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A B S T R A C T

Uncertainty estimation is a critical component of building safe and reliable machine learning models. Accurate
estimation of uncertainties is essential for identifying and mitigating potential risks and ensuring that
machine learning systems operate reliably in real-world scenarios. Various approaches, such as ensemble and
Bayesian neural networks have been developed by sampling probability predictions from submodels, which is
computationally expensive. At present, these techniques are incapable of precisely delineating the boundary
separating in-distribution (ID) and out-of-distribution (OOD) data. To fill up this research gap, this paper
presents a normalizing flow based framework to directly predict parameters of prior distributions over the
probability with a neural network, the proposed model is able to effectively differentiate between ID and OOD
data in regression problems. The posterior distributions learned by the model precisely represent uncertainties
for OOD data based solely on ID data, without the need for OOD data during training. This approach has
shown promising results in a number of applications, including image depth estimation and image adversarial
attacks.
1. Introduction

The exceptional performance of neural networks across a range of
tasks has led to their widespread adoption in numerous fields, including
computer vision [1,2] and natural language processing [3,4]. Machine
learning(ML) models can give a particularly good result in most cases,
but occasionally give a particularly bad result, but this particularly bad
result is absolutely unacceptable in many life critical situations such
as aerospace, biomedical, autonomous-driving. If a ML model produces
unsatisfactory outcomes with low confidence, human intervention can
be employed to rectify the error. This approach ensures that the model
can be utilized safely across a broader range of domains. Uncertainty
estimation in neural networks has therefore become an active area of
research, with a range of methods [5–13] having been proposed in
recent years.

Aleatoric and epistemic uncertainty are two types of uncertainty
that are encountered in ML and other fields that involve predictions
and modeling. Aleatoric uncertainty is uncertainty that arises as a
consequence of the intrinsic randomness or variability in the data. As an
illustration, if someone intends to forecast the result of a coin flip, there
is inherent randomness in the process, and even if you have perfect
knowledge of the physical conditions, you cannot predict the out-
come with complete certainty. In ML, aleatoric uncertainty arises from
sources such as measurement noise, natural variation in the data, or
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incomplete or inaccurate data. On the contrary, epistemic uncertainty
pertains to uncertainty that emerges as a result of a scarcity of knowl-
edge or comprehension regarding the system that is being modeled.
If you are trying to predict the outcome of a medical test based on a
patient’s symptoms, there may be factors that are unknown or not fully
understood that affect the outcome. In ML, epistemic uncertainty arises
from sources such as limited training data, model misspecification, or
incomplete knowledge of the underlying mechanisms that generate the
data. Both types of uncertainty can affect the reliability and accuracy
of predictions, and understanding the sources of uncertainty can help
in developing more robust and accurate ML models.

When it comes to real-world deployment in safety-critical domains,
regression models face high accurate requirements. The typical ap-
proach of training a deep neural networks (DNNs) to produce a pre-
dicted regression target �̂� = 𝑓 (𝑥) is inadequate in capturing any
level of uncertainty in the predictions �̂�. This deficiency renders the
model incapable of detecting OOD input 𝑥, which are not part of its
training data. Since the accuracy of DNNs’ predictions typically declines
significantly on OOD input [14,15], the potential consequences could
be disastrous. Therefore, various techniques have been developed to
train uncertainty-aware DNNs models [5,9,16–21] to explicitly estimate
uncertainty in the predictions.
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Accurate and reliable uncertainty estimates are essential. Otherwise,
the model’s occasional overconfidence may lead to overconfident yet
incorrect predictions, making uncertainty estimates misleading and
potentially increasing the model’s unsuitability for safety-critical de-
ployment. To be effective, uncertainty estimates must be well calibrated
and aligned with prediction errors [22], even in situations involving
distribution shifts encountered during practical deployment [23–25].
For example, a autopilot model trained on data from a large urban
street in 2020 should generate well-calibrated predictions for cars from
both urban and rural areas in 2023. Although uncertainty calibration
and general DNNs robustness [26] have been evaluated for classifica-
tion tasks [27,28] under distribution shifts, this important issue remains
understudied for regression.

One frequently used approach is to leverage Bayesian Neural Net-
works (BNNs). BNNs use Bayes’ rule to create a model of the posterior
distribution over the weights of a neural network by treating them as
random variables with a prior distribution. Through the use of Bayes’
rule to update the posterior distribution during training, BNNs can
capture the variation in the network’s weights and measure the uncer-
tainty in their forecasts [5,29]. However, BNNs face several limitations,
including lack of interpretability, limited scalability, computational
complexity and the choice of priors makes this method difficult to apply
on a large scale of data set. Ensembling [30] involves training multiple
models on the same dataset with different initializations, which can
be time-consuming and require significant computing resources. If the
models in the ensemble are too complex or too similar, they may overfit
the training data and not generalize well to new data. Dropout [31] is a
regularization technique that randomly drops out units during training
to reduce overfitting. However, the dropout rate is typically set to a
fixed value during training and does not change during testing. This can
result in unreliable uncertainty estimates, especially for OOD samples.
The multiple models in an ensemble or the random units dropped out
during training can make it difficult to interpret the model’s predictions
and uncertainty estimates. This can be a problem in domains where
interpretability is important, such as healthcare or finance. In practical
applications, most ML models do not have the ability to perceive
uncertainty, and modeling uncertainty in the face of specific practical
problems still remains challenging.

