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Abstract 

An algorithmic method for assessing statistically the efficient market hypothesis (EMH) is 

developed based on two data mining tools, perceptually important points (PIPs) used to 

dynamically segment price series into subsequences, and dynamic time warping (DTW) 

used to find similar historical subsequences. Then predictions are made from the 

mappings of the most similar subsequences, and the prediction error statistic is used for 

the EMH assessment. The predictions are assessed on simulated price paths composed 

of stochastic trend and chaotic deterministic time series, and real financial data of 18 

world equity markets and the GBP/USD exchange rate. The main results establish that 

the proposed algorithm can capture the deterministic structure in simulated series, 

confirm the validity of EMH on the examined equity indices, and indicate that prediction 

of the exchange rates using PIPs and DTW could beat at cases the prediction of last 

available price. 

Keywords: Perceptually important points, dynamic time warping, nonlinear prediction, 

efficient market hypothesis 

1. Introduction 

The efficient market hypothesis (EMH) gained much attention by the academia since its 

official introduction in the late 70’s (Fama, 1970; Mandelbrot, 1966; Roberts, 1967). 

Generally, for a specific time period, a market is called efficient if prices fully reflect all 

available information. Defining historical prices, public available information and inside 

information as three subsets of the set of all available information, results in three forms 

of EMH, i.e., weak, semi-strong and strong form. Random walk hypothesis is aligned 

with the weak-form EMH. According with the above theories the best estimation we can 

make regarding the future price (return) is the current price (zero) conditioning the 

historical price path. Dealing here with scalar time series analysis we consider the weak-

form EMH. 

On the contrary, advocates of technical analysis (TA) assert that it is possible to forecast 

the future evolution of a financial price series and thus gain systematically abnormal 

returns by using historical price paths as available information. Thus, TA can be 

considered as an “economic test” (Campbell, Lo, & MacKinlay, 1997) of the random walk 



hypothesis and the weak form EMH. Tools of technical analysis can be mainly classified 

firstly into technical indicators, such as Relative Strength Index (RSI), Moving Averages 

(MA) and Moving Average Convergence Divergence (MACD), secondly into technical 

patterns such as “Head and Shoulders” (Osler, 1998; Savin, Weller, & Zvingelis, 2007; 

Zapranis & Tsinaslanidis, 2010), “Saucers” (J. Wang & Chan, 2009; Zapranis & 

Tsinaslanidis, 2012b) and thirdly into candlesticks (Caginalp & Laurent, 1998)1. Trading 

strategies can be designed, by adopting the aforementioned tools, which  return trading 

signals as well as support and resistance levels (Osler, 2000; Zapranis & Tsinaslanidis, 

2012a). The majority of technical studies examine usually individual or small bundles of 

technical tools.  

In this study, we implement an algorithmic approach in order to assess statistically the 

null hypothesis of weak-form EMH, by adopting perceptually important points (PIPs) and 

dynamic time warping (DTW). PIPs are used in order to identify significant points on a 

financial series. These points segment the series dynamically into subsequences of 

unequal length. Then our effort focuses in finding similar historical subsequences and 

then make predictions based on the manner that these best matches evolved in the 

past. To implement this we employ DTW, which can be used to measure the similarity 

between two time series of unequal length. By this method we intend to simulate the 

generalised manner a technician tries to make predictions by finding similar price paths 

evolutions occurred in the past. The technician identifies subjectively, based on own 

experience, the significant points to define the paths, while in the proposed approach 

PIPs are used for this segmentation and DTW for measuring the similarity between 

them.  

PIPs were introduced by Chung, Fu, Luk & Ng (2001) to exploit salient points from a 

price series and have also been used to identify specific technical patterns in (Fu, 

Chung, Luk, & Ng, 2007). In the context of data mining, PIPs have been used mainly for 

purposes of dimension reduction (time series representation), as a dynamic approach for 

time series segmentation (Fu, Chung, & Ng, 2006; Jiang, Zhang, & Wang, 2007) and for 

clustering reasons (Fu, Chung, Luk, & Ng, 2004) (for a comprehensive review see (Fu, 

2011)). 

Dynamic Time Warping (DTW) is an algorithmic technique mainly used to find an optimal 

alignment between two given (time-dependent) sequences under certain restrictions 

(Muller, 2007). First introduced in 1960s, DTW initially became popular in the context of 

speech recognition (Sakoe & Chiba, 1978 ), and then in time series data mining, in 

particular in pattern recognition and similarity measurement (Berndt & Clifford, 1994). 

We implement DTW for measuring similarities between the target subsequence and 

historical subsequences of the examined price series, as defined by PIPs. This is 

actually a subsequence matching problem. Finding salient points and then similar 

 
1 For a comprehensive description of technical analysis and its tools we indicatively suggest 
(Achelis, 1995; Bulkowski, 2002; Edwards & Magee, 1997; Pring, 2002). 

 



historical subsequences is aligned with the manner a technician tries to exploit 

information from the past and make forecasts.  

The performance of the proposed approach is assessed on simulated time series 

generated by superimposing a chaotic deterministic time series on a stochastic trend. 

Subsequently we apply the same approach to real financial series composed of 18 major 

world equity indices and the GBP/USD currency pair.  

The rest of the paper is organized as follows. In Section 2, the methodology is 

presented, including PIPs, DTW and the prediction scheme. In Section 3, the 

performance of this approach is assessed on simulated series, and in Section 4 it is 

applied to financial time series. Finally, discussion and conclusions are given in Section 

5.   

 

2. Methodology 

2.1. Perceptually Important Points 

First, we present the algorithm constructing PIPs to identify significant points. The 

algorithm starts by characterizing the first and the last observation as the first two PIPs. 

Subsequently, it calculates the distance between all remaining observations and the two 

initial PIPs, and signifies as the third PIP the one with the maximum distance. The fourth 

PIP is the point that maximizes its distance to its adjacent PIPs (which are either the first 

and the third, or the third and the second PIP). The algorithm stops when the required by 

the user number of PIPs is identified.  

