
1

Functional and Performance Analysis of Discrete Event Network
Simulation Tools

Ahmad Musa and Irfan Awan

Department of Computer Science, Faculty of Engineering and Informatics

University of Bradford, United Kingdom

Abstract:

Researchers have used the simulation technique to develop new networks and test, modify, and
optimize existing ones. The scientific community has developed a wide range of network
simulators to fulfil these objectives and facilitate this creative process. However, selecting a
suitable simulator appropriate for a given purpose requires a comprehensive study of network
simulators. The current literature on network simulators has limitations. Limited simulators
have been included in the studies with functional and performance criteria appropriate for
comparison not been considered, and a reasonable selection model for selecting the suitable
simulator has not been presented. To overcome these limitations, we studied twenty-three
existing network simulators with classifications, additional comparison parameters, system
limitations, and comparisons using several criteria.

Discrete event, simulation, network simulators, structured, unstructured

1. Introduction:

It is an expectation of the scientific communities to perform research, evaluate, and present
research developments. The results must be reproducible for other peers to verify any findings.
Simulations, experiments, and mathematical models are some of the standard methods used to
produce verification. Simulators must imitate the heterogeneous nature of these networks in a
controllable environment fitting to answer what-if questions since most of these networks and
applications were intended to be used on the Internet. Likewise, research tools must support
the configuration of large-scale experiments to mimic how a system would work during the
interaction with a vast number of nodes.

Network simulation is undeniably one of the most leading evaluation methodologies in the

field of computer networks. It is mainstream for the development of new network protocols

and communication architectures [1]. Network simulators support the modelling of a random

computer network by defining both the communication channels and the behaviour of the

network nodes. For instance, a network simulator is usually used to investigate the

characteristics of a new routing protocol. Eventually, the routing behaviour can be studied in

various topologies, given that the network topology is only a set of simulation parameters. Most

of the network simulation toolkits available are based on the Discrete Event-based Simulation

(DES) paradigm [2]. In the DES, the simulated network nodes trigger events. For example,

when a packet is sent to another node. The simulator manages an event queue classified by the

scheduled event execution time. The simulation is conducted by sequentially processing the

events in the queue.

The first published approaches where DES was used to simulate computer networks were about

two decades ago [3,4]. Until the 1950s, computer simulation did not entice many people

because it took overly long to generate credible results and required many skills and resources.

IBM used a discrete-event computer simulation for the telephone system but unfortunately took

extremely long [5]. Network simulation has been an essential resource for functional and

performance analysis of network protocols. The number of widely used network simulators is

2

currently significant, and new tools and systems are being developed daily to overcome various

problems and dysfunctionalities.

While numerous simulators exist for modelling various networks, we examined the twenty-
three leading network simulators underlining their architecture, usability, scalability, result
from statistics, portability, and system limitations. These simulators were chosen based on their
usage, popularity, features, published results, and compelling characteristics.

The majority of network simulators are studied and surveyed in [6–14]. However, there is
room for improvement in the existing surveys of network simulators as follows:

• New simulators are being proposed regularly with the growing demand and
requirements of computer networking. The existing survey [6–14] may lack in the
discussion of the recent functional simulators such as NS2[15], NS3[15], OPNET
[16], OMNET++[17] and NetSquid [18]. Besides, with the vast amount of available
simulators now, a credible survey requires to compare at least ten network simulators
to be comprehensive.

• With the development of new network simulators, compendious features or criteria are
also required to compare the functionality and performance of network simulators
effectively.

• In addition, a comparison of previous and recent simulators with highly desirable
features of high scalability, a compilation of statistics on simulation results, and the
availability of GUI for visualization is needed.

These observations motivated us to foreground the survey of network simulators with a wide
range of simulators, new evaluation criteria, and documentation. Thus, our contributions are
as follows:

• We present a comprehensive survey of twenty-two network simulators, including the
most recent network simulators such as OPNET[16], OMNET++[17], NS3[15], and
NetSquid[18].

• The main contribution of this paper is the categorization of the architecture and
performance of network simulators. This categorization is valuable to researchers and
scientific communities for identifying the best network simulator for their case studies.
We also catagorized the simulators based on their functionality viz: generic or domain
specific simulators.

• In addition, we classified each of the twenty-three reviewed simulators based on several
evaluation criteria, such as their ability for statistics gathering, portability, and system
limitations. We verified and presented all the simulators ' accuracy and efficiency by
putting each simulator under the rigorous microscopic view of research, downloading
their source codes, and running the simulations repeatedly.

We discuss in detail the characteristics of network simulators in section 2, followed by the
evaluation methodology we used in analyzing the simulators in section 3. Various network
simulators are presented and classified according to their characteristics in section 4. Next, we
present a discussion and result comparison in section 5 that visualizes the analysis in section 4.
Lastly, we discuss the conclusion of the network simulators and the future direction of such a
study.

2. FEATURES/COMPONENTS OF PEER-TO-PEER SIMULATORS

The simulators can be evaluated based on numerous criteria that follow, highlighting the
strengths and weaknesses of the applications according to their properties[6–10,13,14].

3

2.1 Simulator Architectural Overview

Simulator architecture is a fundamental component that enables the formation of intricate
simulations models. Simulators have different focal points and are designed with varying
functions for research domains; hence they differ in architecture. It is, therefore, necessary to
compare the simulator architectures as the main characteristic when evaluating different
simulation frameworks. Simulator architecture can be categorized based on its protocol,
simulation engine, underlying network simulation, underlying protocol simulation, parallel
simulation, and churn support.

This criterion suggests; whether the simulator supports structured or unstructured overlays or
both, whether the simulator uses a scheduler that synchronizes messages shared among nodes,
or the simulation loops through each node adding delay as necessary, using either a discrete
event simulation model or query-cycle. It also notes how identifiers are determined, how
remote procedures are implemented, how node behaviour is simulated and whether distributed
simulation is allowed, measuring if multiple simulations can be run to enable significant
scaling?

2.2 Usability/Documentation

Documentation is a critical feature of assessing how user-friendly a simulator is, i.e., how easy
the simulator is to use and learn. This means the simulator source code, manuals, user guides
should be well documented, extendable, and easily understood. The availability of online
supports in a website or mailing list to promote user experience is also a key component.
Finally, usability assesses how experiments are set-up; the availability of script language, its
documentation, and ease of use.

2.3 Scalability

The scalability of a simulator is regularly interpreted as the feasible network size as to the
number of nodes that can be simulated. It is an essential and challenging feature for verifying
the performance of a simulator because some applications, e.g., P2P protocols, have a relatively
large network size. Therefore, one of the most crucial evaluations a simulator can offer is how
the protocol scales to millions of nodes, mainly as this, if not impossible, would be a
challenging experiment to try using a real network.

2.4 Statistics

Another key parameter for analysing a simulator is the output it provides. The output needs to
be easily manipulated and close to the desired assumptions for statistical analysis and graph
productions. The simulator should have a reproducible mechanism that allows result
verification from its state of analysis.

2.5 Portability

A simulation code is portable if the code can be reusable with slight alterations.

2.6 System Limitations

The ability of a simulator to utilize the available computing resources is measured under this
parameter. Also, the ability of the simulator to scale will be reduced if the resources are used
inefficiently.

3. EVALAUTION METHODOLOGY

We employed a thorough approach as an evaluation methodology for each simulator based on
the following available criteria:

4

• The latest version of the simulator

• The documentation and manuals available

• Source codes

• Whitepapers and research papers

• Running the experiments to compare results and statistics

All the simulators were evaluated based on the above criteria, with no simulator satisfying the
evaluation criteria and some showing greater limitations than others. We performed
experiments for simulator packages to compare the output with any given output to ensure the
simulator's functionality. The lack of support for getting statistics from simulation runs was of
most concern. Many authors claimed that they performed experiments to ascertain the
scalability of some of the simulators by testing the number of nodes that can communicate and
connect successfully. Yet this remains an estimate, not comparable to the numbers realized
when simulating a real network system.

4. VARIOUS NETWORK SIMULATORS

We studied several network simulators and classified them according to their relevance and
functionality to networks. These are generic simulators that can simulate all kinds of
networks and domain-specific simulators designed for specific domains.

4.1 Generic Simulators:

Generic network simulator offers numerous standard modules of network simulations, so users

only need to adjust the core part of the network or application. The simulator can easily be

modified or extended with components and applications defined by their clear hierarchy and

modular structure. Overlay Weaver, PeerSim, 3LS, P2PSim are a few examples of generic

simulators.

4.1.1 Peersim – P2P

PeerSim is a Java-based P2P simulator made of two simulation engines: a cycle-based
(simplified) and event-driven engine [12]. The engines are made with a flexible configuration
mechanism, and many extendable, simple, and pluggable elements are supported. To allow for
scalability, the cycle-based engine employs some simplifying hypotheses, such as overlooking
the section of the transport level in the communication protocol domain. The event-based
engine is more realistic but less efficient [13]. In addition, it supports transport layer simulation,
among other things. However, cycle-based protocols can be run by the event-based engine too.

