, the precision, recall, and f-measure drop to 0. This 

indicates that the model failed to identify any true positives for SQL injection attacks. For RF, 

despite high AUC scores for both training and testing and high accuracy in distinguishing normal 

traffic, XSS, and SQL injection attacks, the model achieved 0% in precision, recall, and f-measure. 

This suggests that the model failed to identify any true positives for these attacks. The ANN model 

also exhibits low precision, recall, and f-measure values at 35%, 13%, and 19% respectively, 

indicating poor performance in identifying XSS attacks, and 26%, 11%, and 16% respectively, in 

identifying password attacks. 
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Although the 9-feature set is generally sufficient for detecting DDoS (TCP, UDP, HTTP, and 

ICMP) and MITM-related attacks, it is less effective in detecting normal traffic, password, SQL 

injection, and XSS attacks compared to the 13-feature set. This highlights the importance of 

including specific features that are critical for identifying normal traffic and more sophisticated 

attacks such as password, SQL injection, and XSS. The AUC scores for 13 features are quite high 

for both training and testing across all models, suggesting good model performance. However, the 

drop in AUC from training to testing for NB observed in both feature sets may indicate overfitting, 

particularly for XSS attacks. 

In summary, the application of the SAIDS demonstrates that the 13-feature set is more adept at 

detecting and identifying multilayer attacks compared to the 9-feature set, 34 common features, 

and all 62 features. 
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Table 4.5. Analysis of ML models performance on 13-feature sets for multilayer attack 

identification. *Yellow highlights indicate worst predictions. 

Alg  Metric Normal DDoS_TCP                        DDoS_UDP                       DDoS_HTTP                 DDoS_ICMP                        SQL 
injectio

         

XSS 
attacks                       

MITM                                Password                        

NB 

 Precision 0.99 1.00 1.00 0.36 0.96 0.84 0.02 1.00 1.00 

 Rc 0.22 0.63 1.00 0.99 1.00 0.42 0.04 1.00 1.00 

 f1 0.36 0.77 1.00 0.53 0.98 0.56 0.03 1.00 1.00 

 Acc. 0.81 0.96 1.00 0.82 0.99 0.93 0.72 1.00 0.99 

 AUC Training 0.91 0.99 1.00 0.96 0.99 0.94 0.76 1.00 0.99 

 AUC Testing 0.90 0.99 1.00 0.96 0.99 0.94 0.68 1.00 0.99 

RF 

 Pr 0.79 0.84 1.00 1.00 0.99 0.60 0.59 0.72 1.00 

 Rc 0.73 0.60 1.00 1.00 1.00 0.98 0.46 1.00 1.00 

 f1 0.76 0.70 1.00 1.00 0.99 0.74 0.52 0.83 1.00 

 Acc. 0.89 0.95 1.00 0.99 0.99 0.93 0.91 0.99 0.99 

 AUC Training 0.94 0.95 1.00 0.99 1.00 0.93 0.90 0.99 1.00 

 AUC Testing 0.94 0.96 1.00 0.99 1.00 0.93 0.90 0.99 0.99 

DT 

 Pr 0.96 0.99 1.00 0.85 1.00 0.30 0.66 0.71 1.00 

 Rc 0.60 0.65 1.00 0.38 0.99 1.00 0.34 1.00 0.97 

 f1 0.74 0.78 1.00 0.52 0.99 0.47 0.45 0.83 0.98 

 Acc. 0.90 0.96 0.99 0.93 0.99 0.77 0.92 0.99 0.99 

 AUC Training 0.92 0.99 1.00 0.86 1.00 0.90 0.88 1.00 0.82 

 AUC Testing 0.91 0.98 1.00 0.87 1.00 0.93 0.85 1.00 0.83 

ANN 

 Pr 0.93 0.85 1.00 0.45 0.99 0.58 0.36 0.97 0.38 

 Rc 0.44 0.88 1.00 0.30 0.99 0.89 0.82 1.00 0.30 

 f1 0.60 0.86 1.00 0.36 0.99 0.70 0.50 0.98 0.33 

 Acc. 0.84 0.96 0.98 0.86 0.99 0.87 0.83 0.99 0.87 

 AUC Training 0.93 0.99 1.00 0.87 0.99 0.95 0.91 1.00 0.87 

 AUC Testing 0.93 0.98 1.00 0.85 0.99 0.95 0.87 1.00 0.85 

KNN 

 Pr 1.00 1.00 1.00 0.70 1.00 0.70 0.85 1.00 0.79 

 Rc 1.00 1.00 1.00 0.72 1.00 0.80 0.95 1.00 0.54 

 f1 1.00 1.00 1.00 0.71 1.00 0.75 0.89 1.00 0.64 

 Acc. 0.99 0.99 1.00 0.94 0.99 0.94 0.97 1.00 0.94 

 AUC Training 0.99 1.00 1.00 0.98 1.00 0.98 0.99 1.00 0.97 

 AUC Testing 0.99 0.99 1.00 0.88 0.99 0.95 0.97 1.00 0.82 
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Table 4.6. Analysis of ML models performance on 9-feature sets for multilayer attack 

identification. *Yellow highlights indicate worst predictions. 

Alg  Metric Normal DDoS_TCP                        DDoS_UDP                       DDoS_HTTP                 DDoS_ICMP                        SQL 
injectio

         

XSS 
attacks                       

MITM                                Password                        

NB 

 Precision 0.99 1.00 1.00 0.32 0.96 0.00 0.02 1.00 1.00 

 Rc 0.17 0.65 1.00 0.99 1.00 0.00 0.04 1.00 1.00 

 f1 0.29 0.79 1.00 0.48 0.98 0.00 0.03 1.00 1.00 

 Acc. 0.80 0.96 1.00 0.78 0.99 0.90 0.72 1.00 0.99 

 AUC Training 0.92 0.99 1.00 0.99 0.99 0.97 0.76 1.00 0.99 

 AUC Testing 0.92 0.99 1.00 0.99 0.99 0.97 0.68 1.00 0.99 

RF 

 Pr 0.00 1.00 1.00 0.19 0.99 0.00 0.00 0.21 1.00 

 Rc 0.00 0.60 1.00 1.00 1.00 0.00 0.00 1.00 1.00 

 f1 0.00 0.75 1.00 0.32 1.00 0.00 0.00 0.34 1.00 

 Acc. 0.76 0.96 1.00 0.58 0.99 0.90 0.90 0.95 0.99 

 AUC Training 0.78 0.89 1.00 0.79 1.00 0.79 0.77 0.99 0.99 

 AUC Testing 0.77 0.88 1.00 0.76 1.00 0.76 0.73 0.99 0.99 

DT 

 Pr 0.98 1.00 0.99 0.92 1.00 0.67 0.64 1.00 0.93 

 Rc 0.92 1.00 1.00 0.58 1.00 1.00 0.95 1.00 0.51 

 f1 0.95 1.00 1.00 0.72 1.00 0.80 0.76 1.00 0.66 

 Acc. 0.97 1.00 0.99 0.95 1.00 0.95 0.94 1.00 0.95 

 AUC Training 0.99 1.00 0.99 0.97 1.00 0.96 0.97 1.00 0.96 

 AUC Testing 0.99 1.00 1.00 0.97 1.00 0.97 0.97 1.00 0.97 

ANN 

 Pr 0.61 0.40 1.00 0.23 0.95 0.53 0.35 0.88 0.26 

 Rc 0.43 0.69 0.99 0.27 1.00 1.00 0.13 1.00 0.11 

 f1 0.51 0.51 1.00 0.25 0.97 0.70 0.19 0.94 0.16 

 Acc. 0.80 0.87 0.99 0.83 0.99 0.91 0.89 0.99 0.88 

 AUC Training 0.86 0.88 1.00 0.78 0.99 0.95 0.90 1.00 0.83 

 AUC Testing 0.86 0.87 1.00 0.76 0.99 0.90 0.87 1.00 0.80 

KNN 

 Pr 1.00 1.00 1.00 0.83 0.99 0.87 0.91 1.00 1.00 

 Rc 1.00 0.99 1.00 0.81 1.00 0.87 0.97 1.00 0.98 

 f1 1.00 0.99 1.00 0.82 1.00 0.87 0.94 1.00 0.99 

 Acc. 0.99 0.99 1.00 0.96 0.99 0.97 0.98 1.00 0.99 

 AUC Training 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 

 AUC Testing 0.99 0.99 1.00 0.96 0.99 0.98 0.99 1.00 0.99 
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4.3 PERFORMANCE EVALUATION OF ML MODELS USING 

13-FEATURE SET 

The 13-feature set is selected based on previous findings in section 4.2.2 to optimise the balance 

between model performance and computational efficiency. This set includes the most critical 

features necessary for effectively detecting and identifying a wide range of IoT multilayer attacks. 