Three metrics are generally used for the distance in the PIPs algorithm, namely the 

Euclidean distance (ED) 𝑑𝐸, the perpendicular distance (PD) 𝑑𝑃 and the vertical distance 

(VD) dV. Let {𝑝1, 𝑝2, … , 𝑝𝑙} be the price time series of length 𝑙, and two adjacent PIP 𝒙𝑡 =

(𝑡, 𝑝𝑡) and 𝒙𝑡+𝑇 = (𝑡 + 𝑇, 𝑝𝑡+𝑇). The Euclidean distance 𝑑𝐸 of each of the intermediate 

points 𝒙𝑖 = (𝑖, 𝑝𝑖), for 𝑖 ∈ {𝑡 + 1, … , 𝑡 + 𝑇 − 1} from the two PIPs is defined as  

𝑑𝐸(𝒙𝑖, 𝒙𝑡, 𝒙𝑡+𝑇) = √(𝑡 − 𝑖)2 + (𝑝𝑡 − 𝑝𝑖)2 + √(𝑡 + 𝑇 − 𝑖)2 + (𝑝𝑡+𝑇 − 𝑝𝑖)2 . (1) 

For the two other distances, we consider first the line connecting the two PIPs  𝒙𝑡 =

(𝑡, 𝑝𝑡) and 𝒙𝑡+𝑇 = (𝑡 + 𝑇, 𝑝𝑡+𝑇), 𝑧𝑖 = 𝑠 𝑖 + 𝑐, and (𝑖, 𝑧𝑖) the points on the line,  where the 

slope is 𝑠 =
𝑝𝑡+𝑇−𝑝𝑡

𝑇
  and the constant term is 𝑐 = 𝑝𝑡 −

𝑝𝑡+𝑇−𝑝𝑡

𝑇
𝑡. Then the perpendicular 

distance 𝑑𝑃 of any intermediate point 𝒙𝑖 = (𝑖, 𝑝𝑖), between the two PIPs from the line is 

𝑑𝑃(𝒙𝑖, 𝒙𝑡 , 𝒙𝑡+𝑇) =
|𝑠 𝑖+𝑐−𝑝𝑖|

√𝑠2+1
 , (2) 

and the vertical distance 𝑑𝑉 of 𝒙𝑖 to the line is 

𝑑𝑉(𝒙𝑖, 𝒙𝑡 , 𝒙𝑡+𝑇) = |𝑠 𝑖 + 𝑐 − 𝑝𝑖| . (3) 



For any of the three distances, denoted collectively 𝑑, the new PIP point, 𝑥𝑖
∗ = (𝑖∗, 𝑝𝑖∗), is 

the one that maximizes the distance 𝑑 at 𝑖∗ 

𝑖∗ =  argmax
𝑖

(𝑑(𝒙𝑖, 𝒙𝑡 , 𝒙𝑡+𝑇)) , (4) 

where “argmax” stands for the argument of maximum.  

Fig. 1 presents five PIPs identified with each of the three distances on the S&P 500 

index at two different time periods. Apparently, the distance metrics do not always give 

the same PIPs.   

 

Fig.1. Five PIPs identified with three different distance metrics (ED, PD and VD) on the S&P 500 

index for the time periods from 4-Jan-2005 to 28-Dec-2012 (a), and from 4-Jan-2000 to 28-Dec-

2012 (b).  

2.2. Dynamic Time Warping 

Dynamic Time Warping (DTW) is an efficient scheme giving the distance (or similarity) of 

two sequences 𝑄 ≡ {𝑞1, 𝑞2, … , 𝑞𝑁} and 𝑌 ≡ {𝑦1, 𝑦2, … , 𝑦𝑀}, where their lengths N and M 

may not be equal. An example of two sequences 𝑄 and 𝑌 is illustrated in Fig. 2.  

First, a distance between any two components 𝑞𝑛 and 𝑦𝑚 of 𝑄 and 𝑌 is defined, e.g. the 

Euclidean distance 𝑑(𝑞𝑛, 𝑦𝑚) = (𝑞𝑛 − 𝑦𝑚)2, forming the distance (or cost) matrix 𝑫 ∈

ℝ𝑁×𝑀 (see Fig. 3).  



 

Fig. 2. Two sequences 𝑄 and 𝑌 of different lengths. 

 

Fig. 3. Colormap of the distance (cost) matrix of sequences 𝑄 and 𝑌. The white solid line is the 

optimal warping path (discussed later in this section). 

The goal is to find the optimal alignment path between 𝑄 and 𝑌 of minimum overall cost 

(cumulative distance). A valid path is a sequence of elements 𝑍 ≡ {𝑧1, 𝑧2, … , 𝑧𝐾} with 

𝑧𝑘 = (𝑛𝑘, 𝑚𝑘), 𝑘 = 1, … , 𝐾, denoting the positions in the distance matrix 𝑫 that satisfy the 

boundary, monotonicity and step size conditions. The boundary condition ensures that 

the first and the last element of 𝑍 are 𝑧1 = (1,1) and 𝑧𝐾 = (𝑁, 𝑀), respectively (i.e. the 

bottom left and the top right corner of 𝑫, see Fig. 3). The other two conditions ensure 

that the path always moves up, right or up and right of the current position in 𝑫, i.e. 

𝑧𝑘+1 − 𝑧𝑘 ∈ {(1,0), (0,1), (1,1)}.  

To compute the total distance of each valid path, first the cost matrix of accumulated 

distances 𝑫̃ ∈ ℝ𝑁×𝑀 is constructed with initial condition 𝑑̃(1,1) = 𝑑(1,1), and 

accumulated distance for every other element of 𝑫̃ defined as 

𝑑̃(𝑛, 𝑚) = 𝑑(𝑛, 𝑚) + min {𝑑̃(𝑛 − 1, 𝑚), 𝑑̃(𝑛, 𝑚 − 1), 𝑑̃(𝑛 − 1, 𝑚 − 1)}, (5) 

where 𝑑̃(0, 𝑚) = 𝑑̃(𝑛, 0) = +∞ in order to define the accumulated distances for all 

elements of 𝑫̃ (see Fig. 4). At this stage we keep the indexation regarding the adjacent 



cell with the minimum distance, and then starting from 𝑑̃(𝑁, 𝑀) we identify backwards 

the optimal path. In particular, if the optimal warping path is a sequence of elements 

𝑍∗ ≡ {𝑧1
∗, 𝑧2

∗, … , 𝑧𝐾
∗ } with 𝑧𝐾

∗ = (𝑁, 𝑀), then conditioning on 𝑧𝑘
∗ = (𝑛, 𝑚), we choose 𝑧𝑘−1

∗  as 

𝑧𝑘−1
∗ = {

(1, 𝑚 − 1), 𝑖𝑓 𝑛 = 1
(𝑛 − 1,1), 𝑖𝑓 𝑚 = 1

argmin{𝑑̃(𝑛 − 1, 𝑚 − 1), 𝑑̃(𝑛 − 1, 𝑚), 𝑑̃(𝑛, 𝑚 − 1)}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (6) 

The process terminates when 𝑛 = 𝑚 = 1 and 𝑧𝑘
∗ = (1,1) (Muller, 2007). The optimal path 

for our example is illustrated in Figs. 3-5 with the white solid line. Having identified the 

optimal path we can align the initial sequences 𝑄 and 𝑌 by warping their time axis (Fig. 

6).  

 

Fig. 4. Colormap of the accumulated distance (cost) matrix of sequences 𝑄 and 𝑌, and the 

optimal warping path (white line). 

 

Fig. 5. 3D illustration of Fig. 4. 



 

Fig. 6. Sequences 𝑄 and 𝑌 aligned with DTW. 