Simulating large P2P networks is possible due to its design of been scalable and dynamic.
PeerSim can support the simulation of both structured and unstructured overlays. It began with
EU projects BISON and DELIS, with more support from the Nepa-Wine projects and others
but was released under the GPL open-source license.

Statistics

PeerSim offers class packages to perform statistical computations, user-defined data collection
coding, and standard statistics calculations. It also provides some class packages that support
notable models, such as BA, random and lattice graphs[11]. However, it gives neither
debugging facilities nor any graphical user interface.

Scalability

PeerSim is often associated with high scalability with a network scale of up to 10^6 nodes, but
the scalability is at the expense of ignoring the behaviour of the underlying communication
network.

5

Usability

The PeerSim website offers reusable and straightforward API documentation that can
accommodate more elements based on requirements. Most of the API documentation is based
on the cycle-based model, while the event-based model's documentation is significantly below
par in comparison. However, if the need arises, the cycle-based application can readily be
modified to the event-based application.

Portability

PeerSim admits user-defined entities to substitute nearly all predefined entities in it. It supports
pluggable and extendable segment features. A plain ASCII file is used for an adjustable
configuration consisting of key-value pairs.

System Limitations

PeerSim does not apply distributed simulation. Node identifications are generated gradually as
integers, but they can also be tailored by user-defined mechanisms.

Analysis

PeerSim inputs are predefined (set by default) in a text file as a command base simulator.
Therefore, the user cannot adjust the information on run-time because there is no GUI, which
is tough to use. The generated results are challenging to analyse. The API documentation for
the cycle-based model is excellent, but poor C++ API documentation for event-driven.
However, it only explains the basics of how to compile and run the simulator in both models.
There is no in-depth deliberation concerning the extension of the simulator’s source code.
PeerSim results are not adequate to perform a reliable statistical analysis.

4.1.2 PeerThing

PeerThing is an open-source P2P network simulator that was released in 2006. The simulator
is written on Java, with Eclipse serving as the GUI interface.

Simulator Architecture

The architecture of PeerThing is generally classified into system behaviour and system
scenario. System behaviour consists of sets of nodes, states, transitions, actions, and tasks. The
system behaviour allows defining the behaviour of each node in the network. The system
behaviour takes a peer-cantered position by using a single peer's behaviour to define the
behaviour of the whole network [9]. A node can have several states connected with several
transitions to perform specific tasks and actions.

 In contrast, the system scenario defines the number of node connection's properties such as
delays, uplinks and downlink speeds, actions, and loops [19]. Other behaviours can also be
added and used by calling the behaviour with the CallBehaviour attribute. The scenario defines
the resource allocation for each peer. Once the network has been set, its corresponding code is
generated in XML (eXtended Markup Language) for system behaviour and system scenario.

Statistics

PeerThing provides a GUI interface for its users to run multiple simulations for a specified
number of time steps or messages. The input of the system behaviour and system scenario
simulations often generates an output in a specified log file. The generated results can be saved
in .csv (comma-separated values) for further analysis.

6

Scalability

The authors claim that PeerThing can simulate up to 2000 nodes for the Gnutella model and
1000 nodes for the Napster model. However, we found that the simulator can only run up to
700 nodes successfully without generating any errors after testing. A stack of java space errors
is generated when more than 700 nodes simulate the Gnutella model with its full functionalities.

Usability/Documentation

PeerThing has one of the best user manual in comparison to all the other evaluated simulators.
There is sufficient information on how to build the network and view its corresponding results.
However, the API documentation source code is not well explained with many interconnected
things making it challenging to understand.

Portability

The generated results are visualized in tables and graphs from the simulator and stored in a log
file before another simulation can be run. However, the visualization provided is limited to the
simulator, and as such, results are not adequate for analysis on cases not supported by the
simulator. But the ability to export files in .csv format provides an avenue for much-detailed
analysis of the generated results using other software.

Extensibility

Extending the simulator for other protocols or functionalities is an arduous task because the
API documentation source code is not well commented. However, some extensibility can be
achieved in the behaviour of the given Gnutella and Napster main models.

System Limitations

PeerThing simulator is not highly scalable. After roughly 3000 ms of simulation time, and
when tested with more than 600 nodes, it begins to present a java heap space error. The
simulator does not hold enough memory to run the full simulation successfully.

4.1.3 RealPeer

RealPeer is an open-source development framework written in Java for P2P systems[20]. The
framework can be executed as a simulation model or an actual P2P application that connects
to remote peers on a real network. Hence, a simulation model of a P2P system can be recycled
as part of a real P2P system and vice versa.

Simulator Architecture

The RealPeer framework is a generic, highly modular simulator that uses discrete event to
develop, model, and simulate structured and unstructured overlays. This allows a developer to
combine and freely change the framework and model elements, thus providing a mechanism
to reuse components[9]. The framework is as lightweight and scalable as possible for
supporting the simulation of large-scale P2P systems.
The framework allows a developer to perform controlled simulation experiments with full
internal validity to get reproducible and accurate simulation results. RealPeer utilizes
a message-passing mechanism to send and receive messages across the physical network
using MessageProtocol[20]. Additionally, the domain models are improved until they match
the intended real P2P system at the end of the development process.
Scalability

7

RealPeer is quite scalable, and its developers have been able to test its scalability with 20,000
peers. However, it does not allow for parallel execution but aims to add functionality in the
future.

Usability

There is available documentation of RealPeer on the web. The framework's architecture is
extensible such that a developer can connect, freely exchange and reuse components of the
framework.

Portability

Real peer is an object-oriented software framework with a heavy plug-in design pattern,
allowing the simulator's extensibility.

Statistics

All commands need to be written on the command prompt; as such, no GUI is available for
RealPeer. The framework outlines a set of ObserverEvents that encapsulate various types of
simulation data that are utilized by the registered Observer plug-ins[20]. The plug-ins export
the data for external tools for further analysis and reusability in other models.

System Limitations

Although RealPeer provides GUI-based predefined simulations for some set scenarios, it only
uses a command-line program to run simulations. Simulation results for RealPeer are stored
in text files. Nonetheless, the numeric value are stored with no matching variable name. The
inputs to the simulator are to be defined in a text file that shows real-time simulation is not
supported. However, the aforementioned problems will likely be addressed with time due to
RealPeer being actively and extensively developed and still relatively new.

4.1.4 Query Cycle

The Query Cycle Simulator (or sometimes called P2PSim) [21] is a peer-to-peer simulator
developed by Stanford University for its P2P sociology project. The main focus of the Query
Cycle Simulator is to model user behaviour in a P2P file-sharing network accurately[7].

Simulator Architecture

The Query-Cycle simulator is a file-sharing simulator that was designed based on java and uses
the query cycle model. As the name implies, each cycle in the Query Cycle Simulator is formed
on queries generated by the network. Among parameters included for content distribution for
simulations are query activity, download behaviour, and uptime[11]. In each query cycle, a
peer may be busy issuing a query or inactive and not responding to queries moving by. After
issuing a query, a peer wait for response, selects a download source amongst those nodes that
responded, and commences downloading the file. The query cycle only finishes when all peers
that submit queries receive a suitable response.

Statistics

Query-Cycle simulator uses a graphical user interface from which the user can set parameters
for the network attributes, the peer behaviours, and the content distribution. Once the
simulation is running and committed, the attributes cannot be modified, but it is possible to
pause, resume and save the simulation for subsequent execution. There is also a visualizer that
shows the state of the network as cycles are completed in the network. Statistics may be
collected for each peer, such as the number of queries sent and received.

8

Scalability

Query Cycle Simulator can simulate more than one million nodes, and its performance is
excellent in modelling peer behaviour. However, it experiences limited scalability. There are
some cases reported that the simulator does not scale more than 1000 peers when simulating.

Usability/Documentation

The Query Cycle developers provided a demo source code and API documentation on their
website.

Portability

Query-cycle allows almost all predefined entities in it to be replaced by user-defined entities
with sustained extendable and pluggable element features. With a GUI present, simulating for
sociology studies is easier.

System Limitation

Although no specific system limitation is evident, extending the simulator is limited due to
poor API documentation and source code.

Analysis

Query Cycle Simulator offers a GUI-based interface for users to run simulations. Therefore,
usability is not hard in terms of the interoperability of the simulator. The documentation
provided contains inadequate API documentation with very little information on the user
manual and insufficient information on how to compile the simulator code. The source code
appears extendible, but the shortage of suitable documentation negates its extensibility. The
simulator does not support generated results for further analysis using another tool and is only
limited to the simulator’s predefined analysis. One of the significant feats gained by the
simulator is the rate at which the number of downloads and uploads happens with each peer.

4.1.5 Neurogrid

Neurogrid is a P2P search protocol project developed to simulate large-scale neural networks.
In the early stages of the development, the simulator was initially designed to compare the
performance of the Neurogrid, Gnutella, and Freenet protocols[22]. Lately, with the
advancement of computing power, the simulator has been extended to maintain DHT protocols
such as Pastry and simulate large-scale neural networks.