The normalizing flow [32,33] model has attracted attention because
of its reversibility without loss of original information, and it has
proven to have remarkable performance in various applications in-
cludes clustering and classification [27,34], and density estimation [35,
36]. In this paper, we present a normalizing flow based uncertainty
estimation framework (FlowNet) for regression analysis. FlowNet is
trained on ID data directly predicting parameters of prior distributions.
Through the normalizing flow model, the density of ID samples are
aggregated together in a latent space, and when an OOD sample
is detected, FlowNet will separate ID from the OOD sample in the
latent space, then the model will give a low confidence. The outcomes
achieved by FlowNet in detecting Out-of-Distribution (OOD) and ac-
curately estimating uncertainty during dataset shifts are considered
state-of-the-art. Notably, FlowNet accomplishes this without requiring
OOD samples during training or relying on costly sampling techniques
for uncertainty estimation during testing.

The contributions of the paper are as follows :

1. It presents a normalizing flow based uncertainty estimation
framework that is capable of accurately detecting uncertainty
without requiring additional OOD training data.

2. It introduces a novel uncertainty bounding mechanism, which is
capable of effectively identifying the data whose distribution is
out of the target distribution in a latent space

3. A thorough evaluation of epistemic uncertainty is performed on
both standard benchmark and intricate visual regression tasks,
with a comparison to traditional neural network uncertainty
estimation methods.
2

4. The evaluation of both robustness and calibration is performed
using OOD and adversarially perturbed test data.

The remaining sections of this paper are structured in the following
manner. Section 2 gives a review of related work. Section 3 intro-
duces the necessary prerequisite and details the formulation of learning
process. Section 4 presents the experimental results and data analysis.
Section 5 concludes this paper and points out future direction.

2. Related work

Uncertainty estimation is an essential aspect of ML. In the early days
of ML, uncertainty was mostly ignored. However, over time, it became
clear that uncertainty was a crucial factor in many applications. One
of the early methods for estimating uncertainty in ML was Monte Carlo
Dropout (MC Dropout), proposed by Gal and Ghahramani in 2016 [10].
MC Dropout is a technique for estimating uncertainty by repeatedly
sampling from a trained model with dropout enabled. Afterwards, a
series of uncertainty estimation methods based on dropout have been
proposed [10,37–39], but methods based on dropout can be computa-
tionally expensive. Another popular method for uncertainty estimation
is Bayesian neural networks (BNNs) [5–7]. BNNs are based on Bayesian
statistics, which provides a way to estimate the uncertainty of a model’s
predictions by treating the model parameters as random variables.
BNNs provide a principled way to estimate uncertainty, but they can
be difficult to train and may require large amounts of computational
resources. Other commonly used methods for uncertainty estimation
include ensemble methods [40], which combine the predictions of
multiple models to estimate uncertainty, and deep ensembles [9],
which use ensembles of deep neural networks to estimate uncertainty.
Ensemble methods are straightforward to implement and can be very
effective, but they may require more memory and computation.

Recently, a novel class of models has been created with the aim
of forecasting the parameters of a prior distribution on sample prob-
ability predictions, while taking into consideration diverse forms of
uncertainty [41–45]. Nevertheless, these approaches come with limi-
tations. Prior Networks [42,43] employ OOD samples during training
to learn these parameters and establish distinct target values for ID
and OOD data. There are several issues with this approach: (1) Antic-
ipating knowledge of Out-of-Distribution (OOD) data during training
is unrealistic as such samples are unlikely to be observed in practical
scenarios. (2) Providing a specific set of out-of-distribution (OOD)
samples cannot effectively distinguish between in-distribution (ID) and
OOD data. This is because any data that does not come from the original
data distribution is considered OOD. As a result, characterizing an
infinitely large OOD distribution with a finite data set is impossible.
(3) The predicted prior distribution parameters are not restricted to
any specific values, particularly for new OOD samples that were not
included in the training dataset. Furthermore, the total number of
fabricated pseudo-observations over the input domain may surpass the
number of actual observations, resulting in unwanted behaviors and
conferring unwarranted epistemic certainty to OOD data that was not
encountered during training. Based on [27], it appears that depriving
models of explicit OOD data during training using these techniques
leads to unfavorable results.