By reducing the feature count to 13, the model's processing speed is improved, and computational 

resource requirements are minimised, making the models more suitable for real-time applications. 

Despite the reduced feature count, the 13-feature set maintains high detection accuracy by retaining 

essential information. It avoids the significant performance drop seen with the 9-feature set, 

particularly in distinguishing Normal traffic, SQL injection, XSS, and password attacks, ensuring a 

robust detection capability. 

4.3.1 Evaluation of ML Models for IoT Multilayer Attacks 

Detection Using 13-Feature Set  

The performance metrics (precision, recall, F1-score, accuracy, and AUC for both training and 

testing datasets) of different machine learning models for distinguishing IoT multilayer attacks 

from normal traffic using the 13-feature set are analysed, as shown in Table 4.7.  

When comparing the models, KNN stands out as the top performer, achieving perfect scores 

across all metrics for both normal and multilayer attack detection. Specifically, KNN achieved 

precision, recall, F1-score, accuracy, and AUC values ranging from 99% to 100% for both 

categories, indicating exceptional reliability and performance. 

RF, DT, and ANN models also exhibit strong performance, with high values across all metrics 

ranging from 79% to 100%, making them reliable choices for IoT multilayer attack detection. 

However, ANN shows slightly lower precision and accuracy for normal traffic at 68% and 83%, 

respectively. 
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NB, while stable in terms of AUC, shows the lowest performance overall, indicating that it may 

not be the best choice for this application.  

Table 4.7. Comparative analysis of IoT multilayer attacks detection using different ML 

models. 

ML Model Metric Normal Multilayer                        

NB 

Precision 0.34 0.97 
Recall 0.51 0.44 

f1-score 0.54 0.61 
Accuracy 0.56 0.56 

AUC Training 0.92 0.92 
AUC Testing 0.92 0.92 

RF 

Precision 0.83 0.98 
Recall 0.95 0.94 

f1-score 0.88 0.96 
Accuracy 0.94 0.94 

AUC Training 0.98 0.98 
AUC Testing 0.98 0.98 

DT 

Precision 0.79 1.00 
Recall 1.00 0.92 

f1-score 0.88 0.96 
Accuracy 0.93 0.93 

AUC Training 0.98 0.98 
AUC Testing 0.97 0.97 

ANN 

Precision 0.68 0.99 
Recall 0.97 0.86 

f1-score 0.80 0.92 
Accuracy 0.83 0.99 

AUC Training 0.99 0.99 
AUC Testing 0.99 0.99 

KNN 

Precision 1.00 1.00 
Recall 1.00 1.00 

f1-score 1.00 1.00 
Accuracy 0.99 0.99 

AUC Training 0.99 0.99 
AUC Testing 0.99 0.99 
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Figure 4.6 visualises the IoT multilayer evaluation metrics (precision, recall, F1-score, accuracy, and 

AUC) from Table 4.7, providing a clear comparison of the classification algorithms. Highlighting 

the exceptional performance of KNN and the strong performances of RF, DT, and ANN models. 

Figure 4.6. Comparison of classification algorithms in IoT multilayer attacks detection. 

4.3.2 Evaluation of ML Models for IoT Multilayer Attacks 

Identification Using 13-Feature Set 

In this section, the performance of various machine learning models for identifying IoT multilayer 

attacks is comprehensively evaluated using the 13-feature set. The evaluation metrics include 

precision, recall, F1-score, testing accuracy, AUC for training, and AUC for testing, as detailed in 

Table 4.5 (in Section 4.2.2). 

To provide a clear comparison and facilitate understanding, these metrics are visualised in Figure 

4.7, which highlights the key performance indicators for each model across different attack types. 

In this figure, KNN and RF generally show the highest precision across most attack types, with 

KNN achieving nearly perfect precision for all attack types (ranging from 70% to 100%). NB 

shows lower precision of 2% for XSS attacks, suggesting that this area requires significant 
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improvement. Such failings have a significant impact on the practical deployment of the model, 

resulting in numerous false alerts or missed attacks. 

KNN and RF again lead in recall, indicating their effectiveness in identifying true positive instances 

of attacks. ANN shows a high recall for most attack types, though it dips for normal traffic, 

DDoS_HTTP, and password attacks, achieving 44%, 30% and 30% respectively. NB shows lower 

recall of 4% for XSS attacks. KNN consistently achieves high F1-scores across all attack types, 

followed by RF, DT, and ANN. NB shows lower F1-scores for XSS attacks, indicating a balance 

between precision, recall and F1-scores that needs improvement. 

All the models demonstrate good testing accuracy across all attack types ranging from 72% to 

100%. KNN outperforms the other models, with an accuracy of 100% in detecting DDoS_UDP 

and MITM, 99% in detecting normal traffic, DDoS_TCP, and DDoS_ICMP, 97% in detecting 

XSS, and 94% in detecting DDoS_HTTP, SQL injection, and password attacks. 

The AUC values for both training and testing are high for KNN, RF, DT, and ANN across all 

attack types, suggesting strong model performance. NB shows stable AUC but lower values for 

XSS attacks. 
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Figure 4.7. Precision, recall, f1-score, testing accuracy, and AUC for 13-feature set. 
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4.3.3 Detailed Evaluation of KNN Model Using 13-Feature 

Set 

This section delves deeper into the performance of the KNN model, which has shown superior 

performance in detecting and identifying IoT multilayer attacks using the 13-feature set. The 

detailed evaluation includes an analysis of the confusion matrix and the Receiver Operating 

Characteristic (ROC) curve, providing further insights into the model’s effectiveness. 

Confusion Matrix Analysis 

Figure 4.8 displays the confusion matrix using the KNN model for binary classification of normal 

traffic and multilayer attacks. It indicates that a total of 7,364 instances are predicted as "Normal" 

and 24,179 as "Multilayer Attacks". Only 18 instances are incorrectly labeled as "Multilayer 

Attacks", and 26 instances are incorrectly classified as "Normal". This means that the model has a 

high true positive rate, suggesting it is effective at detecting "Multilayer Attacks". The relatively low 

rates of false positives and false negatives indicate that the model is also capable of correctly 

identifying "Normal" traffic. 

 

 

 

 

 

 

Figure 4.8. Confusion matrix for attack detection using KNN model with 13-feature set. 
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Figure 4.9 presents the confusion matrix for multiclass classification, illustrating the KNN model's 

effectiveness in identifying various types of multilayer attacks. The model demonstrates high 

accuracy, correctly predicting 7,333 samples of Normal traffic and showing strong performance in 

identifying DDoS_TCP (3,059 samples) and DDoS_UDP (4,416 samples) with minimal 

misclassifications. The KNN model also performed well in classifying DDoS_HTTP attacks, 

accurately predicting 2,270 samples, though some were misclassified as DoS_ICMP and SQL 

Injection.  

For DoS_ICMP, 4,187 samples were correctly identified, with few errors. The model effectively 

classified 2,472 SQL Injection samples, despite minor misclassifications into DDoS_HTTP and 

Password categories. Similarly, the model accurately identified 2,835 XSS samples and 358 MITM 

samples, both with minimal errors. Lastly, for Password attacks, the model correctly classified 1,606 

samples, though some were misclassified as SQL Injection and DDoS_HTTP. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Confusion matrix for attack identification using KNN model with 13-feature set. 
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ROC Curve Analysis 

Figure 4.10 presents the ROC curve for the KNN model during binary classification testing, 

illustrating the model's capability to distinguish between normal and Abnormal (multilayer attacks). 

The curve's proximity to the top left corner indicates a high true positive rate and a low false 

positive rate, demonstrating the model's robustness. The ROC curve demonstrates an AUC value 

of 100% for both normal traffic and multilayer attacks, indicating perfect classification ability. 

 

 

 

 

 

 

 

 

Figure 4.10. ROC curve for binary classification using KNN model. 

Figure 4.11 presents the ROC curve for the KNN model during testing. The curve illustrates the 

model's capability to distinguish between normal and attack classes. The curve shows high AUC 

values across multiple attack types, reflecting excellent distinguishing capabilities. Specifically, the 

AUC values are as follows: Normal traffic, DDoS_TCP, DDoS_UDP, DoS_ICMP, and MITM all 

achieve an AUC of 100%, showcasing the model’s perfect performance in these categories. XSS 

attacks and SQL Injection also have high AUC values of 98% and 95%, respectively, indicating 
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strong performance. However, DDoS_HTTP and Password attacks have slightly lower AUC 

values of 88% and 82%, respectively, suggesting some improvement in these specific areas. 