Simulator Architecture

Neurogrid is a single-threaded discrete event simulator considered for protocol comparison,
and it does not simulate the underlying network. The simulator operates on the overlay layer
zone and can simulate both structured and unstructured protocols. It was built packaged with
the implementations of the Gnutella, Freenet, and Neurogrid protocols[13].

Statistics

Neurogrid provides a flexible mechanism for gathering statistics by allowing comprehensive
data to be extracted. Simulation scenarios are specified in a file of simple parameters. Also,
Neurogrid only simulates the overlay layer simulation by assuming a graph topology as
simulator input.

Scalability

9

The Neurogrid simulator design assumes all links between nodes have equal bandwidths, and
no bandwidth data is connected with the list of joined nodes stored at each node. The authors
[23] claim that up to 300,000 nodes have been simulated on a machine having no more than
4GB RAM. However, we failed at replication due to thread limits.

Usability/Documentation

Neurogrid has abundant documentation available on the internet but is disorganized in the form
of wiki documentation.

Portability

Neurogrid simulator was designed for protocol comparison extensibility. The Simulator uses
many abstract classes that are meant to be generic across various P2P implementations.
Moreover, it does not support churn simulation, and identifiers are generated incrementally.

System Limitations

The simple file parameter does not seem to have the ability to schedule events at specified
times. Although it may be easy to modify the simulator to implement other behaviours, node
failure is not included with the current implementation.

Analysis

Neurogrid appears to be a reliable way to compare the performance of different P2P simulators.
The availability of extensive documentation allowed the network to be extended to support the
simulation of large-scale neural networks.

4.1.6 GPS - General Peer-to-Peer Simulator

GPS is an event-driven P2P simulator that prioritizes modelling P2P protocols as accurately,
realistic, efficient, and dynamic as possible. Written in Java, the simulator maintains its
performance by modelling communication at the message level [24]. It supports the simulation
of both structured and unstructured overlays.

Simulator Architecture

GPS does not have fixed synchronous increments. Rather, the processing and time
advancement are triggered by events. The GT-ITM model of considering a Transit-Stub
topology is used to model the underlying network topology as a message simulator partially
[24]. It provides many different flow level models but does not model each packet. Packet level
simulation is not implemented in order to preserve its performance.

Statistics

GPS excels in extensibility for modelling any P2P protocol, integrating GUI and network
visualization, and providing topology generation tools. It includes simulation models for
BitTorrent, which has not been modelled functionally before to the best of our knowledge.

Scalability

GPS has been tested with up to 512 BitTorrent peers, 1 BT tracker, and a 1,054 nodes graph.
Three connections are considered within the underlying Transit-Stub topology: between transit
nodes, between transit nodes and the stub, and between transit nodes within the stub[24]. The
connection group can fix bandwidth and delay. It can also be set from a bandwidth and delay
matrix per individual connection. GPS cannot simulate cross traffic.

10

Usability/Documentation

GPS is poorly documented, with no in-depth discussion on how to run the simulator.
Additionally, using the simulator has a steep learning curve, and it is not easy to use.

Portability

GPS uses Java as the development engine and simulation language for portability, extensibility,
and ease of development. It also models the network topology and characteristics to maintain
accurate simulation. The GPS framework includes all the infrastructures needed for P2P
simulation[11]. Hence new protocols can easily be run and plugged in on existing protocols.

System Limitations

The simulator was designed to simulate and be conjoined with the BitTorrent protocol. The
simulator design has made it strenuous for researchers to implement protocols other than the
BitTorrent protocol.

Analysis

GPS has a GUI environment for users’ interaction and allows users to select macro models
from a list of models. The extensibility of the code is not accessible because the API
documentation of the GPS doesn’t contain sufficient information, and it is hard to use. The
simulations lack adequate information to determine the relationship between the inputs and the
generated outputs with no user manual. Hence, it is challenging to analyze the simulation
results. Its support for only the BitTorrent protocol and not any other protocol is a significant
impediment.

4.1.7 P2PSim

P2PSim has a distinct goal from other simulators. Its design focuses on three main goals: to
simplify P2P protocol source codes; to ease comparison between protocols; and to have
reasonable performance[9]. P2PSim is one of the few P2P simulators that utilise threads in
simulation. This makes protocol implementations comparable to their pseudo-codes.

Simulator Architecture

P2PSim is a discrete event simulator that can only simulate structured overlay network
topologies. Node IDs are generated by a regular 160-bit SHA-1 hashing and can simulate node
failures with support for both iterative and recursive lookups[11]. However, distributed
simulation, cross-traffic, and huge fluctuations of bandwidths are not supported.

Statistics

Coding is required before any set of statistics can be collected. The P2PSim has made many
underlying network topologies available such as random graph; G2 graph; end-to-end time
graph; GT-ITM, and Euclidean graph, which is the mostly used.

Scalability

P2PSim has been tested to scale up to 3000 nodes for Euclidean constant failure model
topology[1]. Furthermore, an experiment has been performed with the King data set to simulate
a 1700-node Internet topology.

Usability/Documentation

P2PSim has poor C++ API documentation

11

Portability

The protocols in P2PSim can be extended. However, limited and other protocols such as the
custom event generators can be developed and implemented by extending certain base classes.

System Limitations

The main drawback of P2PSim is the lack of support for unstructured or semi-structured P2P
routing protocols simulation.

4.1.8 3LS or 3 Layered Architecture

3LS is an open-source simulator written in Java for overlay networks and designed to solve the
issues of extensibility and usability. It has a friendly user interface for the development of a
new P2P protocol. In terms of the simulation granularity, it still pulls messages as the main
simulation object[9].

Simulator Architecture

3LS is a novel P2P simulator with a clock-based simulation engine that supports only
unstructured overlays. The name 3LS was coined by dividing the simulator into 3 architectural
layers; the network layer at the bottom, the protocol layer in the middle, and the user level at
the top[7]. Communication in the 3-layered system can only occur with adjacent layers. The
simulator uses four queues at each node to store pending message objects, viz; Outbox, Inbox-
for-network-delay, Inbox-for-processor-delay, and Inbox. These queues are intended to enable
the simulation of delays associated with network traffic and CPU delays.

Statistics

3LS is integrated with GUI and uses main memory to store each event executed for
visualization (R). Results are stored in a file when simulations are completed.

Scalability

3LS is limited with scalability because of a high memory overhead incurred by the Network
Layer. As a result, it can only simulate networks with network sizes of a couple of thousand
peers on a regular machine (R).

Usability/Documentation

The 3LS API is well documented, but the simulator is not present on the web. The authors can
share the source code with researchers upon request. However, it is not well-documented for
P2P simulation.

Portability

3LS is an open-source simulator for overlay networks designed to solve the issues of
extensibility and usability.

System Limitations

The simulator uses main memory to store simulation results, limiting the system performance
in terms of nodes. It can also not properly simulate the transfer layer's detail, the routing, and
the sources of the files P2P networks.

4.1.9 Overlay Weaver

12

Overlay Weaver is written in Java as a P2P overlay construction toolkit for the easy
development of routing algorithms and testing of P2P protocols. The toolkit includes a standard
API for higher-level services such as multicast and Distributed Hash Table (DHT) for
application developers[1]. The routing layer is separated from multicasting and DHT services.
The simulator supports the rapid implementation by iterative testing of new, improved
algorithms from the algorithm developers.

Simulator Architecture

The Overlay Weaver simulator supports only the simulation of structured overlays and not the
simulation of the underlying network. It is packaged with Kademlia, Chord, Pastry, Koorde,
and Tapestry implementations [25]. RPC can either be simulated using discrete-event message
passing within the JVM or use real TCP/UDP to test the protocol on a real network. Distributed
simulation, although possible, has never been experimented with it because of lack of efficient
documentation.

Statistics

A message counter is used to record all the communication by the network during the
messaging service implementation. The message counter allows the logging of statistics and
analysis of the logs gathered in the execution time. An undocumented tool also collects
statistics on the number of messages passed, but comprehensive data for statistical analysis
requires significant adjustment of the source code.

Scalability

The Overlay Weaver documentation says that it can scale up to 4,000 nodes. Its distributed
simulation abilities will scale further, overcoming software and hardware system limitations
when used on a single machine. Also, a newly implemented algorithm can be tested, compared,
and evaluated on the emulator that can host tens of thousands of virtual nodes.

Usability/Documentation

Overlay Weaver interface includes the emulator and a small amount of command-line tools.
The API is well designed and readable, but the documentation is relatively sparse and does not
incorporate many of the simulator's functions. With many undocumented tools, the source code
needs to be analysed to understand how to use them.

Portability

Overlay Weaver was designed as a tool to support the initial design of P2P protocols making
its simulation features secondary. There is a graphical real-time messaging visualiser tool that
helps in understanding the operation of the protocol. However, the visualiser burdens the
emulator by visualization and by doubling the number of messages, reducing the maximum
number of emulated nodes.

System Limitations

There are many pitfalls for using the Overlay Weaver simulator, such as hardware and software
limitations when scaling and the lack of proper documentation. The aspect of statistics
gathering needs and the tools documentation needs a significant redesign.