2.3. The prediction scheme using PIPs and DTW 

The prediction scheme combines the use of PIPs and DTW in order to make predictions 

regarding the future evolution of the series. First, PIPs are constructed to dynamically 

segment the examined time series. Then for each target time, the DTW algorithm is 

called to measure the similarity between the target (query) subsequence and each of the 

past subsequences. The observations ahead of the most similar subsequences are used 

to make predictions ahead the target time. The prediction scheme is explained in detail 

below. 

For a given target time 𝑢, 𝑢0 ≤ 𝑢 < 𝑙, where 𝑙 is the time series length and 𝑢0 is the 

starting time of the test set, the first 𝑢 observations form the training set on which the 

PIPs are computed with one of the three different distance measures presented in 

Section 2.1. The objective is to make predictions at 𝑇 times ahead the target time 𝑢, i.e. 

𝑢 + 1, … , 𝑢 + 𝑇. The number of estimated PIPs is set so as to achieve an average time 

interval between successive PIPs, which here is set to 10 days. The target subsequence 

is defined by the last two PIPs, and the past subsequences are defined by all other pairs 

of successive PIPs. The subsequences may be at different magnitude levels, and 

therefore they are translated so that their starting value matches a given value. In view 

of the financial applications, this value is set to 10.  All subsequences to be compared 

are first converted to logarithmic returns and then they are restructured to a non-

stationary series with an initial price2 of 10. The expressions for the logarithmic return 

and the restructured price 𝑝̅𝑡+𝑇 at time 𝑡 + 𝑇 for a predefined by the user initial price 𝑝𝑡
∗ 

(in our case 𝑝𝑡
∗ = 10) are given below. 

 
2 The initial price of ten is set arbitrarily, but it does not affect the results of this experiment. 

Ordinarily, two sequences are being normalized before they are compared with DTW. However, 
in this paper we are about to use financial data. Normalizing or displacing the initial series would 
change the daily returns of the price series. By following the proposed restructuring process we 
implicitly state that two identical (or similar) sequences of returns should represent the same 
pattern regardless of the price level observed. It is also noteworthy that setting the initial value of 
the restructured series at a different level would affect the total cost calculated by the DTW, but 
not the optimal path. Thus the scheme finding the most similar historical subsequences to the 
target sequence is not affected by the initial value. 



𝑟𝑡+1 = ln(𝑝𝑡+1 𝑝𝑡⁄ ) (7) 

𝑝̅𝑡+𝑇 = exp {∑ 𝑟𝑡+𝑖 + ln (𝑝𝑡
∗)𝑇

𝑖=1 } (8) 

The total average cost (TAC) of the optimal path derived by DTW for each comparison is 

𝑇𝐴𝐶 = 𝑑𝑍∗/𝐾, (9) 

where 𝑑𝑍∗ = 𝑑̃(𝑁, 𝑀) is the total cost of the optimal path of length 𝐾. After the 

comparison between the target sequence and all its candidates has been made TACs 

are scaled between 0 and 1. Denoting 𝑻𝑨𝑪 = [𝑇𝐴𝐶1, 𝑇𝐴𝐶2, … , 𝑇𝐴𝐶𝐽] the vector containing 

TACs for each of the 𝐽 comparisons, 𝑺𝑻𝑨𝑪 contains the corresponding scaled total 

average costs, each defined as  

𝑆𝑇𝐴𝐶𝑗 =
𝑇𝐴𝐶𝑗−min(𝑻𝑨𝑪)

max(𝑻𝑨𝑪)−min(𝑻𝑨𝑪)
, (10) 

where 𝑗 = 1,2, … , 𝐽. Subsequently, we define as the most similar subsequences those 

that have STAC below a given threshold (say 0.01). For example, Fig. 7 illustrates the 

two best matches for a specific target subsequence, when six ED-PIPs were used.  

  

 

 

Fig. 7. Two most similar subsequences identified in S&P 500 index (from 4-Jan-2005 to 28-Dec-

2012) with DTW. The target sequence (𝑄) is from 14-Sep to 28-Dec 2012, and the two most 

similar subsequences identified 𝑌1 and 𝑌2 are from 5-Apr to 6-Jul 2006 and from 29-Apr to 29-Jul 

2011 respectively. 𝑌2 is the best match and is the one presented restructured with 𝑄 at Fig. 2. Six 

ED-PIPs were used to define the subsequences in this graph. 

The next stage is to make predictions, say for the next 10 days. To do so, we restructure 

the N best matches plus the prices observed in the following 10 trading days by using (7) 

and (8) and by setting the initial price the last price of the target sequence. The 



prediction is the weighted average of the two, 10-days restructured price paths, where 

the weight is the similarity of each subsequence to the target sequence. The greater the 

similarity the lower the STAC, so we have 

𝑝̂𝑡(𝑇) = ∑ [
1−𝑆𝑇𝐴𝐶𝑖

∑ (1−𝑆𝑇𝐴𝐶𝑖)𝑁
𝑖=1

] 𝑝̅𝑖,𝑡+𝑇
𝑁
𝑖=1  (11) 

In (11), 𝑝̂𝑡(𝑇) is the price prediction we make for 𝑇 steps ahead conditioning the last 

available price at time 𝑡,  𝑆𝑇𝐴𝐶𝑖 is the scaled total average cost of the ith similar 

subsequence out of the 𝑁 most similar subsequences occurred by the aforesaid 

process, and 𝑝̅𝑖,𝑡+𝑇  is the restructured price 𝑇 steps after the last observation of the ith 

similar subsequence. We chose to base the prediction on a few best matches rather 

than one best match because the prediction tends to be more stable and not affected by 

noise. 

Subsequently, the target time is increased by one and the procedure presented in this 

Section is repeated until 𝑢 = 𝑙 − 10. We leave out the last 10 observations in order to 

assess the predictions made for these days. Finally, the predictive performance is 

assessed by two measures: the normalized (by) persistence root mean square error 

(NPRMSE) and the independent prediction of change in direction (IPOCID) (Zapranis & 

Refenes, 1999): 

𝑁𝑃𝑅𝑀𝑆𝐸(𝑇) = √
∑(𝑝𝑡(𝑇)−𝑝𝑡+𝑇)

2

∑(𝑝𝑡−𝑝𝑡+𝑇)2  (12) 

𝐼𝑃𝑂𝐶𝐼𝐷(𝑇) =
100

𝑛−1
∑ 𝑑𝑡(𝑇)

𝑛
𝑡=1  (13) 

𝑑𝑡(𝑇) = {
1, 𝑖𝑓 (𝑝𝑡+𝑇 − 𝑝𝑡+𝑇−1)(𝑝̂𝑡(𝑇) − 𝑝̂𝑡(𝑇−1)) > 0

0, 𝑖𝑓 (𝑝𝑡+𝑇 − 𝑝𝑡+𝑇−1)(𝑝̂𝑡(𝑇) − 𝑝̂𝑡(𝑇−1)) ≤ 0
 (14) 

where the sum runs over the times in the test set, 𝑛 = 𝑙 − 10 − 𝑢0.  