 

 

 

 

 

 

 

Figure 4.11. ROC curve for multiclass classification using KNN model. 

4.4 CHAPTER SUMMARY 

The chapter evaluates the hyperparameter tuning and performance of five machine learning models 

(DT, RF, KNN, ANN, and NB) for detecting and identifying multilayer attacks in IoT networks 

using the Edge-IIoTset dataset. The study uses random search for hyperparameter tuning and 

assesses the models using various feature sets, including 62 features, 34 common features, 13 

features, and 9 features. 

Feature selection methods in the binary classification, MI and IG significantly improved model 

accuracy, especially for ANN model. MI with permutation tests is particularly effective as the 

classification models achieve the highest accuracy. In contrast, the least effective method for 

feature selection is DTE. 
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Model performance varies with different feature sets in multiclass classification. Using 62 features, 

KNN and RF demonstrate the highest overall performance. However, NB, RF, DT, and ANN 

struggle to detect SQL injection and XSS attacks. With 34 features, KNN and RF continue to show 

evidence of strong performance, but NB, RF, and ANN struggle with XSS, SQL injection, and 

password attacks detection. The 9-feature set is less effective than the 13-feature set, particularly 

for detecting normal traffic, password, SQL injection, and XSS attacks.  

Using the 13-feature set for binary classification, the KNN emerges as the top performer, achieving 

near-perfect scores ranging from 99% to 100% across all evaluation metrics. In multiclass 

classification, the KNN continues to be the top performer, achieving an accuracy above 94%, 

followed by RF, DT, and ANN. In contrast, the NB is the weakest performer, particularly in 

detecting XSS, with scores of 2%, 4%, and 3% in precision, recall, and F1-score respectively. This 

indicates that the NB in the 13-feature set needs improvement to reduce the high rates of false 

positives and false negatives. 

The proposed SAIDS incorporates multilayer IoT attacks detection, distinguishing it from recent 

studies that utilised the Edge-IIoTset dataset. Notably, it employs only 13 features, significantly 

fewer than the 20 to 63 features used in other research, thereby enhancing both its efficiency and 

effectiveness in detecting IoT multilayer attacks. 
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5 SAIDS EVALUATION USING ADDITIONAL 

DATASETS 

In the previous chapters, specifically Chapters 3 and 4, the SAIDS framework was assessed using 

the Edge-IIoTset dataset. Building upon this foundation, this chapter introduces additional datasets 

from various attack scenarios generated from both simulated and real-world experiments to further 

evaluate the robustness and effectiveness of the SAIDS framework, as shown in Figure 5.1. 

Figure 5.1. Thesis structure showing Chapter 5’s placement within the overall project. 
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5.1 SIMULATED UDP FLOOD ATTACK AND REAL-TIME 

MITM ATTACKS ON IOT DEVICES 

The evaluation was performed in a simulated environment with a dataset from real-world IoT 

devices and simulated one, as illustrated in Figure 5.2. The first part utilised the Cooja simulation 

platform on the Contiki operating system to simulate a UDP flood attack. Cooja is an IoT simulator 

tool that provides a virtual environment where researchers can simulate and monitor the behaviour 

of IoT networks under various conditions, including network attacks, without the need for physical 

hardware. Although it is a Java-based simulator, Cooja allows the nodes to be programmed in the 

C language (Farea and Küçük, 2022; Contiki-NG, 2022).  

Figure 5.2. Framework for generating and evaluating simulated and real-time IoT attacks 

The second part involved connecting real IoT smart home devices and launching a MITM attack, 

specifically an ARP poisoning attack, on a Xiaomi Redmi Note 9S device. The data collected using 

Wireshark from these experiments were then converted into CSV format using TShark. The 

generated datasets were pre-processed and merged into one dataset before being employed in the 
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SAIDS framework to assess its adaptability and accuracy in detecting these two types of IoT 

multilayer attacks. The devices and software used in creating both datasets are listed in Tables 5.1 

and 5.2. 

Table 5.1. Devices used in the simulated and real-time attacks. 

Device Description 
Xiaomi Redmi Note 9S Target device for the MITM attack, running 

Android OS with 128GB storage. 

Lenovo Laptop Used for capturing network traffic, executing 
ARP poisoning. 
Specifications: 8GB RAM, Windows 10 
Enterprise, 236GB SSD. 

Amazon Echo Dot (3rd Gen) Provides normal traffic data with Alexa voice 
assistant integration. 

Apple HomePod mini  Provides normal traffic data with Siri voice 
assistant integration. 

 

Table 5.2. Software tools used in the simulated and real-time attacks. 

Component Name Description 

Wireshark Open-source network analyser used to capture 
and analyse network traffic. 

Kali Linux Linux distribution used for hacking the Xiaomi 
device. 

VMware Workstation 17 Virtualisation software used to run Kali Linux on 
Windows 10 Enterprise. 

Contiki 2.7 Operating system used to run the Cooja 
Simulator. 

Cooja Simulator Simulator used to implement the IoT traffic and 
the UDP flood attack. 

6LoWPAN Analyser Tool A tool integrated with Cooja to capture the 
traffic, saving it in .PCAP format. 

Arpspoof  Tool used for performing ARP poisoning 
attacks. 

Tshark  Command-line version of Wireshark used for 
extracting features from the .PCAP files then 
converting them into CSV files. 
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5.1.1 Simulated UDP Flood Attack 

This subsection details the evaluation using the Cooja simulation platform on the Contiki operating 

system to simulate a UDP flood attack, providing insights into the framework’s performance under 

simulated high-traffic conditions. The tools used in creating this testbed are listed in Tables 5.1 and 

5.2. 

A) Simulated Normal and UDP Flood Attack Data Generation and Collection 

The experimental setup consisted of a network of 10 IoT devices (nodes) connected to a single 

server to emulate a typical IoT environment where multiple devices communicate with a central 

access point.  

• Normal Traffic Capture 

Initially, as shown in Figure 5.3, normal traffic was generated by the 10 nodes, each with a unique 

IP address (nodes 2-11, represented by yellow circles), interacting with the server (node 1, 

represented as a green circle). The blue lines between the server (node 1) and the nodes (2, 3, and 

11) represent the radio traffic. The mote output window displays the data transmissions between 

nodes. This traffic was captured without any malicious interference using Wireshark and stored in 

a .pcap file. 
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Figure 5.3. Normal traffic scenario and nodes output. 

• Attack Execution 

To simulate a UDP flood attack, as shown in Figure 5.4, node 1 (represented by a green circle) acts 

as the server, while node 8 (indicated by a red circle) is the malicious node responsible for launching 

the attack. The other nodes (nodes 2-7 and 9-10), shown as yellow circles, functioned as normal 

nodes. Node 8 is programmed to flood the network by sending a high volume of UDP packets to 

the router every second. In contrast, the normal nodes sent UDP packets at regular intervals, such 

as once every minute. This approach followed the methodology described in the research 

conducted by (Farea and Küçük, 2022). The network traffic during the UDP flood attack was 

captured using Wireshark, integrated with the Cooja simulator. The resulting traffic was stored in 

a separate .pcap file.  

Tshark was used to extract the features from the two PCAP files and store them in CSV format, 

resulting in the UDPFlood_Attack dataset with two traffic categories: normal traffic and UDP 

flood attack traffic. 
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Figure 5.4. UDP flood attack scenario and nodes output. 

5.1.2 Real-Time MITM Attacks on IoT Devices 

This subsection covers the evaluation of a MITM (ARP poisoning) attack on a Xiaomi Redmi Note 

9S device. This evaluation helps in understanding the SAIDS framework’s efficacy in detecting 

real-world security threats. 

A) MITM_Attack Testbed: Hardware and Software Components 

Several hardware and software tools were used in creating this testbed, as shown in Table 5.1 and 

Table 5.2. The hardware setup included various devices to create a real-world home network 

environment, as illustrated in Figure 5.5. Each device served a specific purpose in the experiment. 

The Xiaomi Redmi Note 9S served as the target device for the MITM attack. The Lenovo laptop 

was employed to execute the ARP poisoning attack via Kali Linux and capture network traffic 

using Wireshark from the Xiaomi device, Amazon Echo Dot (3rd Generation), and Apple 

HomePod mini. 



 

109 

Figure 5.5. Hardware setup for real-world MITM attack experiment. 