4.1.10 PlanetSim

PlanetSim is an object-oriented simulation framework written in Java for overlay networks and
services. The simulator was initially developed by a research project called Planet and was

13

released later under PlanetSim GPL license V3. It uses software engineering techniques to ease
the design and implementation of new protocols and applications [26]. A clean API is available
to implement overlay algorithms and application services using a well-structured design.

Simulator Architecture

PlanetSim is a discrete-event overlay network simulator that supports structured and
unstructured overlays. It also supports both packet-based, Chord-SIGCOMM, and Symphony
implementations. The architecture presents the Common API (CAPI) (R) for the decoupled
development and analysis of overlay algorithms and that of applications[26]. The CAPI layers
0, 1, and 2 are mapped to the simulator's architecture's; network, overlay, and application
layers, respectively. The layers use CAPI to communicate with each other by upcalls and
downcalls.

Statistics

There are currently no standard mechanisms for collecting statistics. However, it is possible to
collect basic statistics, such as, the total simulation time, number of messages used, and in-
depth capabilities statistics that can be gathered through aspect-oriented programming (AOP)
[11].

Scalability

The scalability of PlanetSim has been tested in (R) for Chord and Symphony networks. The
tests show that Chord for 8 seconds was used to stabilize 1,000 nodes, 16 minutes to stabilize
10,000 nodes, and 46 hours to stabilize 100,000 nodes. In contrast, Symphony needs 2 seconds
to stabilize 1,000 nodes, 98 seconds to stabilize 10,000 nodes, and 1.3 hours to stabilize
100,000 nodes. This shows the overhead imposed by Chord stabilization is huge compared to
Symphony's maintenance algorithms.

Usability/Documentation

The PlanetSim website [27] provides extensive documentation of the simulator with an
independently published research work [26]. It has an excellent and obvious hierarchy API
with extension interfaces for entities. An existing entity can also easily be replaced to extend
the implementation according to the simulation settings.

Portability

Simulation can be saved to disk for reuse and export the network topology graph in Pajek [26]
and GML formats. The same simulations code can be reused for experiments with nodes
communicating using TCP or UDP.

System Limitations

PlanetSim cannot gain critical accolades without external contributors contributing new
algorithms and services. The simulator is considered complex and bulky. Although, the rise of
simulators that can solve particular problems can be equated to the evasion of clear
performance comparisons in a unified platform.

4.1.11 NARSES

Narses [28] is a scalable, application-level network simulator that enables researchers to use
network models of different levels of accuracy and speed to simulate large distributed
applications efficiently. Individual clocks with independent clock skews can be simulated with
Narses. Node IDs are denoted as integers, with each new node allocated an incremented value.

14

Simulator Architecture

Four underlying network topology models vary from the least accurate and slowest to the most
accurate: Naive, NaiveTop, FairTopo, and SafeFairTopo [28]. The transport layer in Narses
includes two socket interface approximations: transport and reliable message transport. A flow-
based model presents Narses as a considerably more efficient (at the expense of accuracy)
network simulator than packet-level simulators.

Statistics

Considering Narses is written in Java, it relies on Java's garbage collector to control memory.
Many transient flow objects are linked and left to the garbage collector to reclaim in simulations
with large flows.

Scalability

Narses' accuracy has been tested to scale up to 10,000 simultaneous flows for a flow size of
200KB with a difference of 7.6% by 1.53seconds. Narses can run distributed simulation jobs
and exchange the data using Java RMI.

Usability/Documentation

There is extensive documentation available on the sourceforge.net website on Narses. The
developers of Narses also published research work documenting the usability of the
simulator[28].

Portability

Narses' performance is targeted towards large distributed applications. A transport layer
interface for which the application can send and receive data is provided by Narses. The
transport layer interface is comparable to a UNIX socket interface, allowing users to easily port
their simulated applications to a real operating system.

System Limitations

Narses is restricted to Internet-like hierarchical topologies and cannot simulate bottleneck links
that are not first-hop. Since it is targeted towards large applications, Narses cannot run
simulations with lower-layer protocol dynamics. Different bit error rates simulations for
physical channels are also inefficient with Narses.

4.1.12 OMNeT++

OMNeT++[17] is an extensible, modular, component-based simulator and framework for
building network simulators. It is written in C++ but supports alternative languages such as
Java or C# and many other functions. It also allows wireless and wired communication
networks, queueing networks, peer-to-peer networks, cloud computing, on-chip networks, etc.,
to be modelled. The framework model supports domain-specific functionalities,
multiprocessors, and other distributed systems developed as independent projects. Although
OMNeT++ was not designed as a network simulator, it has become popular as a network
simulation platform in scientific and industrial environments. It continues to build up a large
user community.

Simulator Architecture

15

OMneT++ is an open-architecture simulation environment that supports only structured
overlays. It also supports discrete event simulation in which modules interact through message
passing. Additionally, OMNeT++ promotes parallel distributed simulation execution.

Statistics

OMNeT++ has strong GUI support and an embeddable simulation kernel that helps to visualize
user interaction. The interactions are logged between modules onto a file. This log file is
accessible during or after the simulation run and can be used to map interaction diagrams.

Scalability

It can be extended to scale for real-time simulation, network emulation, and database
integration. It has been reported to scale up to 3,025 nodes in 1225 seconds in a controlled
experiment [15].

Usability/Documentation

OMNet++ has a reusable and well-documented API and source code that is robustly backed by
many developers and researchers under the Academic Public License. The simulator supports
the design of simple modules or components that can be grouped into compound modules and
split back to simpler modules when needed. A high programming language NED (NEtwork
Description) supports the formation of the compound modules by communicating with the
extensible modules through messages with the framework[17].

Portability

The main feature of OMNeT++ is the reusability of models. OMNeT++ has an extensive GUI
support, and owing to its modular architecture; it can easily be embedded into other
applications. It has been successfully used in different fields such as the simulation of IT
systems, hardware architectures, queuing networks, and business processes. OMNeT++ also
supports many contributed models and multi-tier topologies. Java interoperability is provided
by the JSimpleModule, an extension that supports OMNeT++ modules to be written in Java
[11].

System Limitations

The last ten years have confirmed that the OMNeT++ strategy is viable, and various research
groups and individuals have published several OMNeT++-based open-source simulation
models and frameworks.

4.1.13 D-P2P-Sim

D-P2P-Sim[25] is a distributed simulation environment that uses a graphical user interface for
asynchronous message passing, multi-threading, and distributed environment. It is written in
Java to evaluate the performance of different protocols by blending a set of tools in a single
software solution. D-P2P-Sim+ enhanced D-P2P-Sim to produce failure-recovery models
simulation abilities, multi-million node simulation support, and added statistics[25].

Simulator Architecture

D-P2P-Sim is an event-driven, multi-threading simulator that uses the event-driven approach
as a pooling technique to generate thousands/millions of nodes, making its simulations more
realistic. The architecture of D-P2P-Sim is categorized into four components: the overlay
network, the message passing environment, the remote services, and the simulator’s services.

16

D-P2P-Sim promotes churn for peer join/leave processes. It contains four critical
characteristics[25]:

(i) Unbiased: meant for the collection of performance data as an independent from the protocol
implemented mechanism,

(ii) Realism: implemented as tight as possible to an application-level P2P software,

(iii) Distributed: connects many computers on a network and clusters,

(iv) Pluggable and Extensible: uses an extensible API based on the plugin mechanism of Java.

Statistics

The integrated Graphical User Interface incorporates a graphical statistics functionality. The
network containing messages is managed by the network monitor and refined by the network
filter to extract useful statistical data that the overlay monitor will further process.

Scalability

The limited documentation reports that up to 400,000 nodes of different network sizes have
been simulated on D-P2P-Sim. Multiple workstations running on the simulator may be
connected to produce larger simulated network sizes.

Usability/Documentation

D-P2P-Sim uses pluggable and extensible API that is available for additional development. It
also includes a dummy implementation with all code and specifications for the basic design of
a P2P protocol with its architectural outline, message transaction mechanism, and routing
management. There is limited documentation on this simulator apart from a short paper and a
poster.

Portability

It uses a GUI button to plot the results and a visualizer to visualize the topology not specified
in the literature. The only implemented overlay algorithm is Chord. Since the system is
extensible, other algorithms could be implemented.

System Limitations

Chord is the only implemented overlay algorithm to be tested. There is limited documentation
available to facilitate the extension of the simulator.

4.1.14 NS-2

NS-2[8][12][29] is currently one of the most broadly used network simulators in academia and
industry. It was designed as a networking research tool that contributes a rich component
library on Windows, Linux, UNIX, and other operating system programs. NS-2 supports
simulation using a hybrid of C++ and OTCL (object-oriented version of TCL)[10]. The
protocols are implemented in C++ while the TCL script specifies the nodes and characteristics
of communication links. NS-2 was hardly used in P2P simulation at first but has now been
improved to support P2P overlays efficiently. The NS-2 distribution comprises the models
together with their supporting infrastructure as one inseparable system.

Simulator Architecture

17

NS2 is a discrete event simulator, originally not designed to support P2P networks but was
redesigned later due to its easy configuration and code. It supports structured and unstructured
networks and can run in parallel with many other machines.

