Author (year)	Positive Outcomes	Negative Outcomes	Strengths	Limitations	Suggested study improvements
Liao et al. (2019) (19)	 Auricle stiffness similar to human ear Fusion of diced cartilage created sufficient pinna strength and flexibility Fusion of main pinna structures at 4 months No complications (haematoma, seroma or infection) at implantation site 	 Synthetic scaffold (polyamide) induced a cystic-like reaction subcutaneously Not all structures fused by 4 months Chondrocytes harvested from healthy tissue with donor site morbidity 	 Prospective study Used compression plates for biomechanical strength testing of pinna Histological staining used to assess presence of chondrocytes, matrix and type II collagen Ethical approval 	 Animal study 10 subjects 12 week end point One scaffold material tested Neocartilage weight used as success marker not considering possible calcification or bone formation Appearance of pinna not assessed (primary outcomes presence of chondrocytes, matrix and strength) Consider difference in pressure exerted on this subcutaneous dorsal pinna vs tight human pinna skin and shape/size changes overtime No testing for cartilage calcification or bone formation 	 Larger numbers with longer follow up Consideration of aesthetics Human application Implant removal and QPCR analysis for bone markers along with alizarin staining to rule out calcification
Zhou et al. (2018) (22)	 Successfully implanted tissue engineered ear into 5 children Individualised shape based on unaffected ear Shape of bioengineered pinna pre-implantation (12 weeks) showed >90% similarity to the original bioscaffold on laser scanning Pinna contours (helix, triangular fossa, anti-helix and cavum conchae) defined by 9 months Majority of scaffold PGA fibres degraded during 3 months in- vitro prior to implantation, minimising host response PCL core in scaffold significantly improved strength of reconstructed pinna in vitro 4- fold 	 Reconstructed ear stiff and inflexible 12 months post- operatively (note improved by 24 months with further PCL degradation) One of the five subjects lacked evidence of cartilage formation 6 months post-operatively Some surgical implantation methods predispose to graft extrusion 	 Prospective human study Clear primary outcomes of shape, size and cranio-auriculo angle Detailed step-by-step explanation of the 3 methods used Ethical approval SEM used regularly to analyse adherence of chondrocytes to scaffold Quality control sample of the tissue-engineered cartilage used for assessments In vitro method enables quality assessment prior to implantation Shape analysis using 3D laser scanning prior to implantation Regular post-operative review at 1, 2, 3, 6, 9, 12, 18, 24 and 30 months. Histological and immunohistochemical analysis of neocartilage post-operatively (tragal biopsies taken at revision surgeries) 	 Five subjects Only one case followed up in detail (others to follow) Maximum follow up of 2.5 years (other cases ranged 2-18 months), not allowing for complete degradation of scaffold (takes 2-4 years) Single centre This method only suitable for grade II or III microtia, where microtia cartilage can be obtained Tissue expander required for 3 months with psycho-social impact Split-thickness skin graft from groin required at initial procedure Subsequent flap/scar revision surgeries required at 6 and 18 months 	 More subjects Longer follow up (min. 5 years allowing complete scaffold degradation) Use of more mature neocartilaginous grafts recommended, easing surgical handling Multicentre trial Standardised surgical method of implantation Histological analysis including alizarin to rule out calcification/hypertrophy and bone formation pre-implantation MRI/CT scan to identify possible calcification of implant once in-situ
Zopf et al. (2018) (57)	• Demonstrates the effect of scaffold microarchitecture on cartilage formation. Greater chondrogenicity using regular spherical micropores vs random pore placement within scaffold.	Not disclosed	 Prospective study Ethical approval Clear methods Primary outcome of chondrogenesis clearly assessed Histological analysis of auricle following removal 	 Animal study 4 week end point Study size unknown No testing for cartilage calcification or bone formation No strength testing 	 Longer duration allowing for shape and size changes QPCR analysis for bone markers along with alizarin staining to rule out calcification