The evidential model [45] learns a higher-order distribution based
on a lower-order distribution. Statistically analyze the numerical char-
acteristics of higher-order distributions at test time to give uncertainty
predictions. It learns the training data in the latent space, which is
infinite and unbounded, which makes it difficult to penalize evidence
everywhere. Compared with it, FlowNet leverages normalizing flows to
latch on knowledge of a distribution across the conjugate prior distribu-
tion of Gaussian distribution parameters in a latent space, which more
precisely recognizes the ID and OOD data, due to the data is mapped to
a fixed and finite probability density region. As a result, data mapping
within this region is considered ID data, and data outside the specific
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Fig. 1. Three input examples, (1), (2), and (3) are fed into the encoding neural network to obtain their corresponding latent space coordinates 𝑧. Higher probability mass is
represented by darker shading. 𝑧1 and 𝑧2 falling in the high density area are considered ID data, while 𝑧3 falling outside the density area is considered OOD data. The normalizing
flow component learns normalized density functions 𝑝(𝐳 ∣ 𝜃, 𝜙), this density is further used to parameterize the Normal Inverse-Gamma distribution then give the prediction and
uncertainty estimation.
region is considered as OOD data. There is boundary betwixt ID and
OOD samples in the latent space. At the same time, FlowNet does not
require additional OOD data at training time. Fig. 1 makes clear the
flowchart.

3. FlowNet for regression

3.1. Prerequisite

In ML, regression refers to a supervised learning technique used to
model the relationship between a dependent variable and one or more
independent variables. The goal of regression is to find a function that
can predict the value of the dependent variable based on the values
of the independent variables. Differ from classification, the output of
regression model is real-value attributes for the data instances, instead
of the predefined classes that the data belong to. The quality of the
regression model is typically evaluated based on metrics such as mean
squared error, root mean squared error, and others. Formally, given a
dataset , which is made up of 𝑁 pair training examples, it is expressed
as  =

{

𝑥𝑖, 𝑦𝑖
}𝑁
𝑖=1. The optimization process is achieved by adjusting the

values of the weights 𝑤 in order to learn a functional 𝑓 .

min
𝒘

𝐽 (𝒘); 𝐽 (𝒘) = 1
𝑁

𝑁
∑

𝑖=1
𝑖(𝒘) (1)

where 𝑖(⋅) is the loss function. Sum of squared errors is the com-
monly used objective function, 𝑖(𝒘) = 1

2
‖

‖

‖

𝑦𝑖 − 𝑓
(

𝒙𝑖;𝒘
)

‖

‖

‖

2
, it typically

optimizes a model by rewarding correct predictions and penalizing
incorrect ones. However, this cannot fit the potential noise and un-
certainty estimates when the test data is completely different from the
training data.

From the perspective of probabilities, it allows predictions to be
made in face of uncertainty. Assume the targets 𝑦𝑖 were drawn i.i.d.
from Gaussian distribution with mean and variance parameters 𝜽 =
(

𝜇, 𝜎2
)

. The objective of maximum likelihood estimation (MLE) is to
train a model to determine the value of parameter 𝜽 that maximizes
the probability of observing the target outputs, 𝑦, as given by the
function 𝑝

(

𝑦𝑖 ∣ 𝜽
)

. This is accomplished by minimizing the loss function
of negative log likelihood.

𝑖(𝒘) = − log 𝑝(𝑦𝑖 ∣ 𝜇, 𝜎2
⏟⏟⏟

𝜽

) = 1
2
log

(

2𝜋𝜎2
)

+

(

𝑦𝑖 − 𝜇
)2

2𝜎2
(2)

The learned parameter 𝜽 will vary according to different datasets.
Uncertainty is then estimated from the numerical properties of learned
3

dataset in statistics. This kind of method, can only model the uncer-
tainty inside the dataset, which is commonly referred to as aleatoric
uncertainty, but does not have the ability to estimate the epistemic
uncertainty [17]. Implicitly modeling the prior distribution, approaches
such as ensemble [9] and dropout [10] have their limitations, as they
may sacrifice the estimation of statistics for the sake of S samples.
The model can learn hyperparameters of the prior distribution by
explicitly placing priors over the likelihood function, which is the
approach taken by a group of methods [41–45], without the need
for sampling, it is possible to accurately represent both epistemic and
aleatoric uncertainty.

3.2. Problem formulation

The problem we are considering involves observed targets, 𝑦𝑖,
drawn independent and identically distributed from a Gaussian distri-
bution, aim to estimate the probabilistic values of unknown mean and
variance

(

𝜇, 𝜎2
)

using a method similar to classic Maximum Likelihood
Estimation (MLE) (Section. III.A). To achieve this, we introduce a prior
distribution on

(

𝜇, 𝜎2
)

. If it is assumed observations are sampled from
a Gaussian, as described in Section. III.A, we use Inverse-Gamma prior
and Gaussian prior for the unknown variance and mean respectively .