Statistics

For statistics plotting, external tools such as Xgraph or Gnuplot can be used for statistical

analysis. An extended version of nam called the environment confirmation tool (iNSpect)

and interactive NS-2 protocol was introduced by [29] to provide the animation and

visualization of NS-2-based wireless simulations.

Scalability

In a controlled experiment [29], NS-2 was observed to have irregular behavior when the
number of nodes was 1000. It subsequently failed multiple times to run the simulation with that
many nodes. It has been tested to simulate upto 5,000 nodes.

Usability/Documentation

It provides substantial support for routing, TCP, and multicast protocol simulation across
wireless and wired networks organized in a structured or unstructured manner. There is
extensive documentation available for the scripting of NS-2.

Portability

NAM (Network AniMator) is used to provide visualization for NS2. The network topology is
represented as part of the Tcl script, which normally deals with many other things, from setting
parameters to attaching application behavior and recording statistics. This architecture makes
it almost impossible to build graphical editors for NS-2 models.

System Limitations

NS2 lacks the graphical presentations of simulation result data. The raw data must be refined
using scripting languages such as 'awk' or 'perl' to generate data in an acceptable format for
tools like Gnuplot or Xgraph [10]. Another limitation of NS2 is that it is not user-friendly due
to its text-based interface, and many researchers complain about NS2's steep learning curve.

4.1.15 NS3

NS-3[30][31] is an open-source simulator, licensed under the GNU GPLv2 license to develop
a preferred and open network simulation environment [29]. It is intended to align with modern
networking research's simulation needs and encourage community contribution and software
validation. Like NS-2, NS-3 uses C++ for the implementation of simulation models. However,
ns-3 does not use oTcl scripts to manage the simulation, therefore leaving the difficulties started
by combining C++ and oTcl in NS-2. Alternatively, network simulations in NS-3 can be
implemented in C++, while the simulation elements can also be completed using Python[30].

Simulator Architecture

NS-3 is a discrete event network simulator that is implemented in a modular architecture. Its
components can easily be reused in various fields than their original ones. It has recently
integrated C++ or Python to enable users to take full advantage of the available support of each
language.

Statistics

18

Logging can be requested in NS-3 for statistics and various purposes or levels: error, warning,
logic, debugs, and information function. Users can select the level of logging in which packets
can be traced. The trace helper group can be requested at the points of interest through the code.

Scalability

NS-3 integrates architectural theories and code from GTNetS[31], a simulator with great
scalability properties. These design decisions were made at the cost of compatibility that NS-2
models need to be manually ported to ns-3. The NS-3 architecture supports distributed
simulation in order to manage the scalability of a massive number of simulated network
components.

Usability/Documentation

NS-3 endeavors to spread the workload of continuous documentation across a large community
of developers and users. Hence, a new stable version of NS-3 is released with newly developed
models and documentation to be validated and managed by enthusiastic researchers every three
months. The developers [15] encourage third-party users to validate these models through
mailing lists to ensure that new models remain of the highest quality possible.

Portability

NS-3 supports software-defined networking (SDN), the new paradigm for communication to
split the control plane from the data path[8]. This ability provides user flexibility, enabling
them to develop their algorithms to regulate data from different applications operating on the
network.

System Limitations

NS-3 remains under extensive development, and as such graphic display is still under
development. It is a relatively new simulator with a continuous update of modules. Hence, it is
not compatible with NS-2.

4.1.16 OverSim

OverSim [15][12] is an open-source simulation framework written in C++ and based on
OMNeT++ for Peer-to-Peer and overlay networks. It implements three network models viz.
Simple, SingleHost, and INET. In the Simple model, a global routing table sends data packets
from one overlay node to another to take care of packet delays depending on node distance in
Euclidean space. While the SingleHost model recycles overlay protocol implementations in
real networks like PlanetLab without code modifications. The INET underlay model is
obtained from the INET framework of OMNeT++ that incorporates simulation models of all
network layers from the MAC layer.

Simulator Architecture

OverSim is an overlay P2P protocol simulator that supports both structured and unstructured

overlays. It applies discrete-event simulation to simulate the processing and exchange of

network messages. In addition to supporting three network models of Simple, SingleHost, and

INET, it also supports a layered architecture that comprises an application, overlay, and

underlay layer [12] . It further supports churn using ParetoChurn and LifeTimeChurn models.

Statistics

The simulator records multiple statistical data such as successful or unsuccessful packet
delivery, sent, received, or forwarded network traffic per node, and packet hop count. The

19

incorporated Python scripts support the generation of Gnuplot output and easy post-processing
of statistical reports.

Scalability

OverSim was designed with performance in mind and has successfully simulated network sizes
of up to 100,000 nodes. A modern PC simulates a typical Chord with a network size of 10,000
nodes in real-time.

Usability/Documentation

The simulator has an outstanding overlay layer’s interface to improve, develop and replace the
overlay layer’s protocol. It also has an excellent GUI for convenient testing and debugging. It
has a reusable implementation of overlay protocols. There is an extensive API documentation
and source code avaialable on the OverSim website [15].

Portability

The various implementations of overlay protocols can be reused for real network applications.
Researchers can validate the simulator framework outputs by comparing them to the results
like PlanetLab, a real-world test network. Hence, the simulation framework can handle and
collect actual network packets and communicate with the same overlay protocol of other
implementations. The use of the Common API and modular design helps the extension with
new protocols or features. Module behavior can quickly be tailored by specific parameters in a
human-readable configuration file.

System Limitations

The OverSim SingleHost instance only simulates a single host like the Internet to be connected
to other instances over existing networks.

4.1.17 Optimal-Sim

Optimal-Sim[32] is a Java-based simulator that enables Internet-like topologies to be
realistically used in the simulation. The underlying network topologies are generated by a
universal topology generation tool called BRITE [32]. Researchers use BRITE to generate
internet topologies constituted by routers and autonomous systems (AS).

Simulator Architecture

Optimal-sim is a P2P simulator that supports event-driven simulation techniques to generate

overlay network topologies. Peer processes are simulated as events such as peer join, peer

departure, and peer failure. Hence, the churn model of P2P systems is simulated by message

exchanging and dynamic topology change of P2P networks.

Statistics

Optimal-Sim uses BRITE's object-oriented architecture to allow users to import from and
export to custom topology files for results statistics.

Scalability

Optimal-sim shows the capacity to simulate up to 2,000 nodes with network topology
optimization and up to 1,000 without network topology optimization in a controlled
experiment.

Usability/Documentation

20

It provides an algorithm that describes the API in P2P systems. The algorithm is used to show
the whole topology generation and optimization process of the simulator. There is very limited
documentation available for optimal-sim.

Portability

The BRITE tool of optimal-sim is implemented in Java and C++. It allows extending or
combining topologies with other topologies and importing topologies from other topology
generators.

System Limitations

The current network topology of optimal-sim cannot simulate more than 2,000 nodes but shows
more effectiveness as the network grows larger. This proves that when extended, it can be more
effective for large-scale networks.

4.1.18 ProtoPeer

ProtoPeer [33][34] is a distributed systems prototyping toolkit, licensed under the GPLv2
license and written in Java. It allows for switching between the live network deployment and
event-driven simulation without changing the application code. The network interface is
encapsulated with loss and delay modeling to switch the simulation model to a live network
easily.

Simulator Architecture

ProtoPeer is a discrete-event simulator with an event-driven engine that supports both

structured and unstructured overlays. It uses an event injection system to support churning, i.e.,

peers' arrival, departure, and failure. The peers communicate with each other through message

passing. ProtoPeer applications have their own set of messages, message handlers, timer

handlers, and define timers.

Statistics

The statistics can be calculated at different aggregation levels: per peer, time window, and
measurement tag through the measurement instrumentations by placing appropriate calls to the
measurement API in the application code. The average, sum, and variance statistics are
computed on the fly and logged into measurement log files for analysis.

Scalability

ProtoPeer has been tested to scale up to tens of thousands of peers on a 3GB laptop [33]. Once
deployed, live runs do not use any centralized components and can be scaled indefinitely in
theory.

Usability/Documentation

ProtoPeer applications can be modularized into peerlets that are unit-testable, reusable, and
composed together to produce the desired peer functionality[34]. In addition, it enables users
to include their own implementation. However, only limited documentation is provided.

Portability

ProtoPeer has an API for developing arbitrary message-passing mechanisms that support
message queuing, network I/O, and message serialization.

System Limitations

21

ProtoPeer is experiencing stagnant growth that has not seen it reach its full potential.
Documentation and online activity were seized a decade ago with no actual results or data to
act on.

4.1.19 PeerfactSim.KOM

PeerfactSim.KOM [35][12] is a general-purpose P2P simulator written in Java for distributed
CDNs, overlay-based systems, and streaming applications. A framework-like program that is
based on the concept of pluggable layers has been designed for the simulator. An XML-based
configuration file is used to commence the simulation that denotes the layers incorporated.