B) Normal and MITM Attack Data Generation and Collection 

In this phase, IoT data was generated from various components connected to the home router, 

including the Xiaomi Redmi Note 9S, Apple HomePod, and Amazon Echo. Initially, normal traffic 

data was collected by running Wireshark to capture traffic from these devices. The IP and MAC 

addresses of these devices are listed in Table 5.3. The normal data generation continued for a few 

hours. During this period, an ARP poisoning attack was launched using the Arpspoof tool against 

the Xiaomi device at different times to ensure a comprehensive dataset. 

By launching Arpspoof, the Kali Linux machine (attacker) positioned itself in the middle of the 

connection between the home router and the Xiaomi Redmi Note 9S. The Kali Linux machine 

acts as a router for the Xiaomi device by having the same MAC address as the router, and it acts 

as the Xiaomi device for the home router by having the same MAC address as the Xiaomi device. 

This setup allowed the attacker to effectively intercept the traffic between the two, enabling the 

theft of information as the Xiaomi device communicated with the network. 
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Table 5.3. IP and MAC addresses of devices used in MITM attack. 

Device IP Address MAC Address 

Home router 192.168.8.1 94:E9:EE:8D:81:91 

Xiaomi Redmi Note 9S 192.168.8.100 18:87:40:EF:19:B1 

Kali Linux 192.168.8.157 08:00:27:5C:65:26 

Apple HomePod 192.168.8.152 4C:20:B8:DB:B2:8C 

Amazon Echo 192.168.8.111 08:84:9D:D5:C7:76 

Features were extracted from the PCAP files specific to the MITM attack scenario using the same 

process described in Section 5.1.1. This resulted in the MITM_Attack dataset, which includes 

both normal traffic and MITM attack traffic. 

5.2 DATASETS EVALUATION RESULTS 

The UDPFlood_Attack and MITM_Attack datasets were merged into a single dataset called the 

Combined UDPFlood and MITM Attacks (CUMA) dataset. This comprehensive dataset includes 

both multilayer attack scenarios as well as normal traffic. It contains a total of 25,027 instances, 

with 15,988 instances representing normal traffic, 14,598 instances representing UDP flood attack 

traffic, and 1,740 instances representing MITM attack. The dataset includes 36 features (excluding 

the "label" and "Attack_type" features), as shown in Table 5.4. 

Table 5.4. List of 36-features of the CUMA dataset. 

No. Feature Name No. Feature Name No. Feature Name 
1 frame.time_WithoutIP 13 http.request.method 25 tcp.checksum 
2 frame.time_WithIP 14 http.content.type 26 tcpstream 
3 arp.hw.type 15 http.request.full_uri 27 ip.src_host 
4 arp.protocol.type 16 http.connection 28 ip.dst_host 
5 arp.hw.size 17 http.cookie 29 udp.length 
6 arp.protocol.size 18 tcp.srcport 30 udp.payload 
7 arp.opcode 19 tcp.dstport 31 icmp.checksum 
8 arp.src.MAC 20 tcp.seq 32 udp.src.port 
9 arp.src.proto_ipv4 21 tcp.ack 33 icmp.flags 
10 arp.dst.MAC 22 tcp.win.size 34 udp.dst.port 
11 arp.dst.proto_ipv4 23 tcp.flags 35 udp.stream 
12 dns.flag 24 tcp.len 36 udp.time_delta 
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• Identifying Common Features 

Pre-processing was performed on the CUMA dataset to prepare it for accurate classification. The 

next step involves identifying common features between both multilayer attacks. Out of the 36 

features, 21 have been identified as common features. These features are listed in Table 5.5. 

Table 5.5. Twenty-one common features between the multilayer attacks in the CUMA 

dataset. 

No. Feature Name  No. Feature Name 
1 frame.time_WithoutIP  12 tcp.seq 
2 frame.time_WithIP  13 tcp.ack 
3 arp.hw.size  14 tcp.flags 
4 arp.opcode  15 tcp.len 
5 arp.src.proto_ipv4  16 tcp.checksum 
6 arp.dst.proto_ipv4  17 ip.src_host 
7 http.request.method  18 ip.dst_host 
8 http.request.full_uri  19 udp.port 
9 http.connection.syn  20 udp.stream 
10 tcp.srcport  21 udp.time_delta 
11 tcp.dstport    

• Feature Selection Methods 

Feature selection techniques, including mutual information (MI), information gain (IG), random 

forest (RF), decision tree entropy (DTE), principal component analysis (PCA), and chi-square 

(chi2), were applied to the 21common features between UDP flood and MITM multilayer attacks. 

The features scores for each method are presented in Figure 5.6.   

The Mutual Information identified 19 features, ranking "tcp.srcport", "tcp.dstport", "tcp.flags", 

and tcp.seq as the top features. Both IG and Chi2 identified all 21 features as significant. For 

Information Gain, the highest-scoring features are "tcp.flags", "tcp.dstport", and "tcp.seq", while 

the top features in the Chi-square method are "ip.dst_host" and "ip.src_host". DTE identified 6 

features, highlighting "tcp.srcport", "ip.dst_host", and "frame.time_WithoutIP" as the most 

significant. PCA identified 11 features, giving the highest scores to "frame.time_WithoutIP", 

"frame.time_WithIP", and "arp.hw.size". RF identified 18 features as significant for detecting 

multilayer attacks, with "ip.dst_host", "tcp.srcport", and "frame.time_WithIP" being the most 

important. 
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Figure 5.6. Comparative analysis of the results of feature selection methods. 



 

114 

• Feature Weighting 

The scores obtained from the feature selection methods were normalised and then combined using 

Equation 6 in Section 3.2.3 to assign a weight to each feature. Figure 5.7 presents the sorted weights 

of the features based on their importance. It shows that "tcp.srcport" has the highest weight, 

approximately 0.56, followed by "tcp.dstport" at around 0.46, and "tcp.flags" at 0.43. 

 

Figure 5.7. Feature weights analysis. 

• Semi-automated tool for Identifying Optimal Features 

The semi-automated tool successfully identified 7 significant features for detecting and identifying 

UDP flood and MITM attacks using the KNN machine learning model, as shown in Figures 5.8 

and 5.9. These 7 features are listed in Table 5.6, with "tcp.srcport" and "tcp.dstport" being the most 

significant. 
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Tabel 5.6. The 7-significant features for detecting and identifying UDP flood and MITM 

multilayer attacks. 

No. Feature Name 
1 tcp.srcport 
2 tcp.dstport 
3 tcp.flags 
4 ip.dst_host 
5 frame.time_WithoutIP 
6 frame.time_WithIP 
7 tcp.seq 

 

 
Figure 5.8. Visualising binary classification using KNN model. 
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Figure 5.9. Visualising multiclass classification using KNN model. 

 

• Performance Evaluation of ML Models Using the 7 Significant Features. 

The identified 7 significant features were then used to analyse the performance of machine learning 

models in distinguishing between normal and multilayer attacks traffic. 

 

Binary Classification Results 

Table 5.7 shows the performance of different machine learning algorithms applied to the CUMA 

dataset. The models were evaluated based on precision, recall, F1-score, accuracy, and AUC for 

both normal and attack traffic categories.  

The KNN and DT algorithms achieved good scores across all metrics, ranging from 86% to 100% 

for both normal and multilayer traffic. This indicates that these models are highly reliable in 

distinguishing between normal and malicious multilayer activities. The ANN also performed well, 
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with metrics ranging from 84% to 100%. Both the RF and NB models demonstrated good 

performance, with all metrics ranging from 70% to 100%. These models achieved 99% and 100% 

recall for multilayer traffic, highlighting their capability to correctly identify all instances of attack 

traffic.   

Table 5.7. Binary classification results of SAIDS framework on CUMA. 

Alg Metric Normal Multilayer 

NB 

Precision 100 0.70 
Rc 0.76 0.99 
f1 0.86 0.82 
Acc. 0.85 0.85 
AUC Training 0.81 0.81 
AUC Testing 0.81 0.81 

RF 

Pr 1.00 0.70 
Rc 0.76 1.00 
f1 0.87 0.82 
Acc. 0.85 0.85 
AUC Training 0.98 0.98 
AUC Testing 0.98 0.98 

DT 

Pr 1.00 0.86 
Rc 0.91 1.00 
f1 0.95 0.92 
Acc. 0.94 0.94 
AUC Training 0.98 0.98 
AUC Testing 0.98 0.98 

ANN 

Pr 1.00 0.84 
Rc 0.89 1.00 
f1 0.94 0.91 
Acc. 0.93 0.93 
AUC Training 0.97 0.97 
AUC Testing 0.97 0.97 

KNN 

Pr 0.86 0.95 
Rc 0.98 0.70 
f1 0.91 0.81 
Acc. 0.88 0.88 
AUC Training 0.98 0.98 
AUC Testing 0.98 0.98 
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Multiclass Classification Results 

The multiclass classification results, presented in Table 5.8, evaluate the same set of models on the 

CUMA dataset for distinguishing between normal, DDoS_UDP, and MITM traffic types. The 

evaluation metrics include precision, recall, F1-score, accuracy, and AUC. 

