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i. Figures and Tables 

 

Figure 1. Three different chironomid head capsules belonging to the tribes a) Chironomini and 

b) Tanytarsini, and the subfamily c) Orthocladiinae described by Laurindo da Silva et al. 

(2018). Images were modified from Laurindo da Silva et al. (2018). The labelled structures are 

currently used for visual taxonomic identification of different chironomid genera. 

 

Figure 2. A small neural network structure with three hidden layers where all circles represent 

nodes, and the interconnecting lines represent the connections and weights.  

  

Figure 3. Intersection Over Union (IOU) diagram showing an example of an actual bounding 

box overlapping a predicted bounding box.  

  

Figure 4. Image showing a close up of a head capsule mounted on a microscope slide.  

  

Figure 5. The Raspberry Pi (RPI) device used, showing the components for image capture  

(2-pin push button and RPI camera module) attached to a breadboard.  

  

Figure 6. High power microscope (Leica DM500) and makeshift camera setup connected to 

Raspberry Pi (RPI).  

  

Figure 7. Image showing a microscope slide mounted with four chironomid specimens 

obtained from the River Stour, Kent (label indicates that samples were taken the 24th of May 

2015, site EA4). 
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Figure 8. Examples of images of chironomid larvae head capsules captured under the 

microscope (40X total magnification) using a camera - Left to right: Cricotopus, Eukiefferiella, 

and Rheotanytarsus. Mandibles, antenna and mentums for each specimen has been labelled 

to allow a visual comparison of relative sizes and shapes of these structures which are typically 

used for morphological identification and taxonomic classification. 

 

Figure 9. Example of an image being annotated with bounding boxes (green square). 

  

Figure 10. Head capsules of Cricotopus showing differences in quality of the images. 

  

Figure 11. Example of a model showing its prediction and confidence score. A chironomid 

larva head capsule has been identified belonging to the genus Rheotanytarsus with 100% 

confidence.  

  

Figure 12. A 2x2 confusion matrix typically used for simple classification model evaluation.  

  

Figure 13. A 3x3 confusion matrix as used in this study for the classification of three 

chironomid genera.  

  

Figure 14. mAP values in ascending order for A) SDD models and B) FR models, each under 

four different Learning Rates (LR) and three replicates.  

  

Figure 15. Average mAP values for the three replicate runs of each model configuration (SDD 

and FR).  

  

Figure 16. Best performing models for A) SDD models and B) FR models, each under four 

different Learning Rates (LR) and three replicates. The models were run for 5000 epochs.  
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Figure 17. mAP values arranged in ascending order for A) the best SDD models and B) the 

best FR models, each under three different IOUs (0.5, 0.6 and 0.7) and three replicates. 

 

Figure 18. Average mAP values for SDD and FR models, each under three different IOUs 

(0.5, 0.6 and 0.7) and three replicates.  

  

Figure 19. mAP values for the best performing for A) SDD and B) FR models, each under 

three different IOUs (0.5, 0.6 and 0.7) and three replicates run for 5000 epochs.  

  

Figure 20. Images of Eukiefferiella incorrectly identified by all models. From left to right, image 

A identified as Cricotopus, and image B identified as Rheotanytarsus.  

  

Table 1. Chironomid genera and total number of images of identified specimens used for this 

study.   

  

Table 2. Image stock totals after removal of test images.  

  

Table 3. Total original and augmented images for image set C.  

  

Table 4. total original and augmented images for image set B.  

  

Table 5. Highlights of the three image sets.  

  

Table 6. Image sets with their train and validation amounts.  

  

Table 7. Model configurations and image sets for comparison.  

  

Table 8. Model configuration, image sets and learning rates. 
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Table 9. Model configuration, image set and IOU variation.  

  

Table 10. Confusion matrix results for the best performing model configurations.  

  

Table 11. Confidence score analysis for best performing model configurations for SDD and 

FR models.  

  

Table 12. Nested ANOVA of mAP values with three levels (Framework, Image set and 

Learning rate).  

  

Table 13. Nested ANOVA of mAP values with two levels (Framework and Learning rate).  

  

Table 14. Results of post-hoc examination for Learning Rate among the two different 

frameworks (SSD and FR).  

  

Table 15. Confusion matrix analysis for best performing models.  

  

Table 16. Confidence score analysis.  

  

Table 17. Nested ANOVA of mAP values with three levels (Framework, Image Set and IOU).  

  

Table 18. Nested ANOVA of mAP values with two levels (Framework and Image Set).  