Simulator Architecture

PeerfactSim.KOM is a discrete-event simulator that supports both structured and unstructured
overlays. The simulator comprises a layered architecture: application layer, service layer,
overlay layer, transport layer, and network layer that works with the various aspects of the P2P
network[35]. Each layer uses one or more interfaces that offer functionality to the remaining
layers. The network layer is used for communication and, as such, supports message-based
packet-level transmission extensively. It also uses a churn generator based on a mathematical
operation that works the node joining or departing.

Statistics

PeerfactSim.KOM uses its architecture for collecting data of ongoing simulations. Logging
architecture is used to trace and debug a simulation and a statistics architecture to record the
critical data for on-the-fly statistics or post-processing analysis.

Scalability

The PeerfactSim.KOM has been tested to simulate over 100,000 peers with a network size of
10,000 for multi-layered systems.

Usability/Documentation

The website of PeerfactSim.KOM has extensive documentation available. It implements
interfaces at each layer that extend services to the other layers. The simulator also uses the
concept of default and skeletal implementations based on the interfaces[12].

Portability

The integrated visualization element supports the visualization of the topology and the
messages exchanged on the simulated P2P network. The visualizer can organize the peers by
viewing the topology presentation or based on the network layers provided coordinates or
arranging them in a ring-like topology.

System Limitations

PeerfactSim.KOM tried to evaluate the interdependences in multi-layered P2P systems. It
incorporates models of lower layers but does not yet cover TCP.

4.1.20 OPNET

OPNET (Optimized Network Engineering Tools) [16][29][36] simulator is one of the many
tools from the OPNET Technologies suite. It is a tool used to simulate the behaviour and
performance of any network. The main difference between OPNET and other Network
Simulators lies in its power and versatility. Initially built for the simulation of fixed networks,

22

OPNET can be used as a research tool or a network design/analysis tool. It inherently has three
main functions: modelling, simulation and analysis.

Simulator Architecture

OPNET is an event-based network simulation tool that operates at “packet-level”. It includes
a high-level graphical user interface constructed from C and C++ source code blocks with a
vast library of OPNET specific functions[36]. OPNET is divided into three main domains:

• Network domain that includes networks + sub-networks, network topologies,
geographical coordinates, and mobility.

• Node domain includes single network nodes such as routers, workstations, mobile
devices, etc.

• Process domain includes single modules and source code inside network nodes such as
data traffic source model, IP protocol, etc.

It is also possible to run external code components such as External System Domain (ESD)
with OPNET[29].

Statistics

OPNET employs an integrated GUI-based debugging and analysis feature for statistical
analysis. Object-Oriented Programming technique [16] generates a mapping from the graphical
design to the implementation of the actual systems. Simulation results and all topologies
configurations are presented visually.

Scalability

OPNET has been reported to scale up to 10^6 network size.

Usability/Documentation

There is extensive documentation and a user manual available for OPNET. It also has a source
code available for commercial/educational use.

Portability

GUI.OPNET enables the parameters to be adjusted and for experiments to be repeated easily
based on a discrete event system mechanism.

System Limitations

OPNET employs a complex GUI operation, and it does not allow many numbers of nodes
within a single connected device to be simulated. The sampling resolution limits the accuracy
of the results, and the simulation is inefficient with no activity for a long duration.

4.2 Domain Specific Simulators

Domain-specific network simulators offer solutions to a specific domain, such as quantum
networks with NetSquid and Peer-to-Peer Networks with P2PRealm.

4.2.1 NetSquid

NetSquid (NETwork Simulator for QUantum Information using Discrete events) [18][37] is a
simulation tool written in Python for simulating accurate quantum networking and modular
computing networks under physical non-idealities. It provides us with a design tool for future
quantum networks. NetSquid supports the modelling of all physical devices in a network that
can be mapped to qubits [37]. Because it is entirely modular, it allows users to set up large-
scale simulations of complex networks and explore network design variations.

23

Simulator Architecture

NetSquid integrates several fundamental technologies, such as a discrete-event simulation
engine and a specialised quantum computing library. It also supports an asynchronous
programming framework for defining quantum protocols and a modular structure for modelling
quantum hardware devices. These technologies show NetSquid potential as generic and
versatile design software for quantum networks, in addition to modular quantum computing
architecture [18].

Statistics

The simulation is performed for a typically high number of independent runs to collect statistics
to determine the network's performance. Because each run is independent, simulations can be
highly parallelised and thereby efficiently executed on network clusters.

Scalability

NetSquid has been simulated on a 9-node network, and its flexibility to choose a quantum state
representation allows network scalability of up to 1000 nodes.

Usability/Documentation

There is extensive documentation available on the NetSquid website alongside the user manual
and source code.

Portability

The versatility of the simulator to model a range of networkable quantum devices that depend
on different physical principles, such as ion traps, defect centres in diamond, and atomic
ensembles, is essential.

System Limitations

NetSquid is a relatively new technology still in development. It is yet to be verified by the
researchers as a capable modelling and simulation tool for validating quantum technology.

4.2.2 DHTSim

DHTSim [1][11] is a structured overlay simulator written in Java to facilitate the teaching of
DHT protocols. It is the foundation for teaching the implementation of DHT protocols. A
discrete event-based message passing within the JVM is implemented with the Remote
Procedure Call (RPC). Identifiers are randomly assigned.

Simulator Architecture

DHTSim is a flow-based simulator that implements RPC at the overlay layer and is designed
with a discrete event-based message passing simulation engine. Simulator scenarios are defined
using a basic script file[13]. Churn can be simulated with two script commands that enable
many nodes to join over some time or several randomly selected nodes to leave.

Statistics

It does not include much functionality for extracting statistics because it was designed as a
foundation for teaching the implementation of DHT protocols.

Scalability

DHTSim has been tested to simulate up to 10,000 nodes.

Usability/Documentation

24

The documentation is limited, although it was designed to facilitate teaching with a relatively
straightforward API.

Portability

Simulator scenarios are defined using a basic script file. Therefore, it partially supports the
churn.

System Limitations

DHTSim does not simulate node failure and provides little functionality for extracting
statistics. It also does not support distributed simulation.

4.2.3 P2PRealm

Peer-to-Peer Realm (P2PRealm) [7][10] is a Peer-to-Peer network simulator written in Java to
simulate and optimize neural networks. It was conceived as part of the Cheese Factory P2P
research project [7]. The simulator has been classified into four segments; P2P network, P2P
algorithms, input/output interface, and neural network optimization.

Simulator Architecture

P2PRealm is a training generation and field-specified message passing simulator with
simulation speed as an essential criterion. It provides support for dynamic networks and parallel
programming. By utilizing P2PRealm, one can validate P2P networks for a topology
management algorithm and then produce a neural network output[10].

Statistics

The query performance of each neural network is recorded as statistics when queries are
forwarded in one or more P2P networks.

Scalability

P2PRealm has been tested to scale up to 100,000 nodes.

Usability/Documentation

P2PRealm uses several input parameters such as query pattern, resource distribution, number
of training generations, the neuron structure of neural networks, and the number of neural
networks, optimization process through a configuration file. It produces an output file as best
and all neural networks of each generation, neighbour and topology distribution, and query
routes beginning from each node of the P2P network. P2PRealm uses a P2P Distributed
Computing platform (P2PDisCo) to support the distribution of simulation events with multiple
machines[10]. The documentation of the simulator is not well defined. However, P2PRealm is
still under development and has little documentation available.

Portability

P2PRealm uses the Peer-to-Peer Studio (P2PStudio) visualization tool to draw network
topology and different graphs.

System Limitations

P2PRealm has very poor documentation and has seen its development stopped because of it.

25

5. Results and Analysis

The analyzing components can be conducted based on architecture, statistics, scalability,
portability, usability, and documentation. The summary of all the simulator analysis is
described in Table 1. Architecture determines that whether it can manage the discrete events
for structured and unstructured networks. It can be observed that all the network simulators run
on the discrete-event architecture. Furthermore, only GPS, PlaneSim, NS2, NS3, Peerfact-Sim,
OPNET and NetSquid have good accuracy and efficiency alongside flexible architecture.

Network researchers and developers must choose a good simulator that allows flexibility in
model construction and validation. A good simulator must include a suitable analysis of
simulation results, a reliable simulation engine, and statistical accuracy of the simulation
output. Table 2 provides all the information needed to identify what makes a good simulator in
summary.

Another concern in network simulations is how to ensure a model is credible and constitutes
reality. If this can’t be guaranteed, the model has no actual value and can’t be applied for
reasonable network simulation [38]. Therefore, it is also essential to have a valid and credible
simulation model after choosing a suitable simulator for network simulation tasks. Hence, the
special features of a simulator can be used to ensure credibility. Since modelling only produces
approximate answers, the final result in a simulation study must also be considered. The
random number generators must be used to produce credible statistical outputs. Statistics has
always been used as a tool for interpreting the results [39].