The KNN and DT algorithms again performed well, with precision, recall, and F1-scores ranging 

from 83% to 100%. They showed strong ability in classifying both normal and attack traffic, with 

particularly high scores for normal and DDoS_UDP traffic but slightly lower precision for MITM 

traffic at 83%. The ANN model's performance metrics ranged from 81% to 100%. It achieved 

high recall for MITM traffic but struggled with precision at 81%, particularly for MITM traffic, 

suggesting a need for optimisation in this area. 

Finally, both the RF and NB models continued to demonstrate solid performance, achieving 

metrics between 65% and 100%. These models achieved perfect recall and F1-scores for 

DDoS_UDP traffic, underscoring their effectiveness in identifying this type of multilayer attacks. 

However, for MITM traffic, their precision was lower at 65%, indicating room for improvement. 
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Table 5.8. Multiclass classification results of SAIDS framework on CUMA. 

Alg  Metric Normal DDoS_UDP                       MITM                                

NB 

 Precision 1.00 1.00 0.65 
 Rc 0.76 1.00 1.00 

 f1 0.87 1.00 0.79 

 Acc. 0.85 1.00 0.85 

 AUC Training 0.79 1.00 0.90 

 AUC Testing 0.79 1.00 0.90 

RF 

 Pr 1.00 0.99 0.65 
 Rc 0.76 1.00 1.00 

 f1 0.87 1.00 0.79 

 Acc. 0.85 1.00 0.85 

 AUC Training 0.96 1.00 0.90 

 AUC Testing 0.96 1.00 0.90 

DT 

 Pr 1.00 1.00 0.83 
 Rc 0.91 1.00 1.00 

 f1 0.95 1.00 0.91 

 Acc. 0.94 1.00 0.94 

 AUC Training 0.98 1.00 0.98 

 AUC Testing 0.98 1.00 0.98 

ANN 

 Pr 1.00 1.00 0.81 
 Rc 0.89 1.00 1.00 

 f1 0.94 1.00 0.89 

 Acc. 0.93 1.00 0.93 

 AUC Training 0.97 1.00 0.97 

 AUC Testing 0.97 1.00 0.97 

KNN 

 Pr 0.98 1.00 0.83 

 Rc 0.92 1.00 0.95 

 f1 0.94 1.00 0.89 

 Acc. 0.93 1.00 0.93 

 AUC Training 0.98 1.00 0.98 

 AUC Testing 0.98 1.00 0.98 

 

 

 



 

120 

5.3 CHAPTER SUMMARY 

This chapter evaluates the SAIDS framework using datasets generated from both a simulated UDP 

flood attack, conducted using the Cooja simulation platform, and a real-world MITM attack (ARP 

poisoning) executed on a Xiaomi Redmi Note 9S device. This builds upon the assessments 

conducted in previous chapters with the Edge-IIoTset dataset. The Combined UDPFlood and 

MITM Attacks dataset (CUMA) was created by merging the generated UDP flood and MITM 

attack datasets. This dataset, which comprises 36 features, serves as a comprehensive testbed for 

assessing the robustness and effectiveness of the SAIDS framework in detecting and classifying 

multilayer attacks.  

By applying the SAIDS framework to the CUMA dataset, 21 common features between the 

multilayer attacks were identified. These features were further refined using feature selection 

methods, feature weighting, and a semi-automated tool, which ultimately identified 7 significant 

features, such as "tcp.srcport" and "tcp.dstport," that are critical for detecting and identifying UDP 

flood and MITM attacks. 

In both binary and multiclass classification tasks, the KNN, DT, and ANN algorithms 

outperformed other models, achieving good scores between 84% and 100% for binary 

classification and between 81% and 100% for multiclass classification across all metrics for both 

normal and multilayer traffic. The RF and NB models demonstrated good performance as well, 

with metrics ranging from 70% to 100% in binary classification and from 65% to 100% in 

multiclass classification, though they were slightly less effective, particularly for MITM traffic. 
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6 CONCLUSION 

This chapter summarises the findings and insights gained from the research on developing a Semi-

Automated Intrusion Detection System (SAIDS) for multilayer attack detection in IoT networks. 

The research particularly focuses on the detection and identification of complex IoT multilayer 

attacks using machine learning techniques. The chapter is organised into three main sections: 

research contribution, research significance, and limitations with future work. 

6.1 RESEARCH CONTRIBUTION 

The primary aim of this research was to develop a robust SAIDS capable of detecting and 

identifying multilayer attacks in IoT networks. This aim was achieved through the smart integration 

of feature selection and feature weighting within machine learning model, the incorporation of 

human expertise in the overall process to tackle these attacks using the most significant features, 

and the evaluation of the system using both simulated and real-world datasets. The research was 

structured around three key objectives where each was successfully addressed, as outlined below. 

The first objective was to investigate the existing machine learning algorithms and identify the 

current limitations of the standard frameworks for detecting IoT multilayer security attacks, with a 

particular focus on optimisation of features through feature selection and weighting methods. This 

objective was implemented in Chapter 2, through a comprehensive literature review that 

highlighted several key challenges in current Intrusion Detection Systems, particularly in managing 

the complexity of multilayer attacks in IoT environments. These challenges include the absence of 

benchmark datasets, difficulties in feature extraction from semi-structured data, and the rigidity of 

some machine learning models, which struggle to adapt to new types of attacks or attacks targeting 

new devices. Additionally, the review pointed out the absence of comprehensive computational 

frameworks that cover all stages of the knowledge discovery process, from data preprocessing to 
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model evaluation. These insights provided the foundation for developing a more robust and 

flexible framework, addressing the identified gaps and limitations through the integration of human 

expertise with machine learning techniques. 

The second objective focused on the development, implementation, and optimisation of the 

parameters of the SAIDS framework. This objective was comprehensively addressed through the 

work presented in Chapters 3 and 4. In Chapter 3, a detailed methodology was presented, 

describing the data preprocessing techniques, feature selection methods, feature weighting, the 

integration of cybersecurity experts’ feedback with machine learning algorithms, and two stages of 

classification (binary and multiclass). Chapter 4 further expanded on the hyperparameter tuning 

process and the performance evaluation of the SAIDS framework. The system then was evaluated 

using the Edge-IIoTset. Through this evaluation, 13 significant features were identified for the 

detection and classification of IoT multilayer attacks. The effectiveness of the SAIDS framework 

is clearly demonstrated by the KNN model's ability to accurately identify both normal traffic and 

various multilayer attacks, achieving an accuracy of 99% in binary classification and above 94% in 

identifying each type of multilayer attacks. These results indicate that the SAIDS framework 

significantly improved detection accuracy while reducing computational complexity. 

The final objective was to evaluate the SAIDS framework using additional datasets derived from 

both simulated and real-world experiments. This objective was achieved through the work 

presented in Chapter 5, where the framework was tested on datasets generated from a simulated 

UDP flood attack and a real-world MITM (ARP poisoning) attack. The results from these 

evaluations showed that the identified seven significant features successfully detected and classified 

the IoT multilayer attacks. These results confirmed the robustness and adaptability of the SAIDS 

framework in detecting multilayer attacks across different IoT environments. The framework's 

ability to maintain high detection accuracy with a reduced feature set highlighted its potential for 

real-time application in diverse IoT scenarios. 
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6.2 RESEARCH SIGNIFICANCE 

The development of SAIDS may influence significant implications across IoT security domains. 

This approach may compensate for the limitations of existing research that mostly focuses on 

single-layer attacks while offering a comprehensive and innovative approach to IoT multilayer 

attacks detection method: 

1. The proposed approach comprises an ensemble feature analysis technique by combining 

multiple feature selection and feature weighting methods to optimise the process of extracting the 

most significant features from IoT datasets utilised for training the machine learning models to 

develop the intrusion detection systems (IDS) for identifying IoT multilayer attacks.  

2. This framework supports the ML training and testing process by minimising the total 

numbers of features in a dataset, indirectly improving the computational complexity for IDS, 

reducing the training time while maintaining the required accuracy and enhancing the scalability 

across various IoT applications.  