By construction, 𝑁𝑃𝑅𝑀𝑆𝐸 ≥ 0 and compares the predictive performance of the proposed 

algorithm with that of a naïve, benchmark model (12). 𝑁𝑃𝑅𝑀𝑆𝐸 can be used to assess 

the weak-form EMH since the benchmark model used for comparison makes predictions 

with the last observed price. For a given test sample we can identify three different 

scenarios:  

• 𝑁𝑃𝑅𝑀𝑆𝐸 is significantly lower than 1 which indicates that the proposed algorithm 

outperforms the benchmark predictive model. Under this scenario, the lower its 

value the better the performance of the proposed prediction scheme is. 

• 𝑁𝑃𝑅𝑀𝑆𝐸 is significantly greater than 1 which denotes that the benchmark model 

outperforms the examined predictive model. 



• Finally, if 𝑁𝑃𝑅𝑀𝑆𝐸 is not significantly different than 1, we can infer that the 

proposed algorithm performs similarly with predictions made with the last 

available price.  

For instance, when estimating 𝑁𝑃𝑅𝑀𝑆𝐸(1), under the second and third scenario, we 

cannot reject the weak form EMH, since conditioning the historical price path, the best 

expectation of tomorrow’s price is today’s price. 

IPOCID (13-14) is generally used in applications where predictions are made on a price 

path, and measures the ability of the examined model to predict changes regardless 

their size. It is expressed as a percentage and values towards 100% imply good 

predictive performance. In particular, it can be argued that values statistically significant 

greater than 50% imply that the proposed algorithm predicts changes in directions better 

than predicting with a “fair” level of 50%. 

3. A simulation experiment 

The purpose of this simulation experiment is to assess the predictive performance of the 

presented methodology on simulated price series. Each simulated time series is 

composed as a weighted sum of two time series, a stochastic trend with a weight of 𝑎% 

and deterministic time series with weight of (1 − 𝑎)%. The stochastic trend is simply a 

random walk and the input white noise has a standard deviation that is one tenth of the 

standard deviation of the deterministic time series. The deterministic time series is 

generated by the delay differential equation of Mackey-Glass with delay Δ = 30. The 

Mackey-Glass delay differential equation defines a deterministic system that can have 

chaotic behavior of a complexity determined by the parameter of delay Δ (Mackey & 

Glass, 1977). For Δ = 30, the fractal dimension of the chaotic attractor of the system is 

about 3 (Grassberger & Procaccia, 1983). The time series is obtained at a sampling time 

of 20 time points that produces discrete-like data, and it is used here to regard an 

hypothesis of an underlying chaotic deterministic mechanism mixed with stochastic trend 

at a rate determined by the parameter 𝑎. 

Fig. 8 presents the distributions of the NPRMSE and the IPOCID of the 10 time step 

ahead predictions for three different values of the parameter 𝑎 (0.5, 0.75 and 1), 

respectively. The sample distributions are shown as boxplots (box edges are the 25th 

and 75th percentiles, the horizontal line in the box denotes the median, the whiskers 

extend to the minimum and maximum of the sample if no outliers are detected, 

otherwise the outliers are singled out and denoted by crosses).  Subsequences are 

determined by 2 and 3 subsequent PIPs and their similarity is quantified with the ED 

distance. For comparison, in Fig. 9 the same statistical results are shown for the 

prediction scheme that uses the same number of breakpoints as the number of PIPs but 

segmenting the time series at constant intervals, and this scheme is denoted CI. This 

prediction is equivalent to the nearest neighbor prediction after state space 

reconstruction using the constant interval as the embedding window (Kugiumtzis, 2002). 



As shown in Fig. 8 when there is 50% contribution of the deterministic process, the 

proposed method can capture this information and exhibits some predictability at the first 

four time steps ahead as NPRMSE is lower than one. As the proportion of the stochastic 

trend increases, predictive performance worsens. At the extreme case of 𝑎 = 1, the time 

series is actually a random walk and predicting with the current price outperforms our 

methodology. In addition, IPOCID is significantly greater than the fair level of 50%, and it 

reasonably decrease as we try to predict more days ahead. Again when 𝑎 = 1, IPOCID 

fluctuates around the 50% level indicating the complete stochastic behavior of the 

simulated series. It is worth to mention that PIPs do not add value in the predictive 

performance as compared to the scheme CI of constant time intervals. On the contrary, 

for CI the NPRMSE is marginally lower than this obtained when PIPs are used. A 

possible explanation for this is that the chaotic time series does not have the signature 

assumed in the approach of PIPs, i.e. time varying patterns characterized by important 

breakpoints, but rather varying patterns at a time window that regards the time of orbits 

in the state space (Kugiumtzis, 1996). This system type is to be contrasted to the real 

financial series, where the performance of PIPs and CI differ, as will be shown in the 

next Section. Thus our limited simulation study indicates that real price series, affected 

by exogenous parameters and exhibiting salient points, cannot be explained as chaotic 

time series with stochastic trend. 

 

Fig. 8. NPRMSE and IPOCID calculated for 100 simulated price paths for predictions of 10 time 

steps ahead. Parameters: two PIPs with distance type ED. a,b 𝑎 = 0.5, c,d 𝑎 = 0.75 and e,f 𝑎 =

1. 



 

Fig. 9. NPRMSE and IPOCID calculated for 100 simulated price paths for predictions of 10 time 

steps ahead. Parameters: CI with two breakpoints. a,b 𝑎 = 0.5, c,d 𝑎 = 0.75 and e,f 𝑎 = 1. 

4. Empirical Results 

The presented methodology was applied to two datasets of real financial price series. 

The first one consists of 18 major world indices (Table 1). Adjusted daily closing prices 

for the period 4-Jan-2000 until 28-Dec-2012 were downloaded from Bloomberg 

database. We applied a filter similar with the one adopted in (Lo, Mamaysky, & Wang, 

2000; Marshall, Qian, & Young, 2009; Zapranis & Tsinaslanidis, 2012a)  and remaining 

missing values were filled with linear interpolation. The second dataset consists of daily 

prices of the British pound to US dollar (GBP/USD) exchange rate for the period 1971 to 

2012. 

 

Table 1. Major World Indices 

idxi Index Name idxi Index Name 

Panel A: Americas Panel B: EMEA 

idx1 DOW JONES (INDU) idx7 EURO Stoxx (SX5E) 

idx2 S&P 500 (SPX) idx8 FTSE 100 (UKX) 

idx3 NASDAQ (CCMP) idx9 CAC 40 (CAC) 

idx4 TSX (SPTSX) idx10 DAX (DAX) 

idx5 MEX IPC (MEXBOL) idx11 IBEX 35 (IBEX) 

idx6 IBOVESPA (IBOV) idx12 FTSE MIB (FTSEMIB) 

Panel C: Asia/Pacific idx13 AEX (AEX) 

idx16 NIKKEI (NKY) idx14 OMX STKH30 (OMX) 

idx17 HANG SENG (HSI) idx15 SWISS MKT (SMI) 

idx18 ASX 200 (AS51)   



Note: In parenthesis the Bloomberg ticker is presented for every index. 
 