(

𝑦1,… , 𝑦𝑁
)

∼ 
(

𝜇, 𝜎2
)

𝜎2 ∼ 𝛤−1(𝛼, 𝛽) 𝜇 ∼ 
(

𝛾, 𝜎2𝑣−1
) (3)

where 𝛽 > 0, 𝛼 > 1, 𝑣 > 0, 𝛾 ∈ R, 𝒎 = (𝛽, 𝛼, 𝑣, 𝛾) and 𝛤 (⋅) is refer
to as gamma function. FlowNet will estimate a posterior distribution
𝑞
(

𝜇, 𝜎2
)

= 𝑝
(

𝜇, 𝜎2 ∣ 𝑦1,… , 𝑦𝑁
)

. Assuming that the estimated distribu-
tion can be factorized [46], we obtain an approximation for the true
posterior 𝑞

(

𝜇, 𝜎2
)

= 𝑞(𝜇)𝑞
(

𝜎2
)

. The approximation we use is in the
form of the Normal Inverse-Gamma (N-𝛤−1) distribution, which is a
Gaussian conjugate prior distribution.

𝑝( 𝜇, 𝜎2
⏟⏟⏟

𝜽,𝝓

∣ 𝛽, 𝛼, 𝑣, 𝛾
⏟⏞⏟⏞⏟

𝒎

) =
𝛽𝛼

√

𝑣

𝛤 (𝛼)
√

2𝜋𝜎2

(

1
𝜎2

)𝛼+1

exp
{

−
2𝛽 + 𝑣(𝛾 − 𝜇)2

2𝜎2

}

.

(4)

The FlowNet model’s parameterization is essential and relies on
two main components. An encoder neural network 𝑓𝜃 is the first part
of FlowNet, the inputs 𝐗(𝑖) is then mapped into a high-dimensional
feature space. The second component is a normalizing flow model
parameterized by 𝜙, is used to learn a normalized sample density on
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this latent space. According to [47], one way to understand the pa-
rameters associated with the corresponding conjugate prior distribution
is through the concept "pseudo observations". Such as, the variance
of the N-𝛤−1 distribution could thought of deriving from 𝛼 pseudo
observations accompany by a number 2𝑣 as sum of squared deviations
and with sample mean 𝛼. Whereas, the mean is estimated from 𝑣 pseudo
observations accompany by a number 𝛾 as sample mean. Based on
the stated perspective, we can define the total pseudo count, denoted
by 𝛷, of the target distribution as summation of all deduced pseudo
observations count, which is equal to 2𝑣 plus 𝛼. It is important to note
that the second part of FlowNet must be a proper normalized density
function to make sure that the model’s epistemic uncertainty increases,
while sample lie out of known distribution. Our approach centers
around the core concept of utilizing normalizing flows to parameterize
distributions. Normalizing flows [33], such as radial flow [32], Re-
alNVP [48] or MAF [49], offer a flexible yet manageable family of
distributions. It is worth noting that empowered with a sufficiently
expressive and deep model [50,51], normalizing flows can theoretically
model any continuous distribution.

3.3. Estimation of uncertainty

The two types of uncertainty in a prediction can be classified
as aleatoric uncertainty, which is also known as statistical or data
uncertainty, and epistemic uncertainty, which represents the lack of
knowledge in the prediction. By using N-𝛤−1 distribution, we can cal-
culate the epistemic uncertainty, aleatoric uncertainty and prediction.

E
[

𝜎2
]

=
𝛽

𝛼 − 1
⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

aleatoric

, Var[𝜇] =
𝛽

𝑣(𝛼 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

epistemic

, E[𝜇] = 𝛾
⏟⏞⏟⏞⏟
prediction

. (5)

According to the nature of the N-𝛤−1 distribution, we can under-
stand aleatoric uncertainty and epistemic uncertainty as the mean of
the variance and the variance of the mean, respectively.

3.4. Learning target distribution

After formalizing the use of N-𝛤−1 distribution to obtain both
epistemic and aleatoric uncertainty, our consequent step is to train a
model that outputs outcome hyperparameters of this distribution. To
make the learning process clearer, we divide it into two distinct parts.
The first part involves obtaining and maximizing model evidence to
support for the observation, while the second part involves inflating
uncertainty and minimizing evidence when prediction is incorrect.
Broadly speaking, the first part involves fitting data to FlowNet, while
the second part enforces a prior that removes inaccurate observation
and inflates uncertainty.

To maximize the model fit, one can employ the Bayesian probability
theory and utilize the marginal likelihood, also known as the model
evidence. This quantity represents the probability of observing the data,
𝑦𝑖, given the values of the distribution parameters, 𝒎, and is obtained
by integrating over the possible values of the likelihood parameters,
𝜽, 𝝓:

𝑝
(

𝑦𝑖 ∣ 𝒎
)

=
𝑝
(

𝑦𝑖 ∣ 𝜽, 𝝓,𝒎
)

𝑝(𝜽, 𝝓 ∣ 𝒎)

𝑝
(

𝜽, 𝝓 ∣ 𝑦𝑖,𝒎
)

∫

∞

𝜎2=0 ∫

∞

𝜇=−∞
𝑝
(

𝑦𝑖 ∣ 𝜇, 𝜎2
)