3. The approach includes Human-Machine Teaming by utilising human expertise in extracting 

feature selection and tuning of data mining parameters to facilitate a more robust approach in 

identifying attack patterns. This collaboration between human and machine enhances the system's 

adaptability and accuracy in detecting multilayer intrusions. 

4. It shows a unique visualisation tool that graphically represents how individual features 

influence the detection process that guides researchers and developers in understanding and 

selecting the minimum significant features for detecting and identifying multilayer IoT attacks. 

5. The framework employs a two-stage classification process where the first stage uses a binary 

classifier to filter traffic into normal and abnormal categories whereas the second stage applies 

multiclass classification to identify specific types of multilayer attacks, enabling targeted mitigation 

strategies.  

6. The system is designed to easily integrate and add classifiers as needed. For the specific use 

case of the data, we utilised classifiers such as Decision Tree, K-Nearest Neighbours, Naive Bayes, 
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Random Forest, and Artificial Neural Network as they are suitable for this prototype. The research 

further confirmed the adaptability of the SAIDS framework across different datasets and IoT 

scenarios, including simulated and real-world environments. This adaptability indicates that the 

framework can be applied to multiple IoT sectors, serving as a valuable tool for enhancing security 

measures in critical infrastructure.  

6.2.1 Comparative Analysis of IoT Multilayer Attacks 

Detection Frameworks 

As shown in Table 6.1, existing frameworks, such as those by Bansal et al. (2011); Mahale et al. 

(2017); Mythili and Seetha (2021), while employing traditional techniques for multilayer attack 

detection, lack critical components like feature selection, feature weighting, and hyper-parameter 

optimisation, limiting their adaptability in complex IoT environments. These methods suffer from 

high false positive and false negative rates and struggle to meet the computational demands 

required for real-time IoT security. Although effective in simulation environments, they face 

challenges with real-world complexities such as interference and evolving attack patterns.  

Table 6.1 Comparative analysis of existing frameworks and SAIDS framework for 
multilayer IoT attacks. 

Ref. Techniques 
Used 

Multilayer 
Detection 

Feature 
Selection 

Feature 
Weighting 

Hyper-parameter 
Opt. 

Classify 

Bansal et al. 
(2011) 

Cross-layer Yes No No No Binary 

Mahale et al. 
(2017)  

Cross-layer Yes No No No Binary 

(Sodagudi 
and Rao, 
2014) 

Behavior-based 
anomaly 
detection 

Yes No No No Binary 

Mythili and 
Seetha 
(2021) 

Distributed 
mobile agents 

Yes No No No Binary 

SAIDS ML Yes Yes Yes Yes Binary, 
Multiclass 
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6.2.2 Comparative Analysis of IoT Attack Detection Using 

Edge-IIoTset Dataset 

Similarly, more recent ML and DL models, like those by (Keserwani, Aggarwal and Chauhan, 

(2023); Tareq et al., (2022); Khacha et al., (2022); Al Nuaimi et al., (2023); Samin et al., (2023); Ullah 

et al., (2023); Ferrag et al., (2022), have improved detection for single-layer attacks. Table 6.2 

presents a comparative analysis of the proposed SAIDS with recent related works using the Edge-

IIoTset dataset. The proposed SAIDS stands out by incorporating multilayer IoT attack detection, 

which is not addressed by the other studies. Furthermore, this approach utilises 13 significant 

features, as illustrated in Figure 6.1, which is fewer than the features used in most other studies, 

ranging from 20 to 63 features with some studies relying on manual feature selection methods. 

Figure 6.1. Intersection of all features, 34-common features, and 13-features sets. 
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Table 6.2. Comparison between proposed model and relevant works on EdgeIIoT-set 
dataset. 

Ref. Models Multilayer 
Detection 

Features Feature 
Selection 

Feature 
Weighting 

Hyper-
parameter 
Opt. 

Classify 

Keserwani, et 
al. (2023) 

CatBoost, 
XGBoos, 
RF, DT 

No 20 Manual No No Binary, 
Multiclass 

Tareq et al. 
(2022) 

Inception 
Time, 
DenseNet 

No All 63 _ No Yes Multiclass 

Khacha et al. 
(2022) 

CNN-
LSTM 

No _ _ No Yes Binary, 
Multiclass 

Al Nuaimi et 
al. (2023) 

J48, PART, 
BayesNets, 
AdaBoos, 
LogitBoost, 
ASC 
 

No All 63 _ No Yes Binary, 
Multiclass 

Samin et al. 
(2023) 

NB, DT No 46 Manual No No Multiclass 

Ullah et al. 
(2023)  

MAGRU No 31 XGBoost No Yes Multiclass 

Ferrag et al. 
(2022) 

RF, DT, 
SVM, 
KNN, 
DNN 

No 46 Manual No Yes Binary, 
Multiclass 

The proposed 
method 

NB, DT, 
KNN, RF, 
ANN 

Yes 13 MI, DTE, 
IG, RF, 
Chi² 

Yes Yes Binary, 
Multiclass 

6.3 LIMITATIONS AND FUTURE WORK 

While this research has successfully developed and validated the SAIDS framework, there are 

several limitations and opportunities for future work that could enhance its capabilities and 

applicability. The first limitation of this research is that, although a comprehensive range of 

multilayer attacks were identified, the research focused on a subset of these attacks when 

implementing the SAIDS framework. Specifically, the detected attacks include DDoS TCP SYN 

Flood, DDoS UDP, DDoS HTTP, DoS ICMP, MITM (ARP and DNS Spoofing, ARP poisoning), 

cryptanalysis (password cracking), SQL injection, and XSS attacks. This means that the remaining 

multilayer attack types, such as side-channel attacks, replay attacks, and other types of DDoS, DoS, 

MITM, cryptanalysis, and malicious code injection attacks, were not addressed in the framework. 
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Future work could expand detection capabilities of SAIDS to study these additional multilayer 

attacks, further strengthening the framework’s ability to comprehensively safeguard IoT networks. 

Another limitation of this research is that inference time was not taken into consideration in the 

SAIDS framework while detecting and identifying attacks. Although the framework demonstrated 

high accuracy and robustness in multilayer IoT attack detection, the absence of an analysis on 

inference time leaves a gap in understanding the system’s real-time performance. This is particularly 

critical in IoT environments, where rapid detection and response are essential to prevent damage 

or further intrusions. Future work could focus on evaluating and optimising the inference time to 

ensure the SAIDS framework is not only accurate but also efficient for real-time deployment in 

various IoT scenarios. 

Acknowledging the observed limitations results within SAIDS, particularly the underperformance 

of certain machine learning models like the Naive Bayes model in detecting XSS attacks, it is 

evident that the framework could benefit from the adoption of advanced machine learning models. 

A significant extension to this work would be involve integrating Continuous Machine Learning 

(CML) into SAIDS, following the methods used by (Ariyadasa, Fernando and Fernando, 2024; 

Seetha et al., 2023). This integration would allow the system to automatically update its 

understanding of multilayer attack patterns, reducing overfitting risks and improving detection of 

evolving threats.  

Furthermore, another future work direction is to employ existing feature weighting algorithms and 

develop an algorithm to identify common features without compromising the significant features 

for each specific attack. By leveraging these two approaches, the framework can refine the detection 

process more effectively. 

Moreover, implementing the SAIDS framework in various environments, such as critical energy 

infrastructure, smart cities, industrial IoT, and healthcare IoT systems, would provide valuable 

insights into its scalability and performance under real-world conditions. This could involve 

collaboration with industry partners to deploy the system in live networks.  
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APPENDIX 1 

Summary of literature on detecting multilayer attacks. 

Author Year Focusing Dataset ML Algorithm Number 
of 
features 

Accuracy 

(Doshi, 
Apthorpe and 
Feamster, 
2018) 

2018 Their model focused on 
one layer the network layer 
to identify one attack 
(DDoS). The five features 
they've focused on are: 
packet size, regular time 
intervals between packets, 
protocols used, the 
bandwidth, and limited 
number of endpoints 

Created their own 
dataset 

KNN, SVM, DT, 
RF, and DNN 

5  ACC  99% 
PRE 99% 
REC 99% F1 
99% 

 (Bagaa et al., 
2020) 

2020 Their model focused on 
one layer the network layer 
to identify DDoS, Probe, 
U2R and R2L attack.  

built their model 
based on the 
NSL-KDD 
dataset 

One-class SVM 41 ACC 99.71%.  