We considered the prediction schemes of PIPs with all three distance measures, ED, PD 

and VD, as well as the prediction scheme with constant time intervals (CI). All four 

prediction schemes were applied to the first data set using 2 and 3 breakpoints (PIPs for 

ED, PD and VD and points at constant intervals for CI). The prediction summary 

statistics NPRMSE and IPOCID were calculated at windows of 50 days for one step 

ahead prediction. Specifically, the first 200 observations are used to find similar 

subsequences and make prediction one day ahead. Then the training window in 

increased by one day, new PIPs are found and prediction is made for the time point 202. 

This procedure is repeated until the prediction at time point 250, and then  NPRMSE and 

IPOCID are calculated on the basis of these 50 predictions. Subsequently, the training 

window slides by 50 days and the aforementioned procedure is repeated. Thus for a 

price series of length 𝑙, (𝑙 − 200)/50 NPRMSE and IPOCID are calculated, each 

characterizing the prediction at a period of 50 days given the past 200 days.   

The results on NPRMSE and IPOCID suggest that for the first dataset weak-form EMH 

holds. The vast majority of NPRMSE values are above unity, which indicates that 

predicting with the last available price outperforms predictions made with any of the 

prediction schemes. In addition, IPOCID fluctuates around the 50% fair level of 

prediction. For example, the profiles of NPRMSE and IPOCID for the index S&P500 in 

Figs. 10 and 11 are at the levels above one and 0.5, respectively, bearing strong 

similarity to the results on the simulated pure stochastic paths. However, the NPRMSE 

from PIPs and any of the distance measures tend to be lower than the NPRMSE from CI 

and this is observed both when 2 or 3 breakpoints are used (see Fig. 10). At some few 

time periods the NPRSE from PIPs is even smaller than one, whereas CI gives 

NPRMSE always well above one. Further we compare the distributions of NPRMSE and 

IPOCID for S&P500 over the whole time record in the four prediction schemes. Since 

these distributions are not always normal we apply two-sample, one tailed, Kolmogorov-

Smirnov tests (larger and smaller tail for the NPRMSE and IPOCID ratios respectively). 

The p-values of the K-S tests are tabulated in Table 2. A small p-value for a prediction 

scheme i at the row and a prediction scheme j at the column of the table denotes that 

the cumulative density function (cdf) of the NPRMSE (IPOCID) of the i scheme is 

significantly at a larger (smaller) level than the respective cdf of the j scheme. The p-

values smaller than 0.1 are highlighted in Table 2, indicating that the prediction scheme 

of PIPs with ED or PD distance measure provide better predictions than the predictions 

scheme CI when 2 PIPs are used, and CI and PIPs with VD when 3 PIPs are used. For 

IPOCID, these differences are less significant but still PIPs perform better that CI. 

Similar results were obtained with many other of the 18 indices. To provide summary 

results, we count the financial indices for which the difference for a pair of prediction 

schemes is found statistically significant (p-value < 0.1). The scores for all pairs of 

prediction schemes and for NPRMSE and IPOCID, as well as 2 and 3 breakpoints, are 

given in Table 3. In particular, NPRMSE indicates that the prediction schemes with PIPs 



outperform the CI scheme, as they decrease significantly the NPRMSE for most of the 

financial indices, with a maximum score of 15 out of 18 financial indices for the PD 

distance measure and 2 PIPs. This superiority exists but is less apparent regarding the 

IPOCID. 

Another finding extracted from these results is that if the PIPs identification procedure 

simulates the manner technicians look for important points on a price series, this 

procedure adds value as a preliminary step in pattern recognition procedure. 

 

Fig. 10. The profile of NPRMSE over the whole time record of the S&P500 index with the four 

prediction schemes as shown in the legend and for 2 breakpoints (a) and 3 breakpoints (b). 

 

Fig. 11. As for Fig.10 but for IPOCID. 

 

Table 2.Two Sample, one tailed, Kolmogorov – Smirnov Tests for S&P500 index 

Panel A: 2 breakpoints, NPRMSE p-value  Panel B: 3 breakpoints, NPRMSE p-value matrix 

 CI ED PD VD  CI ED PD VD 

CI 1.0000 0.7659 1.0000 0.7659 CI 1.0000 1.0000 1.0000 0.9355 

ED 0.0597 1.0000 0.7659 0.2591 ED 0.0081 1.0000 0.7659 0.0381 

PD 0.0381 0.2591 1.0000 0.1888 PD 0.0024 0.5487 1.0000 0.0081 



VD 0.2591 0.7659 0.9355 1.0000 VD 0.5487 0.9835 0.9355 1.0000 

Panel C: 2 breakpoints, IPOCID p-value Panel D: 3 breakpoints, IPOCID p-value 

 CI ED PD VD  CI ED PD VD 

CI 1.0000 0.6591 0.8607 0.5487 CI 1.0000 0.6591 0.8607 0.3440 

ED 0.0906 1.0000 0.2591 0.2591 ED 0.9835 1.0000 0.9355 0.2591 

PD 0.8607 0.3440 1.0000 0.2591 PD 0.4418 0.0906 1.0000 0.0906 

VD 0.5487 0.9835 0.6591 1.0000 VD 0.9355 0.8607 0.9355 1.0000 

  

Table 3. Significant differences of prediction schemes for 18 Major World Indices 

Panel A: 2 breakpoints, NPRMSE, counts Panel B: 3 breakpoints, NPRMSE, counts 

 CI ED PD VD  CI ED PD VD 

CI 0 2 1 4 CI 0 1 0 3 

ED 11 0 0 4 ED 9 0 1 2 

PD 15 9 0 9 PD 9 3 0 2 

VD 10 3 0 0 VD 10 2 3 0 

Panel C: 2 breakpoints, IPOCID, counts Panel D: 3 breakpoints, IPOCID, counts 

 CI ED PD VD  CI ED PD VD 

CI 0 1 2 3 CI 0 2 1 3 

ED 2 0 3 2 ED 0 0 0 0 

PD 3 2 0 1 PD 3 3 0 3 

VD 0 1 1 0 VD 5 2 1 0 

 

We apply the same analysis on a second dataset consisting of daily prices of the 

GBP/USD exchange rates for the period 1972-2012. The algorithm’s predictive behavior 

is superior on foreign exchange markets compared to that on stock markets. This 

superiority is also reported by Park and Irwin (2007) who mention that while technical 

trading strategies failed to yield economic profits in US stock markets after the 1980s, 

they generated economic profits in foreign exchange markets over the last few decades. 