Table 1. Summary of Various Network Simulators

S/N Simulator Architecture Statistics Scalability Usability/Documentation Portability Language
GUI

Support

1
PeerSim
[12]

Discrete-
event

Limited
statistics

Very high
(10^6
peers)

Poor user manual /command
prompt/ detailed API
documentation

Designed to
be extensible

Java No

2
PeerThing[
19]

Discrete-
event

Set of visualizes
supported

Very low
(2,000)

Good user manual but poor
API documentation and
uncommented source code

Extensible
and reusable

Java Yes

3
RealPeer[2
0]

Discrete-
event

Limited to
analysis and
hard to read

Upto
20,000
peers

Well commented source code
but poor API documentation

Poor
documentatio
n limits
extensibility

Java No

4
Query
Cycle[21]

Discrete-
event

Limited to
predefined
analysis

 Very high
(10^6
peers)

Poor API documentation and
user manual

Limited
extensibility

Java Yes

5
Neurogrid[
22]

Discrete-
event

Unreadable
result

Medium
(300,000
nodes)

Good API documentation and
user manual but
uncommented source code

Designed to
be extensible

Java Yes

6 GPS[40]
Discrete-
event

Poor
information
with statistical
analysis

Very low
(512 nodes)

Poor Documentation

Poor
documentatio
n limits
extensibility

Java Yes

7 3LS[7]
Discrete-
event

NA
Absymal
(20 nodes)

Poor documentation with one
short paper

Theoritically
extensible but
requires
practical
implementati
on

Java Yes

8 P2PSim[9]
Discrete-
event

Limited
statistics

Very low
(3,000)

Poor documentation
/Command prompt

Limited
extensibility
and complex
to handle

C++ Yes

9
Overlay
Weaver[1]

Discrete-
event

Uses message
counter to
collect
comprehensive
data

Very low
(4,000
nodes)

Good API documentation and
user manual but unreadable
source code

Limited
extensibility

Java Yes

26

10
PlanetSim[
26]

Discrete-
event

Only basic
statistics

Medium
(100,000
nodes)

Good API documentation and
user manual

Designed to
be extensible

Java Yes

11 Narses[28]
Discrete-
event

Limited
statistics

Low
(10,000
nodes)

Extensive API documentation
available

Limited
extensibility

Java Yes

12
DHTSim[1
3]

Discrete-
event

Limited
statistics

Low
(10,000)

Limited documentation
Limited
extensibility

Java No

13
OMNET++
[17]

Discrete-
event

Limited
statistics

Very low
(3,025
nodes)

Extensive API
documentation, user manual
and source code is available

Extensible
and reusable

C++ Yes

14
P2PRealm
[10]

Discrete-
event

Only basic
statistics

Medium
(100,000
peers)

Limited documentation
Limited
extensibility

Java Yes

15 NS2[8]
Discrete-
event

Limited
statistics

Very low
(5,000)

Extensive API documentation
available

Limited
extensibility

C++ and
TCL script

Yes

16 NS3[30]
Discrete-
event

Available
through logging

Very high
Extensive API
documentation, user manual
and source code is available

Extensible
and reusable

C++ and
Python

Yes

17
OverSim[1
5]

Discrete-
event

Available
Medium
(100,000)

Extensive API
documentation, user manual
and source code is available

Extensible
and reusable

C++ Yes

18
Optimal-
Sim[32]

Discrete-
event

Limited
statistics

Very low
(2,000)

Limited documentation
Extensible
and reusable

Java Yes

19
ProtoPeer[3
3]

Discrete-
event

Available High Limited documentation
Limited
extensibility

Java No

20
Peerfact-
Sim[35]

Discrete-
event

Available
Medium
(100,000)

Extensive API
documentation, user manual
and source code is available

Extensible
and reusable

Java Yes

21
D-P2P-
Sim[25]

Discrete-
event

Available
Medium
(400,000)

Limited documentation with
one short paper

Extensible
and reusable

Java Yes

22
OPNET[16
]

Discrete-
event

Available Very high
Extensive API
documentation, user manual
and source code is available

Extensible
and reusable

C and C++ Yes

23
NetSquid
[37]

Discrete-
event

Available
Very low
(1,000)

Extensive API
documentation, user manual
and source code is available

Extensible
and reusable

Python Yes

6. Conclusion

In this paper, we evaluate the performance of twenty-three network simulators based on
different parameters. Most of the network simulators examined have some functionality
missing which might be of importance. While poor documentation is an obstacle, it is an
obstacle that can be overcome, but it is unacceptable that most of the simulators have no
mechanism that supports a user to collect statistics of a simulation run. Only OverSim, NS3,
ProtoPeer, Peerfact-Sim, D-P2P_sim, OPNET, and NetSquid have a mechanism that collects
statistics. We believe that the poor state of existing network simulators is why much-published
research uses custom-built simulators. However, the problem does not go away; it only
complicates the task of validating research and reproducing results. Hence, we need credible
simulators that offer model flexibility, perform large-scale network simulations, and include
appropriate analysis and accuracy of simulation results. We conclude that NS3, OMNET, and
OPNET can be extended and modified to fulfil network simulation requirements based on the
parameters we examined.

Given the current state of simulators used for networking, we believe that there is a need for a
network simulator that meets the requirements of network researchers. As a future direction,
we believe that this can be achieved by extending NS3, OMNET, and OPNET simulators to
meet the needs of researchers. The next priority would be to implement a roadmap for the
extension project and seek feedback from the network simulation research communities
concerning the challenges ahead.

27

Table 2. Architecture Comparison of Network Simulators

S/N Simulator
Structured/
Unstructured

Engine
Mode

Distributed
Simulation

Special
Features

Accuracy Efficiency

1 PeerSim Both
Event and
cycle based

N/A N/A Moderate Less

2 PeerThing N/A Event based Yes
System behaviour
and System
Scenario

High High

3 RealPeer Unstructured
Discrete -
event

N/A
Development
environment;
reproducible results

Moderate Moderate

4 Query Cycle Unstructured Query based N/A For file sharing Less Less

5 Neurogrid Both
Discrete
event based

N/A N/A Moderate Less

6 GPS Both
Discrete
event based

Yes
Macroscopic
models

High High

7 3LS Unstructured Event based N/A

3 separate
architecture levels,
Network, Protocol
and User

Less Less

8 P2PSim Structured
Discrete
event based

No
For understanding
P2P source code

Less Less

9
Overlay
Weaver

Structured
Discrete-
event based

Yes
Construction toolkit
for multicasting and
DHT services

Moderate Moderate

10 PlanetSim Both
Discrete-
event based

N/A
For Chord and
Symphony
networks

High High

11 Narses Structured
Discrete -
event

Yes
For large distributed
networks

High High

12 DHTSim N/A
Discrete -
event

No For DHT Protocols Moderate Moderate

13 OMNET++ Structured
Discrete-
event

Yes
Supports alternative
languages such as
Java and C#

High High

14 P2PRealm Unstructured
Discrete-
event

Yes
Optimize neural
networks

Moderate Moderate

15 NS2 Both
Discrete-
event

Yes
Hybrid of C++ and
OTCL

High High

16 NS3 Both
Discrete-
event

Yes
Hybrid of C++ and
Python

High High

17 OverSim Both
Discrete-
event

N/A
For Simple,
SingleHost and
INET

Moderate Moderate

18
Optimal-
Sim

N/A
Discrete-
event

N/A Uses BRITE tool Less Less

19 ProtoPeer Both
Discrete-
event

N/A Prototyping toolkit Moderate Moderate

20
Peerfact-
Sim

Both
Discrete-
event

Yes
Layered
architecture

High High

21 D-P2P-Sim N/A
Discrete-
event

Yes

For Unbiased,
Realism,
Distributed and
Extensible

Moderate Moderate

22 OPNET Unstructured
Discrete-
event

Yes
For modelling,
simulation and
analysis

High High

23 NetSquid N/A
Discrete-
event

N/A
For quantum
networking

High High

Acknowledgement:

This work was supported by the Petroleum Technology Development Fund (PTDF) Nigeria

with grant number PTDF/ED/PHD/MAS/179/17.

References:

28

[1] S. Naicken, A. Basu, B. Livingston, S. Rodhetbhai, I. Wakeman, Towards yet another
peer-to-peer simulator, Proc. Fourth Int. Work. Conf. Perform. Model. Eval. Heterog.
Networks (HET-NETs’ 06). (2006) 1–10.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.4091&rep=rep1&a
mp;type=pdf.

[2] B. Schmeiser, Simulation experiments, Handbooks Oper. Res. Manag. Sci. 2 (1990)
295–330. https://doi.org/10.1016/S0927-0507(05)80171-9.

[3] A. Dupuy, J. Schwartz, Y. Yemini, D. Bacon, NEST: a network simulation and
prototyping testbed, Commun. ACM. 33 (1990) 63–74.
https://doi.org/10.1145/84537.84549.

[4] S. Keshav, REAL: A Network Simulator, Tech. Rep. 88/472, Dept. Comput. Sci. UC
Berkeley. (1988) 1–16. http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-
472.pdf.

[5] S. Keshav, Reflections on “analysis and simulation of a fair queueing algorithm,”
ACM SIGCOMM Comput. Commun. Rev. 49 (2019) 46–47.
https://doi.org/10.1145/3371934.3371952.