𝑝
(

𝜇, 𝜎2 ∣ 𝒎
)

d𝜇d𝜎2
(6)

Evaluating the model evidence is typically a challenging task as it
equires integrating over the latent model parameters. However, if we
4



se a N-𝛤−1 prior for our Gaussian likelihood function, an analytical
solution can be obtained:

𝑝
(

𝑦𝑖 ∣ 𝒎
)

= ∫𝜽,𝝓
𝑝
(

𝑦𝑖 ∣ 𝜽, 𝝓
)

𝑝(𝜽, 𝝓 ∣ 𝒎)d(𝜽, 𝝓)

= ∫

∞

𝜎2=0 ∫

∞

𝜇=−∞
𝑝
(

𝑦𝑖 ∣ 𝜇, 𝜎2
)

𝑝
(

𝜇, 𝜎2 ∣ 𝒎
)

d𝜇d𝜎2

= ∫

∞

𝜎2=0 ∫

∞

𝜇=−∞
𝑝
(

𝑦𝑖 ∣ 𝜇, 𝜎2
)

𝑝
(

𝜇, 𝜎2 ∣ 𝛾, 𝑣, 𝛼, 𝛽
)

d𝜇d𝜎2

= ∫

∞

𝜎2=0 ∫

∞

𝜇=−∞

[

√

1
2𝜋𝜎2

exp

{

−

(

𝑦𝑖 − 𝜇
)2

2𝜎2

}]

[

𝛽𝛼
√

𝑣

𝛤 (𝛼)
√

2𝜋𝜎2

(

1
𝜎2

)𝛼+1
exp

{

−
2𝛽 + 𝑣(𝛾 − 𝜇)2

2𝜎2

}

]

d𝜇d𝜎2

= ∫

∞

𝜎2=0

𝛽𝛼𝜎−3−2𝛼
√

2𝜋
√

1 + 1∕𝑣𝛤 (𝛼)
exp

⎧

⎪

⎨

⎪

⎩

−
2𝛽 + 𝑣(𝑦𝑖−𝛾)2

1+𝑣

2𝜎2

⎫

⎪

⎬

⎪

⎭

d𝜎2

= ∫

∞

𝜎=0

𝛽𝛼𝜎−3−2𝛼
√

2𝜋
√

1 + 1∕𝑣𝛤 (𝛼)
exp

⎧

⎪

⎨

⎪

⎩

−
2𝛽 + 𝑣(𝑦𝑖−𝛾)2

1+𝑣

2𝜎2

⎫

⎪

⎬

⎪

⎭

2𝜎d𝜎

=
𝛤 (1∕2 + 𝛼)

𝛤 (𝛼)

√

𝑣
𝜋
(2𝛽(1 + 𝑣))𝛼

(

𝑣
(

𝑦𝑖 − 𝛾
)2 + 2𝛽(1 + 𝑣)

)−
(

1
2+𝛼

)

𝑝
(

𝑦𝑖 ∣ 𝒎
)

= St
(

𝑦𝑖; 𝛾,
𝛽(1 + 𝑣)

𝑣𝛼
, 2𝛼

)

.

(7)

The Student-t distribution with degrees of freedom 𝑣𝑆𝑡, scale 𝜎2St
and location 𝜇St is denoted by St

(

𝑦;𝜇St , 𝜎2St , 𝑣𝑆𝑡
)

, where 𝑦 represents
the input. The negative logarithm of the model evidence is expressed
as the loss function NLL

𝑖 (𝒘).

NLL
𝑖 (𝒘) = 1

2
log

(𝜋
𝑣

)

− 𝛼 log(𝛺) +
(

𝛼 + 1
2

)

log

(

(

𝑦𝑖 − 𝛾
)2 𝑣 +𝛺

)

+ log

⎛

⎜

⎜

⎜

⎝

𝛤 (𝛼)

𝛤
(

𝛼 + 1
2

)

⎞

⎟

⎟

⎟

⎠

(8)

where 𝛺 = 2𝛽(1 + 𝑣). By maximizing the model evidence, a neural
etwork can be trained to output parameters of the N-𝛤−1 distribution

that fit the input observations. The loss function NLL
𝑖 (𝒘) serves as an

objective for this training process.
To regularize the training process (penalty on incorrect evidence), a

technique is introduced where an incorrect evidence penalty is applied
to minimize evidence on incorrect predictions. In the setting of classifi-
cation, its effectiveness has been proven [44]. For the regression case,
a similar minimization involves 𝐾𝐿[𝑝(𝜽, 𝝓 ∣ 𝒎)∥𝑝(𝜽, 𝝓 ∣ �̃�)], where �̃�
epresents the parameter belong to arbitrary N-𝛤−1 prior with zero ev-
dence . However, the KL between arbitrary N-𝛤−1 and N-𝛤−1 with zero
vidence prior is undefined, these approaches to regularizing evidential
earning are not applicable in regression. An alternative approach is
hat, by introducing some non-zero evidence (𝜖-evidence) to make the
L finite and defined. However, this would cause hypersensitivity to the
election of the 𝜖 value, leading to highly unstable training. Therefore,
his alternative is not a practical solution. As a result, we employ
ethods that directly penalize incorrect evidence.