However, this predictability seems to decline or vanish since the early 1990s.  Here we 

focus on one particular price series and we scrutiny further our analysis by adopting a 

number of different parameters’ combinations. In particular, we are using 4 different 

sizes of test samples 𝑤𝑡𝑟𝑎𝑖𝑛 = {200,400,600,800}, 5 different number of breakpoints 

{2,3,4,5,6} and we introduce 4 different similarity thresholds 𝑡𝑠𝑖𝑚 = {1,2,3,4} . By the 

introduction of this new parameter, we allow the algorithm to make predictions on an 

iteration only if the number of most similar historical subsequences (𝐽) equals to or is 

greater than 𝑡𝑠𝑖𝑚 (i.e. 𝐽 ≥ 𝑡𝑠𝑖𝑚). The last parameter used is the method under which the 

examined price series is being segmented, and it takes three variables {𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷}.   

In addition we implement two statistical assessments to examine whether the values of 

NPRMSE (IPOCID) generated on each 50-days window are significantly lower (greater) 

than 1 (0.5). As we already described in Section 2.3 NPRMSE compares the predictive 



performance of the proposed algorithm (say method a) with that of a benchmark model 

where predictions are made with the last available price (method b). The NPRMSE 

measure is actually the ratio of the two Root Mean Squared Errors (RMSE), produced 

under the two prediction schemes: 

𝑁𝑃𝑅𝑀𝑆𝐸(𝑇) = √
∑(𝑝𝑡(𝑇)−𝑝𝑡+𝑇)

2

∑(𝑝𝑡−𝑝𝑡+𝑇)2 =
𝑅𝑀𝑆𝐸(𝑇)𝑎

𝑅𝑀𝑆𝐸(𝑇)𝑏
  (15) 

Testing whether a particular NPRMSE is significantly lower than 1 is equivalent to 

testing whether 𝑅𝑀𝑆𝐸(𝑇)𝑎 < 𝑅𝑀𝑆𝐸(𝑇)𝑏 ⇔ 𝑅𝑀𝑆𝐸(𝑇)𝑎 − 𝑅𝑀𝑆𝐸(𝑇)𝑏 < 0. But RMSE is a 

monotonic transformation of Mean Squared Error (MSE) so alternatively we can assess 

whether 𝑀𝑆𝐸(𝑇)𝑎 − 𝑀𝑆𝐸(𝑇)𝑏 < 0. But the difference between two MSEs is the mean of 

the differenced squared errors (16). 

𝑀𝑆𝐸(𝑇)𝑎 − 𝑀𝑆𝐸(𝑇)𝑏 =
1

𝑛
∑ 𝑒𝑖,𝑎

2𝑛
𝑖=1 −

1

𝑛
∑ 𝑒𝑖,𝑏

2𝑛
𝑖=1 =

1

𝑛
∑ (𝑒𝑖,𝑎

2 − 𝑒𝑖,𝑏
2 )𝑛

𝑖=1 , (16) 

where 𝑒𝑖,𝑎
2  and 𝑒𝑖,𝑏

2  are the squared errors produced by the two methods for the ith 

prediction made out of n total predictions. However, instead of using an one tailed, 

paired t-test to assess whether 𝑀𝑆𝐸(𝑇)𝑎 − 𝑀𝑆𝐸(𝑇)𝑏 < 0, we implement the Diebold – 

Mariano test (DM-test hereafter) which allows forecast errors to be non-Gaussian, 

nonzero mean, serially correlated and contemporaneously correlated (Diebold & 

Mariano, 1995).3 Under the null of equal predictive accuracy between the two methods 

the DM statistic follows a standard normal distribution. 

We also implement Bernoulli trials in order to assess whether IPOCID values are 

statistically, significant greater than 0.5. In particular the term ∑ 𝑑𝑡(𝑇)
𝑛
𝑡=1  returns the 

number of successful cases out of n trials which follow a Binomial distribution. 

Table 4 presents the breakdown of significant cases generated by using different 

parameters for a given size of training sample. Significant cases tabulated are those 

signified by adopting the DM-test for a significance level of 5%. For instance, when 

𝑤𝑡𝑟𝑎𝑖𝑛 = 200 the examined currency pair is split to 215 nonoverlapping 50-days windows 

where the predictive performance of the algorithm is being assessed on every possible 

parameter combination. Four different methods for the series segmentation, five different 

number of breakpoints and four different similarity thresholds result in 80 different 

parameter combinations. Totally, the number of 50-days windows, where the algorithm is 

called to make predictions, is 𝑛𝑤 = 17200. However the algorithm makes predictions for 

𝑛𝑝 = 11504 cases due to the adoption of the 𝑡𝑠𝑖𝑚 parameter, and outperforms 

significantly the benchmark model at 𝑛𝑠 = 198 cases giving a “success” ratio of 1.72%. 

 
3 One of the drawbacks of the proposed method that we subsequently acknowledge is its 

computational expensiveness. Dealing with this problem will allow the user to assess the 
predictive performance with bootstrap-based evaluative procedures (Efron, 1979, 1982) or 
surrogate data analysis (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992) that we consider 
more appropriate evaluation techniques for the performance of the proposed predictive scheme. 



The breakdown of 𝑛𝑠 and 𝑛𝑝 according to each parameter’s value is being presented in 

Table 4.For example, out of 198 significant cases, 47, 58, 47 and 46 occurred by using 

CI, ED, PD and VD respectively. However, changing the value of a parameter affects 

also the number of cases where predictions were made. For instance, using ED instead 

of CI, increased the number of significant cases from 47 to 58 but also increased the 

cases where predictions were made from 2879 to 2979. For this reason, Table 4 also 

provides the equivalent percentage which shows the number of significant cases out of 

100 cases where predictions were made. By using the other two types of PIPs (PD, VD) 

the number of significant cases was relatively the same, whilst the number of cases 

where predictions were made was decreased.  

By increasing the number of breakpoints, the algorithm makes fewer predictions. This 

can be attributed to the fact that candidates have larger length and thus the chance of 

finding similar subsequences reduces. However using 4 and 5 breakpoints increased the 

number of significant cases resulting in the enhancement of the corresponding ratios. 

When we increased the size of the training sample, using more breakpoints affect 

negatively the generated success ratios. Intuitively, we can argue that short-term 

historical patterns are more likely to have short-term influence in the price evolution.  

Finally, the last parameter used (𝑡𝑠𝑖𝑚) seems to be the most consistent of all. Increasing 

the similarity threshold increases the number of significant cases whilst decreasing the 

cases where predictions are made. This is consistent to all different sizes of training 

sample used with an exception of 𝑤𝑡𝑟𝑎𝑖𝑛 = 200, 𝑡𝑠𝑖𝑚 = {3,4} where the number of 

significant cases dropped from 128 to 29. However, even in this exception due to the 

simultaneous significant decrease of the number of prediction the performance of the 

algorithm increased from 5.2% to 6.09%. It is also worth to mention that this 

enhancement is more apparent when the training sample is smaller. 