  

Table 19. Results of post-hoc examination.  
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iii. Abstract  

 

This research study introduces a possible new method for the identification of chironomid 

larvae mounted on microscope slides in the form of an automatic computer-based 

identification tool using deep learning techniques. Deep learning is becoming an important tool 

for ecologists where there are advantages and limitations for its use as a rapid biomonitoring 

tool. Chironomids collected from the River Stour in Kent had their head capsules mounted on 

microscope slides and images of these were then captured using a Raspberry PI. Using these 

images, a series of object detection models were created to classify several different 

chironomid genera. These models were then used to show how different deep learning 

approaches, focusing on pre-training preparation, could improve the performance of image 

classification. The model comparisons included two object detection frameworks (Faster-

RCNN and SDD frameworks), three balanced image sets (with and without augmentation) and 

variations of two hyperparameter values (Learning Rate and Intersection Over Union). All 

models were reported using the standard computer science object detection evaluation 

protocol, the mean average precision metric. Each model configuration was run three times, 

to allow for statistical significance evaluation. Additionally, a series of novel post training 

performance metrics were created examining a model’s prediction accuracy and its given 

confidence value in its prediction choice. The highest mean average precision value achieved 

was 0.751 by Faster-RCNN. The models highlighted significance between the two object 

detection frameworks, where the Faster-RCNN framework performed better than SDD 

framework; however, there was non-significance between the image sets and the 

hyperparameters values. All models produced similar accuracy results regardless of 

framework used (between 95.5%-97.7%), however, there were large differences between the 

confidence examinations, wherein Faster-RCNN produced more confident predictions than 

SSD. In conclusion, this investigation successfully developed object detection models using 

SSD and Faster-RCNN to classify between three chironomid genera. As a proof of concept, 
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this study highlighted that automatic and rapid classification models using deep learning 

techniques can be applied for the correct taxonomic identification of difficult organisms, like 

chironomid larvae, further advancing the prospect of using this relatively new field of computer 

science for ecological research.  
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1. Introduction  

 
Deep Learning systems are now performing on par or far exceeding human potential and are 

now being used in many different sectors to either assist or replace human operators 

(Kermany et al. 2018; Raiman et al. 2019). Deep learning builds on the concepts of artificial 

intelligence (AI) and machine learning (ML) with its ability to make predictions based on data 

it has observed but does so in a manner similar to humans by utilising neural networks which 

are often compared to the workings of the human brain (Abraham 2005). There are many 

examples on how deep learning is now routinely used within modern society. Organisations 

around the globe are using surveillance to recognise human faces when searching for specific 

individuals (Cárdenas et al. 2019), and modern mobile phones and smart home devices are 

now capable of speech recognition (Ma et al. 2019).  

The use of automated identification applications in the form of deep learning neural 

networks are growing in popularity within the life sciences as a way for researchers to alleviate 

workload and provide assistance to replace the lack of expertise knowledge within a 

workforce. For instance, Kermany et al. (2018) described a Convolution Neural Network 

(CNN), a form of a deep neural network that works with images, to identify two common and 

treatable blinding retinal diseases within humans (Wong et al. 2014; Varma et al. 2014). 

Several versions of a CNN were created that ranged in identification accuracy between 93% 

- 100% , while human experts within the field where able to achieve an identification accuracy 

of 95% Kermany et al. (2018) also noted that each year, over 30 million images are taken and 

used to identify these conditions, and having an automated device that is just as good as 

experts within the field would be advantageous as the time-frame and manpower to manually 

process this large collection of images would be enormous.   

Bondi et al. (2018) described an object detection system, which builds on top of 

techniques used in CNNs, that could automatically detect and identify poachers or high-risk 

animals in real-time when used with a video feed. By using an Unmanned Arial Vehicle (UAV) 
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at night-time, the object detection system could alert a human operator almost instantaneously 

of any poaching activities and could cover large areas quickly that would take a single human 

much longer to search. While these UAVs can fly for extensive amounts of time while sending 

a live video feedback unaided, the monitoring of these systems traditionally has to be operated 

by a human user for up to 12 hours at a time. Thus, having an automated system that can 

both identify both poachers and specific animals, and then alert operators of a potential target 

while the operator is not at the monitoring station increases the odds that poachers can be 

stopped, and endangered animals can be protected. Poaching has been on the rise for many 

years now and the monetary resources involved in the protection of vulnerable species is 

increasing with it so there is demand in techniques that can alleviate these costs (Naidoo et 

al. 2016).  