R
𝑖 (𝒘) = |

|

|

𝑦𝑖 − E
[

𝜇𝑖
]

|

|

|

⋅𝛷 = |

|

𝑦𝑖 − 𝛾|
|

⋅ (2𝑣 + 𝛼) (9)

The complete cost function, 𝑖(𝒘), includes two distinct loss terms
hat serve to maximize and regularize evidence. A regularization co-
fficient (𝜆) is applied to these two terms to appropriately scale their
ontributions within the total loss.

NLL R

𝑖(𝒘) = 𝑖 (𝒘) + 𝜆𝑖 (𝒘) (10)
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Table 1
RMSE and negative log-likelihood (NLL) Benchmark tests summary in statistics. dropout sampling [10], model ensembling
[9], evidential regression [45] and our proposed FlowNet. The best results for each dataset and metric are highlighted in
bold, with a sample size of 5 for the baseline methods. On almost all datasets, FlowNet surpasses baseline methods in terms
of NLL and RMSE performance.
Datasets RMSE NLL

Dropout Ensembles Evidential FlowNet Dropout Ensembles Evidential FlowNet

Boston 2.97 ± 0.19 3.28 ± 1.00 3.06 ± 0.16 𝟐.𝟑𝟖 ± 𝟎.𝟐𝟐 2.46 ± 0.06 2.41 ± 0.25 𝟐.𝟑𝟓 ± 𝟎.𝟎𝟔 𝟐.𝟐𝟒 ± 𝟎.𝟎𝟕
Concrete 𝟓.𝟐𝟑 ± 𝟎.𝟏𝟐 6.03 ± 0.58 5.85 ± 0.15 5.81±0.19 𝟑.𝟎𝟒 ± 𝟎.𝟎𝟐 3.06 ± 0.18 𝟑.𝟎𝟏 ± 𝟎.𝟎𝟐 3.09±0.02
Energy 1.66 ± 0.04 2.09 ± 0.29 2.06 ± 0.10 𝟎.𝟗𝟑 ± 𝟎.𝟏𝟕 1.99 ± 0.02 1.38 ± 0.22 1.39 ± 0.06 𝟏.𝟏𝟎 ± 𝟎.𝟎𝟗
Kin8 nm 0.10 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 𝟎.𝟎𝟓 ± 𝟎.𝟎𝟎 −0.95 ± 0.01 −1.20 ± 0.02 −1.24 ± 0.01 −𝟏.𝟑𝟕 ± 𝟎.𝟎𝟑
Naval 0.01 ± 0.00 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 𝟎.𝟎𝟎 ± 𝟎.𝟎𝟎 −3.80 ± 0.01 −5.63 ± 0.05 −5.73 ± 0.07 −𝟓.𝟗𝟗 ± 𝟎.𝟎𝟕
Power 4.02 ± 0.04 4.11 ± 0.17 4.23 ± 0.09 𝟐.𝟕𝟗 ± 𝟎.𝟎𝟗 2.80 ± 0.01 2.79 ± 0.04 2.81 ± 0.07 𝟐.𝟒𝟒 ± 𝟎.𝟎𝟐
Protein 𝟒.𝟑𝟔 ± 𝟎.𝟎𝟏 4.71 ± 0.06 4.64 ± 0.03 𝟒.𝟏𝟑 ± 𝟎.𝟑𝟐 2.89 ± 0.00 2.83 ± 0.02 𝟐.𝟔𝟑 ± 𝟎.𝟎𝟎 𝟐.𝟓𝟓 ± 𝟎.𝟏𝟒
Yacht 1.11 ± 0.09 1.58 ± 0.48 1.57 ± 0.56 𝟎.𝟕𝟓 ± 𝟎.𝟏𝟖 1.55 ± 0.03 1.18 ± 0.21 1.03 ± 0.19 𝟎.𝟔𝟐 ± 𝟎.𝟏𝟏
The regularization coefficient 𝜆 strikes a balance between the in-
lation of uncertainty and model fit. If 𝜆 is set to 0, the resulting
stimate may be overly confident, while setting 𝜆 too high could lead
o excessive inflation. During training, the parameters 𝑚 of target dis-
ribution is generated by the proposed model, with 𝒎𝑖 being generated
y the function 𝑓

(

𝒙𝑖;𝒘
)

. Since each target 𝑦 is associated with four
parameters, our proposed model has four output neurons for each target
𝑦. To make certain that the constraints on (𝛽, 𝛼, 𝑣) are enforced, we
apply a softplus activation function (since 𝛼 > 1, with an additional
+1 added). For other parameters, linear activation is used.