Increasing the size of the training set exacerbates the performance of the proposed 

algorithm. This can be attributed to the fact that price evolution, after the completion of 

similar historical patterns, behaves less similarly as the time interval between these 

patterns increases. For example, adopting a training sample of 800 days means that the 

algorithm makes predictions with similar historical patterns that can be spotted three 

years before. Thus, we can infer that if there is any repetitive behavior in the price path 

evolution, there are more chances to identify it to the near past. Several surveys similarly 

report that trading profits from earlier profitable technical trading rules seem to vanish in 

more recent years (Olson, 2004; R Sullivan, Timmermann, & White, 1999; R  Sullivan, 

Timmermann, & White, 2003). Perhaps, when using larger training samples which 

exacerbates the algorithms performance, a greater value for the 𝑡𝑠𝑖𝑚 should be adopted 

to compensate for this deterioration. 

 

 

 



 

Table 4. The breakdown of identified significant cases according to DM-Test for a 
significance level of 5% 

Panel A: 𝑤𝑡𝑟𝑎𝑖𝑛 = 200, 𝑛𝑠 = 198, 𝑛𝑝 = 11504, 𝑛𝑠 𝑛𝑝⁄ = 1.72%, 𝑛𝑤 = 215 × 80 = 17200 

PIPs type 47/2879 58/2979 47/2822 46/2824  
{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 1.63% 1.95% 1.67% 1.63%  

Breakpoints 38/2399 34/2356 42/2315 53/2236 31/2198 
{2,3,4,5,6} 1.58% 1.44% 1.81% 2.37% 1.41% 

Threshold 0/4300 41/4266 128/2462 29/476  
{1,2,3,4} 0.00% 0.96% 5.20% 6.09%  

Panel B: 𝑤𝑡𝑟𝑎𝑖𝑛 = 400, 𝑛𝑠 = 206, 𝑛𝑝 = 14904, 𝑛𝑠 𝑛𝑝⁄ = 1.38%, 𝑛𝑤 = 211 × 80 = 16880 

PIPs type 55/3725 58/3812 46/3684 47/3683  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 1.48% 1.52% 1.25% 1.28%  

Breakpoints 46/3018 41/3034 44/2995 43/2967 32/2890 

{2,3,4,5,6} 1.52% 1.35% 1.47% 1.45% 1.11% 

Threshold 0/4220 10/4219 70/3983 126/2482  

{1,2,3,4} 0.00% 0.24% 1.76% 5.08%  

Panel C: 𝑤𝑡𝑟𝑎𝑖𝑛 = 600, 𝑛𝑠 = 168, 𝑛𝑝 = 16003, 𝑛𝑠 𝑛𝑝⁄ = 1.05%, 𝑛𝑤 = 207 × 80 = 16560 

PIPs type 39/3978 38/4040 47/3992 44/3993  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 0.98% 0.94% 1.18% 1.10%  

Breakpoints 41/3210 40/3233 35/3200 24/3184 28/3176 

{2,3,4,5,6} 1.28% 1.24% 1.09% 0.75% 0.88% 

Threshold 0/4140 8/4140 44/4110 116/3613  

{1,2,3,4} 0.00% 0.19% 1.07% 3.21%  

Panel D: 𝑤𝑡𝑟𝑎𝑖𝑛 = 800, 𝑛𝑠 = 130, 𝑛𝑝 = 16009, 𝑛𝑠 𝑛𝑝⁄ = 0.81%, 𝑛𝑤 = 203 × 80 = 16240 

PIPs type 39/3997 23/4023 34/3994 34/3995  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 0.98% 0.57% 0.85% 0.85%  

Breakpoints 31/3206 26/3211 31/3205 22/3197 20/3190 

{2,3,4,5,6} 0.97% 0.81% 0.97% 0.69% 0.63% 

Threshold 1/4060 3/4060 29/4043 97/3846  

{1,2,3,4} 0.02% 0.07% 0.72% 2.52%  

 

 

Subsequently, we focus on the best performing case where a train sample of 200 days 

and a similarity threshold of 3 and 4 are being used. Table 5 presents the allocation of 

the128 and 29 successful cases to the segmentation method and the number of 

breakpoints used. Most significant cases are generated when the ED distance measure 

is used. 

 

 

 



  

Table 5. Further breakdown of identified significant cases according to DM-Test for a 

significance level of 5%, 𝑤𝑡𝑟𝑎𝑖𝑛 = 200 and  𝑡𝑠𝑖𝑚 = {3,4} 
Panel A: 𝑡𝑠𝑖𝑚 = 3 

 2 3 4 5 6 Total 

CI 9(7.03%) 8(6.25%) 2(1.56%) 6(4.69%) 6(4.69%) 31(24.22%) 

ED 7(5.47%) 4(3.13%) 5(3.91%) 13(10.16%) 6(4.69%) 35(27.34%) 

PD 3(2.34%) 8(6.25%) 9(7.03%) 9(7.03%) 2(1.56%) 31(24.22%) 

VD 3(2.34%) 8(6.25%) 9(7.03%) 9(7.03%) 2(1.56%) 31(24.22%) 

Total 22(17.19%) 28(21.88%) 25(19.53%) 37(28.91%) 16(12.5%) 128(100%) 

Panel B: 𝑡𝑠𝑖𝑚 = 4 

CI 2(6.9%) 2(6.9%) 2(6.9%) 2(6.9%) 0(0%) 8(27.59%) 

ED 3(10.34%) 2(6.9%) 1(3.45%) 1(3.45%) 5(17.24%) 12(41.38%) 

PD 0(0%) 0(0%) 2(6.9%) 2(6.9%) 1(3.45%) 5(17.24%) 

VD 0(0%) 0(0%) 2(6.9%) 2(6.9%) 0(0%) 4(13.79%) 

Total 5(17.24%) 4(13.79%) 7(24.14%) 7(24.14%) 6(20.69%) 29(100%) 

Note: In parenthesis the corresponding percentages are illustrated. 

 

Significant cases presented in Table 5 (panel A) are being presented diachronically in 

Fig. 12. One first obvious finding is that PD and VD measures generate almost the same 

significant cases. This is also consistent when other parameter combinations are used. 

In addition we can observe that CI outperforms PIPs until 1980, whilst PIPs identify more 

significant cases afterwards. In addition when using CI, the algorithm’s performance 

decreases during periods of financial crisis that affected the examined currency pair 

(1987 Black Monday, 1992-1993 Black Wednesday). Many issues of the Wall Street 

journal allocate the start of the US sub-prime crisis in June 2007 (G. J. Wang, Xie, Han, 

& Sun, 2012), after which the predictive performance of the proposed algorithm also 

decreases. Overall, the ED measure seems to add value in the predictive performance 

of the algorithm as we move closer to present.  