One important achievement incorporating deep learning in the form of an automated 

identification tool is the mobile device application called ‘PlantSnap’ (PlantSnap 2020). This 

application states that it can identify and distinguish between over 620,000 different plants 

species and their respective variants from around the globe, around 90% of all described 

species of plants, and can do so with great ease to the user (PlantSnap 2020). Plant 

identification using PlantSnap can be achieved by the user by simply uploading an image of a 

leaf and/or the flower over the application which is then identified over a server with the results 

sent back to the user. While the technology that has led to the creation of this system is more 

closely guarded than the other research projects described thus far, the fact that it has been 

translated into 37 languages and downloaded by over 30 million users globally is an amazing 

feat of the sharing of scientific knowledge. This and the other systems described have shown 

the potential of automated identification systems as a way of increasing the work output of 

experts in various life science fields and have shown that nonexperts are willing to use the 

knowledge that these systems can provide.  

For this investigation, a deep learning identification tool in the form of an object 

detection model has been proposed to correctly classify several chironomid genera in larvae 

form that have been previously mounted on microscope slides. Chironomid larvae are 
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increasingly being used as bioindicators in water systems and there is interest in their use to 

monitor freshwater systems (Rawal et al. 2018). The identification of chironomid larvae has 

traditionally been through the use of visual methods by observing the animal’s morphology. 

This would typically be conducted by an expert taxonomist using identification keys and a 

microscope; however, these methods can be very time consuming and are prone to 

misidentifications (Haase et al. 1998; Wiederholm 1983). A deep learning-based identification 

tool for chironomid larvae could potentially allow a wide range of users to reliably produce 

correct identification in a quick and easy to use manner. This would ultimately become a 

valuable tool within biomonitoring and when performing environmental assessments of aquatic 

systems.  

  

 

1.1 Freshwater ecosystems  

 

Freshwater ecosystems can be found on all continents within the world but are more frequent 

in North America, Europe and Asia (Siberia). Only 3% of the world’s water is fresh water, with 

a large portion of this held within the polar icecaps (Gerbeaux et al. 2018). The majority of 

living organisms relying on fresh water as a form of sustenance, and the ecosystems 

surrounding these waters provide habitats to a large range of species, highlighting the 

importance of maintaining these systems (Hughes 2019). There are a range of fresh waters 

both natural and manmade such as, but not limited to, rivers, streams, lakes, marshes, chalk 

streams and reservoirs. Despite their importance to providing sustenance to almost all life, 

and to supporting the surrounding habitats, freshwater ecosystems are in danger of 

degradation due to anthropogenic interference with the main contributing factors being 

pollution, climate change and habitat transformation (Cao et al. 2009). This degradation is 

having a knock-on effect to the organisms that depend on these ecosystems. For instance, 

the global decrease in macroinvertebrate populations and the decrease in macroinvertebrate 
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species diversity is being linked directly to this anthropogenic interference (Živić et al. 2014; 

Costa et al. 2020) which in turn is having a wider knock-on effect to the ecosystem in which 

these organisms inhabit (Cao et al. 2018). To prevent this, ecologists and conservationists 

can use biomonitoring techniques to assess these ecosystems in their current and ongoing 

condition. For the biomonitoring of all aquatic ecosystems, the community structure of benthic 

macroinvertebrates can be used and can include the presence or lack of certain species 

(Sharma and Chowdhary 2011; Uherek and Pinto Gouveia 2014; Zeybek 2016; Costa et al. 

2020). Cao et al. (2018) proposed that a lack of expected benthic macroinvertebrate 

communities and the presence of certain ubiquitous species, particularly those considered 

pollutant tolerant (i.e. sludge-worms, Tubifex tubifex), could be used as indicators to show how 

the degradation of river water is affected by municipal waste. This type of approach is routinely 

used by researchers and governing bodies across the globe to assess the quality of water 

systems and the surrounding ecosystems. Biggs et al. (2000), commissioned by the United 

Kingdom (UK) Environmental Agency, justified the use of benthic macroinvertebrates, along 

with macrophytes and their presence within different water systems across the UK, as 

bioindicators and proposed how the use of these can be used to assess the water condition 

of ponds, lakes and rivers as well as the condition of the banks of these water systems. This 

type of biomonitoring assessments has also been applied in other parts of the world, i.e. South 

America (Ríos-Touma 2014), Africa (Beyene et al. 2009) and Asia (Morse et al. 2007). While 

there is a selection of species that can contribute to these assessments (i.e. stone fly nymphs, 

oligochaetes, caddisfly larvae), chironomid larvae (Insecta: Diptera: Chironomidae) are 

considered ideal candidates for such assessments (García and Añón Suárez 2007; Rawal et 

al. 2018).  
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1.2 Chironomids  

 