4. Experiments

4.1. Toy dataset

We first validated our ideas on small dataset and compared with
baseline methods. Following [9,52], the toy dataset has inputs uni-
formly and randomly in the range of [−4, 4]. For each input 𝑥, the
corresponding target 𝑦 is computed as 𝑦 = 𝑥3 + 𝜖𝑛, where 𝜖𝑛 ∼  (0, 3).
We assessed aleatoric within ±4 and epistemic ±6 uncertainty esti-
mation. We evaluated three normalizing flow methods – Radial [32],
Planar [32] and RealNVP flow [48] in comparison with three baselines
– PBP [52], Ensembling [9] and Dropout [10]. All the models were
trained with the same parameters as 𝜂 = 5e − 3 for Adam optimizer
learning rate, batch size of 128 and train 5000 iterations, sampling
based models [9,10] employed 𝑛 = 5 samples. As shown in Fig. 2,
Within the training range [−4, 4], almost all methods are able to ac-
curately predict aleatoric uncertainty. As going beyond the training
range, which of greater than 4 and less than −4 depicted in Fig. 2,
the epistemic uncertainty begins to increase. The methods based on
the normalizing flows well bound the uncertainty in a small range near
the ground truth, and the prediction of the baseline methods on the
epistemic uncertainty gradually fail.

4.2. Real world datasets

In this set of experiments, we followed the same experiment setup
used by [9,10]. We evaluated FlowNet with RealNvp realization in com-
parison with three baseline methods — Dropout [10], Ensembles [9]
and Evidential [45] from the aspects of root mean squared error (RMSE)
and negative log-likelihood (NLL). The results shows summary statistics
in Table 1. On each data set, the top results among proposed method
are shown in bold font. From Table 1, we can conclude that whether in
terms of RMSE or NLL, FlowNet exceeds the baseline methods, almost
in all data sets, except concrete. At the same time, we observed in the
experiment that with the addition of more intermediate normalizing
flow layers, the performance is further improved, and currently only
5

one layer was employed.
4.3. Vision tasks in complex scenes

We further evaluated the effectiveness of FlowNet on more complex
vision tasks that are more close to real scenes. Image depth estimation is
the task of estimating the depth value (distance relative to the camera)
of each pixel given a single (monocular) RGB image. This task has
a wide range of applications in many fields such as virtual reality,
semantic segmentation, automatic driving, and 3D reconstruction. Due
to the lack of a single image for spatial information, object occlusion,
movement, and the need to process high-dimensional data at the pixel
level, this problem still remains challenging.

We employed NYU Depth v2 [53] dataset as training dataset. The
NYU Depth v2 dataset is a large, publicly available dataset and widely
used in the computer vision community as a benchmark for evaluating
the performance of depth estimation algorithms. It contains diverse
indoor scenes image pairs (e.g. office, libraries, etc.), where each
pair consists of an RGB image and its corresponding depth map. The
depth maps were acquired using a Microsoft Kinect sensor, providing
high-quality, dense depth information for each image in the dataset.
FlowNet use U-Net [54] as the backbone, and in order to take a full
advantage of the processing for the image dataset, we combined the
Glow model [35] (with Invertible 1 × 1 Convolutions) to get the final
output. The final layer outputs a single H ×W activation map in the case
of regression. Following the experiment setup with [45], the FlowNet
model generates four outputs, corresponding to (𝛽, 𝛼, 𝑣, 𝛾) respectively,
under restrictions. For the dropout implementation, spatial dropout
uncertainty sampling [37,55] was used.

We tested the model on unseen data in the subject of accuracy and
predictive epistemic uncertainty. The predicted depth and predictive
entropy are shown in Fig. 3 left side, for randomly selected test images.
An effective measure of epistemic uncertainty should be able to detect
inaccuracies in predictions, which FlowNet effectively captures while
providing clear confidence estimates. In contrast, dropout significantly
underestimates uncertainty and ensembling sometimes overestimates
it. Fig. 3 Middle part clearly shows the inverse trend between ob-
served error and prediction confidence. FlowNet, while being able to
accurately predict epistemic uncertainty, has a prediction accuracy
comparable to start-of-the-arts.

In Fig. 3 right part, we further assess the accuracy of FlowNet on un-
certainty estimates. The calibration curves are calculated as described
in [56], with the ideal curve being 𝑦 = 𝑥, Approximately 90% of the
time, the target falls within a 90% certainty gap, as indicated. The
results reveal that dropout method tends to overestimate confidence in
low-confidence scences (0.126), while evidential (0.033) and ensem-
bling (0.048) performs better but still falls short compared to FlowNet
(calibration error: 0.015).