[6] E. Weingartner, H. vom Lehn, K. Wehrle, A Performance Comparison of Recent
Network Simulators, in: 2009 IEEE Int. Conf. Commun., IEEE, 2009: pp. 1–5.
https://doi.org/10.1109/ICC.2009.5198657.

[7] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, J. Vuori, P2PRealm - Peer-to-peer
network simulator, 2006 11th Int. Work. Comput. Model. Anal. Des. Commun. Links
Networks. 2006 (2006) 93–99. https://doi.org/10.1109/CAMAD.2006.1649724.

[8] R. Khan, S.M. Bilal, M. Othman, A Performance Comparison of Network Simulators
for Wireless Networks, A Perform. Comp. Netw. Simulators Wirel. Networks. (2013)
1–6. https://arxiv.org/ftp/arxiv/papers/1307/1307.4129.pdf.

[9] M. Ebrahim, S. Khan, S.S.U.H. Mohani, Peer-to-Peer Network Simulators: an
Analytical Review, (2014). http://arxiv.org/abs/1405.0400.

[10] N.I. Sarkar, S. Member, S.A. Halim, A Review of Simulation of Telecommunication
Networks: Simulators, Classification, Comparison, Methodologies, and
Recommendations, J. Sel. Areas Telecommun. . (2011).
http://orapp.aut.ac.nz/bitstream/handle/10292/4145/Nur-Syaf-Simulation-
CberJ.pdf?sequence=2&isAllowed=y.

[11] S. Naicken, A. Basu, B. Livingston, S. Rodhetbhai, A survey of peer-to-peer network
simulators, Proc. Seventh Annu. Postgrad. Symp. Liverpool, UK. (2006).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.7073&rep=rep1&a
mp;type=pdf.

[12] F. Chowdhury, J. Furness, M. Kolberg, Performance analysis of structured peer-to-
peer overlays for mobile networks, Int. J. Parallel, Emergent Distrib. Syst. 32 (2017)
522–548. https://doi.org/10.1080/17445760.2016.1203917.

[13] A. Basu, S. Fleming, J. Stanier, S. Naicken, I. Wakeman, V.K. Gurbani, The state of
peer-to-peer network simulators, ACM Comput. Surv. 45 (2013) 1–25.
https://doi.org/10.1145/2501654.2501660.

[14] S. Surati, D.C. Jinwala, S. Garg, A survey of simulators for P2P overlay networks with
a case study of the P2P tree overlay using an event-driven simulator, Eng. Sci.

29

Technol. an Int. J. 20 (2017) 705–720. https://doi.org/10.1016/j.jestch.2016.12.010.

[15] A. Zarrad, I. Alsmadi, Evaluating network test scenarios for network simulators
systems, Int. J. Distrib. Sens. Networks. 13 (2017) 155014771773821.
https://doi.org/10.1177/1550147717738216.

[16] M. Chen, Y. Miao, I. Humar, OPNET IoT Simulation, 2019.
https://doi.org/10.1007/978-981-32-9170-6.

[17] A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment,
SIMUTools 2008 - 1st Int. ICST Conf. Simul. Tools Tech. Commun. Networks Syst.
(2008). https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027.

[18] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho, M.
Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong, D.
Podareanu, A. Torres-Knoop, D. Elkouss, S. Wehner, NetSquid, a NETwork Simulator
for QUantum Information using Discrete events, Commun. Phys. 4 (2021) 164.
https://doi.org/10.1038/s42005-021-00647-8.

[19] M.F.R. Ms-cs, Modelling Virus Propagation in P2P Networks, Int. J. Comput. Sci.
Issues. 9 (2012) 580–587. https://core.ac.uk/download/pdf/25848441.pdf.

[20] D. Hildebrandt, W. Hasselbring, Simulation-based development of Peer-to-Peer
systems with the RealPeer methodology and framework, J. Syst. Archit. 54 (2008)
849–860. https://doi.org/10.1016/j.sysarc.2008.01.010.

[21] M.T. Schlosser, T.E. Condie, S.D. Kamvar, Simulating a File-Sharing P2P Network,
Distribution. (2003) 1–5.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8888.

[22] A.A. Jamal, W.J. Teahan, Lightweight Blackboard Resource Discovery Mechanism
For Unstructured Peer To Peer Networks, 35 (2017) 10–13.
https://doi.org/10.5829/idosi/wasj.2017.10.13.

[23] Y.H. Guo, L. Liu, Y. Wu, J. Hardy, Interest-aware content discovery in peer-to-peer
social networks, ACM Trans. Internet Technol. 18 (2018).
https://doi.org/10.1145/3176247.

[24] W. Yang, N. Abu-Ghazaleh, GPS: A general peer-to-peer simulator and its use for
modeling BitTorrent, Proc. - IEEE Comput. Soc. Annu. Int. Symp. Model. Anal.
Simul. Comput. Telecommun. Syst. MASCOTS. 2005 (2005) 425–432.
https://doi.org/10.1109/MASCOTS.2005.31.

[25] V. de C. Fernandes, Distributed Peer-to-Peer Simulation, (2011). https://www.inesc-
id.pt/ficheiros/publicacoes/7189.pdf.

[26] P. García, C. Pairot, R. Mondéjar, J. Pujol, H. Tejedor, R. Rallo, PlanetSim: A new
overlay network simulation framework, Lect. Notes Comput. Sci. 3437 (2005) 123–
136. https://doi.org/10.1007/11407386_10.

[27] PlanetSim: An Overlay Network Simulator, (2006).
https://sourceforge.net/projects/planetsim/files/planetsim/.

[28] T. Giuli, M. Baker, Narses: A Scalable Flow-Based Network Simulator, Arxiv Prepr.
Cs0211024. (2002) 6. http://arxiv.org/abs/cs/0211024.

[29] M. Kabir, S. Islam, M. Hossain, S. Hossain, Detail comparison of network simulators,
Int. J. Sci. Eng. Res. 5 (2014) 203–218. https://www.ijser.org/researchpaper/Detail-

30

Comparison-of-Network-Simulators.pdf.

[30] S. Rampf, Network Simulation and its Limitations, (2013).
https://doi.org/http://doi:10.2313/NET-2013-08-1_08.

[31] K.P.-J. 1 and M.-V.F. 2 Igor Linkov, Benjamin D. Trump, Computer Network
Simulation with ns-3: A Systematic Literature Review, Remote Sens. 6 (2017).
http://www.mdpi.com/2071-1050/5/12/4988/htm.

[32] Haoyi Wan, N. Ishikawa, Design and implementaion of a simulator for peer-to-peer
networks: optimal-sim, in: PACRIM. 2005 IEEE Pacific Rim Conf. Commun.
Comput. Signal Process. 2005., IEEE, 2005: pp. 105–108.
https://doi.org/10.1109/PACRIM.2005.1517236.

[33] W. Galuba, K. Aberer, Z. Despotovic, W. Kellerer, ProtoPeer: Distributed systems
prototyping toolkit, in: 2009 IEEE Ninth Int. Conf. Peer-to-Peer Comput., IEEE, 2009:
pp. 97–98. https://doi.org/10.1109/P2P.2009.5284513.

[34] E.M. Ahrari, The Proto-Peer Competitor and the Hegemon, in: Gt. Powers versus
Hegemon, Palgrave Macmillan UK, London, 2011: pp. 26–75.
https://doi.org/10.1057/9780230348431_2.

[35] K. Graffi, PeerfactSim.KOM: A P2P system simulator — Experiences and
lessons learned, in: 2011 IEEE Int. Conf. Peer-to-Peer Comput., IEEE, 2011: pp. 154–
155. https://doi.org/10.1109/P2P.2011.6038673.

[36] S.A. Abdulazeez, A. El Rhalibi, D. Al-Jumeily, Simulation of Massively Multiplayer
Online Games communication using OPNET custom application, Proc. - IEEE Symp.
Comput. Commun. 2016-Augus (2016) 97–102.
https://doi.org/10.1109/ISCC.2016.7543721.

[37] NetSquid The Network Simulator for Quantum Information using Discrete events,
(n.d.). https://netsquid.org/.

[38] R.M. Fujimoto, K. Perumalla, A. Park, H. Wu, M.H. Ammar, G.F. Riley, Large-Scale
Network Simulation : How Big ? How Fast ? 2 . Scalability Limits of Network
Simulators, Event (London). (2003).
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.5444&rep=rep1&type=
pdf.

[39] D. Mödinger, J.-H. Lorenz, R.W. van der Heijden, F.J. Hauck, Unobtrusive
monitoring: Statistical dissemination latency estimation in Bitcoin’s peer-to-peer
network, PLoS One. 15 (2020) e0243475.
https://doi.org/10.1371/journal.pone.0243475.

[40] W. Yang, N. Abu-Ghazaleh, GPS: A general peer-to-peer simulator and its use for
modeling BitTorrent, in: Proc. - IEEE Comput. Soc. Annu. Int. Symp. Model. Anal.
Simul. Comput. Telecommun. Syst. MASCOTS, 2005: pp. 425–432.
https://doi.org/10.1109/MASCOTS.2005.31.