Chironomids, also known as ‘non-biting midges’ or ‘bloodworms’ (when in their larval stage), 

are one of the most abundant and species-rich benthic macroinvertebrates in freshwater 

ecosystems (Pinder 1986; Ferrington 2008; Nicacio and Juen 2015). Chironomids are 

suggested to make up 50% of the total benthic macroinvertebrate population within their 

respective habitats (Nadjla et al. 2013). They are found in almost all freshwater ecosystems 

including lakes, ponds, swamps, streams and rivers, and can also be found within isolated 

habitats such as tree stumps, and man-made water ways like flood-prevention drainages 

(Frouz et al. 2003; Pinder 1995). There are an estimated 600 species found within the United 

Kingdom and an estimated 20,000 species worldwide (Ferrington 2008). Some species of 

chironomids can live in a variety of aquatic systems tolerating a range of environmental 

conditions including pH, salinity, temperature and sediments, while others require very specific 

conditions (Lencioni et al. 2012), and some can even be found in aquatic systems considered 

polluted and inhabitable for the majority of other species (Luoto 2011). This has led to the 

exploration of chironomids as bioindicators for the general condition of aquatic ecosystems 

(Lencioni et al. 2012), however, they can also be used for more specific and streamlined 

assessments. For instance, Orendt (1999) created a technical water monitoring method that 

provided an acidity assessment for water systems, where the pH tolerance of 25 species of 

chironomids were identified by their presence within several bodies of water with known pH. 

In this study, a more diverse range of species was found in waters with a low pH while there 

were few species that could tolerate a higher pH, and by correlating the presence of species 

with their tolerance the acidity condition of a body of water could be ascertained. The study of 

chironomids also benefits from their use as a paleoclimatology and paleoenvironmental 

assessment tool (Nazarova et al. 2008; Nazarova et al. 2018; Lang et al. 2018). Here, 

chironomid fossil records, particularly those of their head capsules found in water sediment 

and how deep these are found, are linked to historic temperatures. The remains are 
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taxonomically identified and linked with known paleoclimatic conditions at that point in time to 

generate a score-based biotic index.  

  The use of chironomid larvae for biomonitoring and paleoclimatically 

assessments depends on the correct identification to specific taxonomic levels. However, one 

of the main issues with the identification of chironomid larvae is their minute size. Chironomid 

larvae are typically millimetres in length which makes it difficult to accurately identify them 

below the taxonomical classification of family (Chironomidae) without expert taxonomic 

knowledge or the means of molecular-based procedures. At present, the two main recognised 

methods for correct identification and taxonomic classification are through visual methods 

using classical taxonomic keys and using molecular methods such as DNA barcoding.  

 

 

1.3 Visual identification of chironomids  

 

Identification of chironomids has traditionally been carried out using specimen 

morphology. This is typically done using the knowledge of an expert taxonomist or 

entomologist (e.g. Vega et al. 2021). For the analysis of chironomids by visual 

inspection, the use of taxonomic keys and a microscope is needed. The head capsules 

of chironomid larvae are primarily used for this; however, the final segments of the 

abdomen can also be included as these do show differences between species. Head 

capsule and final segments of abdomen need to be carefully removed from euthanised 

specimens and then mounted on microscope slides using a method outlined by 

Beckett and Lewis (1982). With the slides mounted, these can then be examined under 

a high-powered microscope where specific features can be used to determine to which 

taxonomy group they belong to. For example, Laurindo da Silva et al. (2018) presented 

and described the head capsules of three different members of the family 
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Chironomidae, the tribes Chironomini and Tanytarsini, and the subfamily 

Orthocladiinae (Fig. 1).   

 

 

Figure 1. Three different chironomid head capsules belonging to the tribes a) Chironomini 

and b) Tanytarsini, and the subfamily c) Orthocladiinae described by Laurindo da Silva et al. 

(2018). Images were modified from Laurindo da Silva et al. (2018). The labelled structures 

are currently used for visual taxonomic identification of different chironomid genera. 

 

While they share many features such as mentums, ventromental plates, eye spots, 

mandibles, and antennae, they are all different in shape, length, and position on each head 

capsule. This variation of morphological features between each species and the large number 

of estimated species (20,000 worldwide) highlights why it is extremely difficult to accurately 

identify chironomids to beyond the taxonomy level of family, even by experts within the field 

(Wiederholm 1983; Haase et al. 1998).  
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1.4 Identification through DNA barcoding  

 

At present, one of the leading techniques for identifying and classifying species is by molecular 

means, specifically by sequencing particular DNA sequences (i.e. molecular markers) and 

comparing them against a known set of previously taxonomically identified vouchers 

specimens with DNA data (i.e. a DNA library). This comparison is done using computational 

methods in biology (bioinformatics) across different taxonomic levels, a process known as 