4.4. Resilience against adversarial examples

We then examined the scenario of OOD detection where inputs

are deliberately altered to produce incorrect predictions. To generate
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Fig. 2. Toy dataset uncertainty estimation trained on 𝑦 = 𝑥3 + 𝜖𝑛 , 𝜖𝑛 ∼  (0, 3). The top three graphs are the uncertainty estimation of FlowNet based on various normalizing flows,
and the bottom three graphs are the baseline methods. FlowNet is capable of bounding the epistemic uncertainty near the ground truth, whereas baseline methods were less
accurate in prediction of epistemic uncertainty.
Fig. 3. Illustration of epistemic uncertainty in depth estimation. (Left) An illustration of depth predictions and the estimation of uncertainty at the pixel level. (Middle) Relationship
between observed error and prediction confidence level; usually inverse trend is desired. (Right) With inset shows calibration errors, model uncertainty calibration [56], where the
ideal relationship between predicted uncertainty and actual uncertainty is 𝑦 = x.
Fig. 4. The robustness of uncertainty estimates under adversarial noise is explored. The relationship between adversarial noise and both the estimated epistemic uncertainty (B)
and predictive error (A) is studied. (C) The calibration performance of various methods is compared visually as the noise level increases. FlowNet exhibits the highest calibration
performance among the baseline methods.
adversarial perturbations for our test set, we employed FGSM algorithm
(detailed in [57]) with gradually increasing levels of noise, repre-
sented by Epsilon (𝜖). It is important to note that this experiment was
not aimed at presenting a solution for advanced adversarial attacks,
but rather to showcase that FlowNet accurately reflects heightened
6

predictive uncertainty on samples that have undergone adversarial
manipulations.

The results in Fig. 4 A show that as adversarial noise is added, the
absolute error of all methods increases. Additionally, Fig. 4 B indicates
that there is a positive effect of noise on our predictive uncertainty
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Fig. 5. The relationship between Expected Confidence and Observed Confidence of FlowNet and baseline methods.
Fig. 6. The uncertainty of OOD data is analyzed. FlowNet shows low uncertainty (entropy) on ID data and amplifies uncertainty on OOD data. (A) presents the cumulative density
function (CDF) of ID and OOD entropy for the tested methods, and OOD detection was evaluated using AUC-ROC. (B) compares uncertainty (entropy) across the methods. (C)
displays full density histograms of entropy estimated by FlowNet for ID and OOD data. (D) Examples of predictions including both ID and OOD data.
estimates. However, as noise levels continue to rise beyond a certain
threshold, the ensemble method appears to exhibit better performance
in terms of predictive uncertainty. This observation underscores the
ensemble method’s robustness to high noise levels, possibly due to
its inherent diversity among multiple models, which can provide a
broader perspective on uncertainty. Fig. 4 C compares the calibration
performance of various methods visually as the noise level increases.
FlowNet achieves the best calibration performance compared to other
baseline methods. Fig. 5 shows the relationships between expected
confidence and observed confidence. The regression model based on
normalizing flow controls the uncertainty in a smaller range compared
with other baseline methods.

4.5. OOD sample testing

The purpose of estimating uncertainty is to determine when a ML
model encounters test samples that are not part of its training distri-
bution or when its prediction cannot be relied upon. This section looks
7

into the capacity of FlowNet in dealing with heightened epistemic un-
certainty in the case of OOD data, as evaluated on the ApolloScape [58]
OOD dataset for outdoor driving scenes. It is important to emphasize
that other techniques like Prior Networks [42,43] feel necessity for
OOD data to further guide the identification of instances with high
uncertainty during the training process, while FlowNet only replies on
ID data during training and does not have this restriction.

In order to test the model, we input both ID and OOD test datasets
and further documented average entropy predicted for each test image.
Fig. 6 A displays for each test set and method, the entropy of the
cumulative density function. All models performed as expected, with a
positive shift, among all the models, FlowNet is competitive as shown
in the results. The distribution of entropy is summarized in Fig. 6 B
using violin plots, again highlighting the clear distinction in uncertainty
on OOD data. Fig. 6 C shows the density distribution of the ID and
OOD data and Fig. 6 D provides examples of predictions (both ID and
OOD). These results indicate that FlowNet, without having OOD data
during training, can effectively capture increased uncertainty on OOD
data, matching the performance of established epistemic uncertainty
estimation benchmarks.
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5. Conclusion

In this paper we have presented FlowNet, a framework for un-
certainty estimation in regression without requiring OOD samples for
training or costly sampling for uncertainty estimation. FlowNet is com-
posed of three main components: an encoder which outputs a position
in a latent space, a normalizing flow which performs a density estima-
tion in this latent space, and a noval loss for uncertainty-aware training.
We have shown that FlowNet can accurately estimate epistemic un-
certainty, handle complex vision tasks, and produce well-calibrated
uncertainty estimates for OOD data. Furthermore, FlowNet is versatile
and can be applied to a variety of regression tasks. It will be crucial
to conduct future analyses using alternative options such as the log-
normal or Normal-inverse-Wishart distribution. Further evaluate the
effect of the selection of prior distribution on the estimated likelihood
parameter. The effectiveness, scalability, and accuracy of FlowNet have
the potential to facilitate rapid and precise uncertainty estimation
necessary for the reliable deployment of neural networks in domains
where safety-critical predictions are highly required.
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