(Moustafa, 
Turnbull and 
Choo, 2019) 

2019 Their model focused on 
one layer the application 
layer to identify one attack 
(botnet attacks) 

UNSW-NB15 
and NIMS botnet 
datasets 

NB, DT and ANN  36 ACC Between 
98.29% and 
99.54%  

(Cvitic et al., 
2022) 

2022 Their model focused on 
one layer the network layer 
to identify one attack 
(DDoS). 

Created their own 
dataset and used a 
dataset from the 
University of 
New South Wales 

Logistic Model Trees 
(LMT) 

76 Between 
99.92%–
99.99% 

(Sangodoyin et 
al., 2021) 

2021 Their model focused on 
one layer the network layer 
to identify one attack 
DDoS flooding attacks 

Created their own 
dataset 

quadratic 
discriminant analysis 
(QDA), NB, KNN, 
and classification and 
regression tree 
(CART) 

_ 98.00% 
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(Priya et al., 
2020) 

2020 Their model focused on 
one layer the network layer 
and used two features delta 
time and packet size to 
identify one attack (DDoS) 

Created their own 
dataset 

 NB, KNN, RF 2 98.50% 

(Ravi and 
Shalinie, 2020) 

2020 Their model focused on 
one layer the network layer 
to identify one attack 
(DDoS) 

UNB-ISCX 
dataset and 
created their own 
dataset 

semi-supervised 
machine learning 

155 96.28% 

(Rambabu and 
Venkatram, 
2021) 

2021 Their model focused on 
one layer the network layer 
to identify one attack 
(DDoS). 

DEFCON, 
ADFA, LBNL, 
KYOTO, and 
CICIDS2017 

KNN _ 95% 

(Shafiq et al., 
2020) 

2020 Their model focused on 
several DoS attacks on one 
layer. 

Bot-IoT NB, RF, DT, Bayes 
Network, and 
random tree 

44 99.79% 

(Nimbalkar 
and 
Kshirsagar, 
2021) 

2021 Their model focused on 
one layer the network layer 
to identify DDoS attacks. 
They presented a feature 
selection for intrusion 
detection systems utilizing 
50% top-ranking features 
of the Gain Ratio (GR) 
and Information Gain (IG) 

KDD Cup 1999 
and BoT-IoT  

JRip  16 and 19 99.99% 

(Rehman et al., 
2021) 

2021 They focused on DDoS 
attacks. And MinMax 
scaling is used for feature 
normalization  

CICDDoS2019 
dataset 

GRU, NB and 
Sequential Minimal 
Optimization (SMO) 

_ 99.69% 

(Ferrag et al., 
2020) 

2020 Their model focused on 
several attacks (DDoS, 
DoS slowloris, DoS 
Slowhttptest, DoS 
GoldenEye, Heartbleed, 
Port Scan, Infiltration, and 
web attacks) on one layer. 
The first two classifiers of 
the proposed model work 
in parallel and feed the 
third classifier.  

CICIDS2017 and 
BoT-IoT datasets 

REP Tree, JRip 
algorithm and Forest 
PA 

_ 96% 
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(Aljawarneh, 
Aldwairi and 
Yassein, 2018) 

2018 Four Attacks (DDoS, 
Probe, R2L and U2R 
attacks) on one layer 
(network layer) 

NSL-KDD J48, FR, and Naïve 
Bayes 

  For the binary 
class and 
multiclass 
NSL-KDD 
datasets, their 
hybrid model 
achieves 
accuracy of 
99.81% and 
98.56%, 
respectively 

(Al-Yaseen, 
Othman and 
Nazri, 2017) 

2017 Three Attacks (DoS, U2R, 
and R2L) on one layer 
(network layer) 

KDD CUP 1999 SVM, K-means 
clustering algorithm, 
and Extreme learning 
machine (ELM) 

  95.75% 

(Salman et al., 
2022) 

2019 Several attacks (including 
TCP-SYN flooding, UDP 
flooding, and HTTP 
flooding), network layer  

Created their own 
dataset and used 
CICIDS2017 
dataset  

decision tree, 
random forest, and 
deep learning models 

39 the Random 
Forest 
classifier 
achieved 
94.5% device-
type 
identification 
accuracy, 
93.5% traffic-
type 
classification 
accuracy, and 
97% abnormal 
traffic 
detection 
accuracy 

(Chen et al., 
2020) 

2020 One Attack DDoS on 
Multilayer 

Created their own 
dataset 

DT _ 99.98% 

(Anthi et al., 
2019) 

2019 Focused on five attacks 
(DoS, MITM, spoofing, 
reconnaissance, and replay) 
on one layer (network 
layer). 

Created their own 
dataset 

NB, BN, J48, ZeroR, 
OneR, SL, SVM, 
MLP, and RF 

_ F-measure 
between 90% 
and 98%. 

(Saharkhizan 
et al., 2020) 

2020 Focused on four attacks 
(MITM, Ping DDoS, TCP 
SYN DoS attacks, and 
Modbus query flood 
attacks) on one layer 
(network layer). 

Simoe's dataset 
[46] 

 Decision tree with a 
long short-term 
module (LSTM) 

83 99% 
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(Gad, Nashat 
and Barkat, 
2021) 

2021 Their model focused on 
one layer the network layer 
and foced on 9 attacks 
(such as MITM, DoS, 
DDoS, ransomware, 
password attack, scanning, 
data injection, backdoor, 
and XSS) 

ToN-IoT Logistic Regression, 
NB, DT, SVM, 
KNN, RF, AdaBoost 
and XGBoost 

20 98.60% 

(Hady et al., 
2020) 

2020 One Attack MITM, and 
one layer (network layer) 
healthcare system 

Created their own 
dataset 

RF, DNN, SVM, and 
ANN 

34 ACCU 
92.13%, 92%, 
92.44%, and 
92.04%  

(Mukhtar et al., 
2020) 

2020 One attack (side channel 
attack) 

created their own 
datasets 

CNN 800 Accuracy 67% 

(Illuri, 2021) 2021 One attack (side channel 
attack)  

created their own 
datasets and the 
sensitivity analysis 
was evaluated 
with medical 
Image datasets 
such as MRI, 
Mammogram, 
and Diabetic 
Retinopathy 
images. 

extreme learning 
machine (ELM) 

_ 95% accuracy 

(Mukhtar et al., 
2019) 

2018 One attack (side channel 
attack) 

created their own 
datasets 

Naive Bayes, Support 
Vector Machines, 
Random Forest, and 
Multilayer 
Perceptron (MLP) 

_ accuracy of 
90%. 

(Makkar et al., 
2021) 

2021 several attacks (spam, DoS, 
DDoS, eavesdropping, tag 
modification, and malware) 
used a variety of input 
features such 
asinformation.gain, 
gain.ratio, and 
symmetrical.uncertainty 

REFIT smart 
home dataset 

Bayesian Generalized 
Linear Model, 
Boosted Linear 
Model, xgboost, 
Generalized Linear 
Model, and bagged 
model 

15 accuracy 
ranged from 
79.8% to 
91.8%. 
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(Sarkar et al., 
2021) 

2021 Several attacks (session 
hijacking, impersonation, 
replay, brute force, DDoS, 
Geometric, MITM, and 
social engineering) 

created their own 
datasets 

ANN _ _ 

(Anthi et al., 
2019) 

2019 Several attacks (DoS, 
MITM, replay, spoofing 
and reconnaissance) on 
one layer (network layer) 

created their own 
datasets 

NB, J48, Zero R, 
Bayesian Network, 
One R, Logistic 
Regression (LR), 
SVM, Multi-layer 
Perception, and RF 

10 F-measure, for 
j48 ranging 
from 90% and 
98%. 

(Zolanvari et 
al., 2019) 

2019 Several attacks (backdoor, 
command injection, and 
SQL injection attacks)  

created their own 
datasets 

SVM, KNN, NB, 
RF, DT, LR, and 
ANN  

23 F-measure 
value for RF 
classifier is 
96.81%. 

(Liang et al., 
2019) 

2019 Their model focused on 
one layer the network layer 
to identify DDoS, Probe, 
U2R and R2L attack.  

NSL-KDD DNN 41 accuracy 98% 

(Chkirbene et 
al., 2020) 

2020 Reconnaissance, DOS, 
wormhole and backdoor. 

UNSW-NB15 
dataset 

DT, classification 
and regression tree 
(CART) algorithms 

13 accuracy 
95.37% 

(Tang et al., 
2016) 

2016 DDoS on one layer 
(network layer), the 
authors only employed 6 
features from the dataset's 
14 features 

NSL-KDD 
dataset 

DNN 6 accuracy of 
75.75%  

(AL-
Hawawreh, 
Moustafa and 
Sitnikova, 
2018) 

2018 Serveral attacks 
(Backdoors, DoS, 
Reconnaissance, Worms, 
DDoS, Probe, R2L and 
U2R attacks) on one layer 
(network layer) 

NSL-KDD and 
UNSW-NB15 
datasets 

Deep Auto-Encoder 
(DAE) and a deep 
neural network 
algorithm 

6  99%t 
detection rate 
and a 1.8% 
false positive 
rate. 
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(Tama, 
Comuzzi and 
Rhee, 2019) 

2019 Serveral attacks 
(Backdoors, DoS, 
Reconnaissance, Worms, 
DDoS, Probe, R2L and 
U2R attacks) on one layer 
(network layer). The 
authors used 19 features 
from UNSW-NB15 and 37 
features from NSL-KDD 

NSL-KDD and 
UNSW-NB15 
datasets 

Rotation Forest and 
bagging algorithms 

19 features 
from 
UNSW-
NB15 and 
37 features 
from 
NSL-
KDD 

85.8% 
accuracy 

(Alhowaide, 
Alsmadi and 
Tang, 2021) 

2021 DDos and zero-day 
attacks, on one layer 
(network layer), They also 
utilised 5-fold cross-
validation, which divides 
the datasets into 80% for 
training and 20% for 
testing. And used a total of 
23 features. 