<i>Pomerant</i> <i>seva et al.</i> (2016) (58)	 High-quality neocartilage formed by 12 weeks confirmed by GAG, collagen type II and elastin Superior neocartilage in the group expanded using bFGF- expanded chondrocytes 	 Some resorption of neocartilage before 6 weeks Some shrinkage of neocartilage after 20 weeks Poor elastin formation at 12 weeks in group not expanded 	 Aesthetics considered as secondary outcome considering auricular contours, dimensions and projection Clear description of scaffold design and in vitro methods Histological and immunohistochemical analysis with full thickness punch biopsies Prospective study 	 Consider difference in pressure exerted on this subcutaneous pinna vs tight human pinna skin and shape/size changes overtime Animal study Short follow up (6, 12, 20 weeks) Punch biopsies used for analysis rather than full size cross sections showing contiguous neocartilage (due to titanium wire) 	 Longer follow up allowing for shape and size changes Implant removal and QPCR analysis for bone markers along with alizarin staining to rule out calcification
	 Enhanced elastin fibre quality in neocartilage formed from bFGF-expanded chondrocytes Neocartilage quality improved with time from implantation ≤ 10% dimension change at 20 weeks No neocartilage resorption from 6-20 weeks 	with bFGF	• Ethical approval	 Scaffold implanted subcutaneously in neck and subject to less pressure than post-auricular placement No testing for cartilage calcification or bone formation 	
Zopf et al. (2015) (59)	 Histology of in vitro constructs showed cartilage-like tissue at end point Patient-specific auricles using CT scanning and CAD 	• Incomplete cartilage fusion at end point (2 months)	 2 institutions Ethical approval Prospective study Clear description of scaffold design and in vitro methods Histological analysis and staining of auricles Scaffolds implanted post- auricularly, more realistic than on animal dorsum 	 Animal study 8 week end point Study size unknown Lack of comparison of neocartilage to native cartilage Poor description of in vivo application No testing for cartilage calcification or bone formation 	 Separate studies for in vitro and in vivo application Longer duration allowing for shape and size changes Implant removal and QPCR analysis for bone markers along with alizarin staining to rule out calcification
Bichara et al. (2014) (60)	 Neocartilage identified throughout cross section of construct with even distribution Optimal ovine neocartilage formation following 2 weeks in vitro culture Neocartilage quality improved with increased implantation time Ovine elastin detected at 12 weeks in vivo No scaffold extrusion, localised swelling or erythema 	 Neocartilage quality reduced with increased in vitro culture duration Ovine neocartilage showed significantly reduced GAG compared to native cartilage Some shrinkage of construct at 6 weeks in vitro 	 Clear description of scaffold design and in vitro methods Histological analysis and staining of auricles Prospective study Ethical approval 	 Animal study 12 week end point Scaffold implanted subcutaneously in neck and subject to less pressure than post-auricular placement No testing for cartilage calcification or bone formation 	 Longer follow up allowing for shape and size changes Implant removal and QPCR analysis for bone markers along with alizarin staining to rule out calcification
Sterodima s et al. (2013) (61)	 Ears maintained shape and flexibility Histological analysis showed evidence of cartilage formation, type II collagen and matrix No extrusion or infection of implants 	• All showed reduction in both pinna height and width after 8 weeks	 Animals treated as per international guidance Prospective Clear methods Primary outcomes of shape, size and histology addressed 	 Animal study 6 subjects 8 week end point Pinna flexibility measured subjectively using forceps Aesthetics not considered 	 Larger sample Longer duration allowing for shape and size changes QPCR analysis following implant removal for bone markers along with alizarin staining to rule out calcification

Yanaga et al. (2009) (21)	 First successful human implantation of regenerated cartilage tissue Neocartilage showed adequate strength and elasticity for auricle reconstruction No evidence of neocartilage absorption over 2-5 year follow up Immunohistochemistry showed evidence of type II collagen 	Variable surgical techniques for shaping cartilage	 Ethical approval Prospective Clear methods Microtia cartilage used hence minimal donor site morbidity Reduced chance of rejection given autologous cartilage 	 4 subjects 50% of subjects underweight, potential impact on wound healing 2-5 years follow up not allowing fully for reabsorption Neocartilage required sculpting by hand therefore range of techniques and outcomes Two-stage implementation hence multiple surgeries 	 Larger sample of patients One surgeon for all cartilage reconstruction surgeries QPCR analysis for bone markers along with alizarin staining to rule out calcification as quality control pre-implantation MRI/CT scan to identify possible calcification of implant once in-situ
	formation				

Table III: Critical Analysis of Literature

Abbreviations: QPCR quantitative polymerase chain reaction, PGA polyglycolic acid; PCL polycaprolactone; SEM scanning electron microscopy; 3D 3 dimensional; MRI magnetic resonance

imaging; CT computed tomography; GAG glycosaminoglycan; bFGF (FGF-2) basic fibroblast growth factor; CAD computer aided design;