 

 

Fig. 12. Diachronically allocation of significant cases presented in Table 5 (panel A) 



Similarly to Table 4, Table 6 presents the breakdown of significant cases where the 

algorithm predicts changes regardless their size in a frequency greater than 50. 

Significant cases tabulated are those signified by adopting Bernoulli trials for a 

significance level of 5%. As expected, parameters affect similarly the predictive 

performance of the proposed predictive scheme with the difference that significant cases 

are apparently more than those identified when the DM-test is used for the evaluation. 

This is reasonable, since predicting changes in directions regardless their size is a 

relaxed version of predictions made on price changes considering the size.   

 

Table 6. The breakdown of identified significant cases according to Bernoulli trials for a 
significance level of 5% 

Panel A: 𝑤𝑡𝑟𝑎𝑖𝑛 = 200, 𝑛𝑠 = 1176, 𝑛𝑝 = 11504, 𝑛𝑠 𝑛𝑝⁄ = 10.22%, 𝑛𝑤 = 215 × 80 = 17200 

PIPs type 291/2879 331/2979 279/2822 275/2824  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 10.11% 11.11% 9.89% 9.74%  

Breakpoints 239/2399 236/2356 223/2315 256/2236 222/2198 

{2,3,4,5,6} 9.96% 10.02% 9.63% 11.45% 10.10% 

Threshold 276/4300 438/4266 382/2462 80/476  

{1,2,3,4} 6.42% 10.27% 15.52% 16.81%  

Panel B: 𝑤𝑡𝑟𝑎𝑖𝑛 = 400, 𝑛𝑠 = 1478, 𝑛𝑝 = 14904, 𝑛𝑠 𝑛𝑝⁄ = 9.92%, 𝑛𝑤 = 211 × 80 = 16880 

PIPs type 403/3725 381/3812 346/3684 348/3683  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 10.82% 9.99% 9.39% 9.45%  

Breakpoints 310/3018 305/3034 302/2995 291/2967 270/2890 

{2,3,4,5,6} 10.27% 10.05% 10.08% 9.81% 9.34% 

Threshold 305/4220 388/4219 432/3983 353/2482  

{1,2,3,4} 7.23% 9.20% 10.85% 14.22%  

Panel C: 𝑤𝑡𝑟𝑎𝑖𝑛 = 600, 𝑛𝑠 = 1551, 𝑛𝑝 = 16003, 𝑛𝑠 𝑛𝑝⁄ = 9.69%, 𝑛𝑤 = 207 × 80 = 16560 

PIPs type 428/3978 369/4040 377/3992 377/3993  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 10.76% 9.13% 9.44% 9.44%  

Breakpoints 320/3210 343/3233 290/3200 293/3184 305/3176 

{2,3,4,5,6} 9.97% 10.61% 9.06% 9.20% 9.60% 

Threshold 299/4140 379/4140 422/4110 451/3613  

{1,2,3,4} 7.22% 9.15% 10.27% 12.48%  

Panel D: 𝑤𝑡𝑟𝑎𝑖𝑛 = 800, 𝑛𝑠 = 1352, 𝑛𝑝 = 16009, 𝑛𝑠 𝑛𝑝⁄ = 8.45%, 𝑛𝑤 = 203 × 80 = 16240 

PIPs type 380/3997 335/4023 321/3994 316/3995  

{𝐶𝐼, 𝐸𝐷, 𝑃𝐷, 𝑉𝐷} 9.51% 8.33% 8.04% 7.91%  

Breakpoints 325/3206 274/3211 245/3205 260/3197 248/3190 

{2,3,4,5,6} 10.14% 8.53% 7.64% 8.13% 7.77% 

Threshold 270/4060 312/4060 342/4043 428/3846  

{1,2,3,4} 6.65% 7.68% 8.46% 11.13%  

 

 



5. Discussion and Conclusions 

In this paper, we proposed an algorithmic, nonlinear prediction scheme, implemented for 

assessing statistically the efficient market hypothesis (EMH) on simulated and real 

financial price series. PIPs and DTW were combined for this purpose. Initially, we 

applied the proposed scheme to simulated series composed by weighted sum of a 

random walk and a deterministic time series generated by the chaotic Mackey-Glass 

(MG) system in order to verify the ability of the proposed approach to model successfully 

the deterministic part. Subsequently, we used two datasets, the set of 18 major world 

indices and the GBP/USD exchange rates. For the first dataset, the prediction scheme 

did not provide evidence for rejecting EMH as the statistic for the prediction error was at 

the level (or worse!) than the persistent prediction, i.e. predicting the future value with 

the current value. However, the predictive performance of the proposed algorithm is 

better when adopted on the examined currency pair. We scrutiny further our analysis by 

introducing more values for the examined parameters, and using larger sizes of training 

samples. In addition, we apply an additional parameter dubbed similarity threshold (𝑡𝑠𝑖𝑚) 

whereby the algorithm makes predictions only when the number of similar historical 

subsequences is greater than or equal to 𝑡𝑠𝑖𝑚. Without the adoption of this parameter, 

the algorithm is forced to find nearest neighbors and make predictions on a daily basis 

which reduces its overall predictive performance. An interesting finding is that the 

performance is improved by the introduction of this last parameter. This implies that 

future research should direct attention to examining the criteria that deal with the 

selection of the historical similar subsequences. 

The construction of the proposed prediction scheme is to the best of our knowledge 

novel and designed in the spirit of TA. The PIPs implemented in the prediction scheme 

seem to add some value, as at cases they could provide better prediction than the 

current value prediction. However, our results should be cautiously interpreted. In order 

to reject the EMH we should construct trading strategies that generate systematically 

abnormal returns, considering also other aspects like the number of transactions, 

transaction costs and embedded risk. In addition, the proposed methodology is 

computationally expensive, and efforts could be spent to optimize the search of PIPs 

and computation of DTW, but certainly this is not a computational issue for daily 

predictions. Further, the proposed scheme relies on two important free parameters that 

are not investigated or optimized in this study, namely the number of PIPs to be 

extracted from the time series or alternatively the average number of samples between 

PIPs, and the number of best matches to be used for prediction (alternatively this 

number can be derived by the threshold on the standardized distances). Reducing the 

computational expensiveness of the proposed algorithm, will also allow the user to 

assess its predictive performance with bootstrap-based evaluative procedures 

techniques and/or surrogate data analysis and also apply parameter optimization 

techniques for selecting the important parameters and assess their consistency over 

time. The aforementioned issues are out of the scope of this paper, and are left for future 

investigation. However the proposed methodology combines well known tools of data 

mining and introduces them in the scientific field of finance. We believe that the 



proposed prediction scheme, either in its current status or enhanced can have practical 

and valuable implications in the academia and financial industry in general. In particular, 

academics can use the proposed algorithm as a tool for testing the weak-form EMH 

whereas practitioners may use it as a basis on which they can design trading strategies 

in the future, after assessing its performance, enhancing it (if necessary), or modifying it 

according to their idiosyncratic needs. 
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