Bot-IoT, NSL-
KDD, UNSW-
NB15, and 
BoTNetIoT 

15 different 
classifiers, including 
ensemble and 
traditional classifier 

23 accuracy 
ranged from 
93% to 100%. 
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APPENDIX 2 

• HARDWARE TOOLS 

The experiments are conducted on a Lenovo laptop with the specifications listed in Table 8.2. 

These specifications provided sufficient computational power for the tasks involved in this 

research and are suitable for the dataset scale and the complexity of the machine learning models 

used. 

Lenovo Laptop Specifications. 

Processor :  Intel(R) Core (TM) i5-1135G7 @ 2.40GHz, 2.42 GHz 

RAM :  8.00 GB (7.71 GB usable) 

Operating System :  Windows 10 Enterprise 

Storage :  236 GB SSD 

 

• SOFTWARE TOOLS 

• Python 

Python 3 on Google Colab, a cloud-based Jupyter Notebook environment, is chosen as the primary 

programming platform for this research due to its extensive libraries, ease of use, and strong 

community support. Google Colab provides a flexible and powerful environment for implementing 

machine learning algorithms and processing large datasets, with the added advantage of cloud-

based GPU acceleration. Several libraries are employed to handle different aspects of the research, 

such as Pandas, Matplotlib, Scikit-learn, NumPy, Imbalanced-learn, TensorFlow, and Keras. These 

libraries are used for handling structured data, performing complex mathematical operations, 

feature selection, model training, evaluation, hyperparameter tuning, addressing class imbalance in 

the datasets, feature scaling, and data visualisation. 
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• Weka 

A graphical user interface tool for comprehensive machine learning algorithms and data analysis 

written in Java. It is utilised for implementing information gain (IG) as a feature selection technique. 

This tool provides a wide range of visualisation tools and algorithms for data analysis and predictive 

modelling. It enables the preprocessing of datasets, the direct application of machine learning 

algorithms, and visualising the results without requiring any coding (Witten et al., 2017). Its IG 

implementation facilitated the efficient evaluation and ranking of features based on their relevance 

to the target variables. 

• Feature Selection Tools 

For feature selection, Mutual Information (MI), Decision Tree Entropy (DTE), Principal 

Component Analysis (PCA), Chi-Square (Chi²), and Random Forest (RF) methods are 

implemented, in addition to IG using Weka. These techniques are essential in identifying the most 

significant features contributing to the detection and identification of multilayer IoT attacks. Each 

method is evaluated for its effectiveness in identifying the most relevant features, revealing unique 

strengths in different aspects of feature importance. 

• Hyperparameter Tuning 

Hyperparameter tuning is a critical aspect of optimizing the performance of the machine learning 

models, and it is used in this research. Initially, Grid Search is employed, however, due to its time-

consuming nature, the approach is shifted to Random Search. Random Search provides a faster 

alternative by sampling a fixed number of parameter settings from the specified distributions (Ali 

et al., 2023). This method significantly reduces the computational time while still effectively 

identifying optimal hyperparameters for the models. 

• Excel 

Excel is used for data analysis and preprocessing, particularly for converting IP addresses into 

integers using the Excel Add-in (ip2location-ip-conversion). 
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APPENDIX 3 

Testing accuracy analysis using semi-automated for binary classification. 

Top Features NB DT RF KNN ANN 
1 59.03 91.27 88.1 91.05 60.22 
2 72.36 99.86 99.84 99.86 80.11 
3 38.45 99.91 99.81 99.96 99.81 
4 38.45 94.2 99.86 99.93 93 
5 80.56 99.57 99.81 99.94 83.98 
6 81.23 99.87 99.83 99.94 91.07 
7 43.98 95.2 99.83 99.94 99.32 
8 49.61 99.86 93.22 99.94 86.78 
9 49.61 95.25 99.83 99.92 86.38 
10 49.61 99.85 95.59 99.89 99.5 
11 49.64 84.09 94.08 99.9 99.54 
12 55.96 98.52 99.76 99.89 88.92 
13 56.37 93.85 94.22 99.86 98.45 
14 56.37 99.86 95.59 98.12 89.12 
15 65.54 99.86 98.51 98.12 99.44 
16 71.68 98.82 99.81 98.12 99.51 
17 70.28 99.86 94.39 98.14 97.52 
18 70.44 93.58 87.24 98.15 99.51 
19 49.8 99.86 79.37 98.15 99.55 
20 49.82 99.89 93.8 98.14 97.63 
21 61.09 99.86 95.63 98.14 97.51 
22 58.84 87.27 99.81 98.14 90.79 
23 60.89 97.32 83.34 98.07 94.41 
24 60.97 84.55 96.04 98.07 99.47 
25 60.98 97.28 94.98 98.08 99.24 
26 59.31 94.58 94.92 98.08 99.51 
27 59.05 91.39 93.65 98.08 92.6 
28 59.05 99.89 98.44 98.08 98.51 
29 61.25 67.68 99.84 98.08 94.12 
30 61.29 97.13 86.01 98.08 99.5 
31 61.28 99.55 99.83 97.96 89.52 
32 61.28 91.82 95.55 97.89 88.81 
33 61.24 98.55 99.84 97.89 89.02 
34 61.18 99.87 95.93 97.89 98.07 

62 66.77 94.3 94.58 98.4 89.44 



 

147 

Testing accuracy analysis using semi-automated for multiclass classification. 

Top Features NB DT RF KNN ANN 
1 28.68 53.35 41.66 52.1 36.49 
2 53.47 67.78 49.6 77.12 41.86 
3 64.1 77.9 74.39 92.22 41.44 
4 55.47 81.16 69.53 94.95 70.78 
5 59.55 78.64 60 95.31 57.6 
6 60.85 68.25 64.55 95.49 56.3 
7 62.19 71.49 61.88 95.5 45.07 
8 63.82 95.43 82.62 95.98 62.77 
9 58.29 88.85 53.54 96.12 63.41 
10 60.64 87.9 64.29 89 61.06 
11 59.94 94.5 61.34 89.63 63.61 
12 61.14 75.99 64.84 89.66 59.92 
13 63.47 74.31 84.44 90.39 69.28 
14 63.53 79.51 67.36 85.36 67.55 
15 63.9 70.67 64 85.36 63.82 
16 63.91 81.83 75.75 85.38 51.72 
17 62.31 84.33 68.52 85.38 63.39 
18 62.31 76.21 54.71 85.37 42.12 
19 62.31 66.15 83.02 85.37 64.3 
20 62.49 69.57 66.05 85.37 45.58 
21 62.49 79.7 86.15 85.36 65.51 
22 62.31 66.15 83.02 85.37 59.46 
23 64.11 61.53 59.2 86.8 70.17 
24 63.54 66.51 53.76 86.79 64.47 
25 63.53 74.48 70.93 86.81 39.5 
26 63.53 64.71 56.68 87.2 66.7 
27 63.53 83.36 59.06 87.2 63.52 
28 63.53 80.76 62.72 87.24 63.6 
29 63.53 80.13 69.23 87.24 69.62 
30 63.53 73.41 72.64 87.27 68.64 
31 63.53 82.49 70.87 86.88 58.96 
32 63.53 79.17 70.75 86.84 58.89 
33 64.25 88.14 69.16 87.32 65.99 
34 64.64 76.49 67.66 87.31 62.35 
62 67.85 70.23 76.13 87.58 72.65 
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