DNA barcoding (Valentini et al. 2009). The currently considered ideal gene for DNA barcoding 

animals, and specifically insects, is the mitochondrially encoded Cytochrome C Oxidase 

Subunit 1 (MT-CO1). Mitochondria have its own unique DNA (mtDNA) separate from the 

nucleoid DNA (nDNA) (Meier et al. 2006), it is maternally inherited, and it is passed down the 

lineage unaltered through processes like crossing over and recombination, which occur in 

nDNA. While DNA barcoding has been used successfully in many instances, it has its own 

limitations (Reynaud et al. 2015). In particular, there are costs associated with DNA extraction, 

sequencing procedures and laboratory equipment needed to achieve the molecular 

identification of organism, plus the time in which DNA barcoding can be completed. Moreover, 

DNA barcoding requires the use of a DNA library. This is a set of individuals within the 

taxonomic group of interest which have been previously identified by traditional morphological 

means and DNA barcoded, and which serves as a reference to which new specimens can be 

matched against (Benson et al. 2015).   

DNA barcoding could bring the total cost of a single individual sample to over £7 (Stein 

et al. 2014). Although the costs can be minimized by the use of more cost-effective protocols 

like multiplexing and more economical reagents for DNA extraction, PCR, PCR purification 

and DNA sequencing, the total cost of a large-scale ecological biodiversity survey would incur 

much larger costs (Shendure et al. 2017). Moreover, the DNA barcoding process is time 

consuming and often not automated, requiring the researcher to spend time in the laboratory 

carrying out each step of the protocol. Time-saving protocols can be used but required 
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expensive laboratory equipment like automated DNA extraction systems (e.g. QIACube 

Connect, QIAGEN) (Valentini et al. 2009). Also, the final DNA product needs to be sequenced, 

a process that is usually outsourced, meaning that the identification of a single sample could 

take several days. The time and effort incurred would be increased dramatically when 

processing a large batch of specimens, such as those being utilised by this investigation.  

  

 

1.5 eDNA metabarcoding  

 

Environmental DNA (eDNA) metabarcoding is a technique that can detect multiple organisms 

from one single environmental source, for example bodies of water, sediments, soils and air, 

using genetic markers (Ruppert et al. 2019). Bodies of water, sediments, soils or air will 

contain various sources of DNA including, but not limited to, skin, eggs, blood, faeces, urine 

and shedding. From these samples, genetic markers from a range of organisms can be 

amplified, sequenced and identified against a DNA library. The organisms identified can then 

be used to provide ecological assessments which can be done in a rapid time frame compared 

to singular organism identification via traditional DNA barcoding or morphological identification 

(Deiner et al. 2015). Because taxonomic data can be easily obtained using eDNA, such as 

from a sample of pond water, habitats do not need to be disturbed as when using kick-

sampling methods for benthic organisms (Goldberg et al. 2016). However, eDNA methods 

cannot provide information one would expect by investigating a single individual, such as body 

conditions or sex ratios (Deiner et al. 2017). Again, much like DNA barcoding, eDNA methods 

rely on a variety of scientific instruments and chemical reagents that come at a cost, and 

sufficient bioinformatic knowledge is required to perform all operations (Shendure et al. 2017).  
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1.6 Automated identification of organisms  

 

The automatic detection, identification and classification of organisms has been in 

development since around the 1970’s where the growth of various microorganisms would be 

photographed at specific intervals when placed upon different substrates. The images of their 

growth patterns could be used to identify which specific microorganism was present using 

custom built computer systems and programmes (Aldridge et al. 1977). Stager and Davies 

(1992) reviewed the origins of these early methods and suggested that these produced mixed 

and often disputed results in terms of performance and evaluation protocols. Since then, a 

range of automated techniques have been devised to alleviate the workload of investigations 

within the life sciences.  

Non-computer based electronic devices such as camera traps are able to 

automatically capture images when an object passes through a motion sensor and are 

routinely being used within biodiversity assessments; however, camera trapping requires a 

human operator to manually examine each image individually which can range into millions of 

images, a daunting workload for the user (Fegraus et al. 2011). Traditional computers and 

electronic devices are unable to process these sources of information to automatically detect, 

identify and classify in their current format without the aid of specialised equipment, 

programmes, and computer-based techniques, and thus the subject known as computer vision 

was created.  

 

 

1.7 Computer Vision 

 

Computer vision (CV) is the broad subject of creating computer programs that can extract 

information from digital images and video. There are a multitude of techniques that can 

achieve CV which include image classification, where an image is classified as a single 
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desired subject (e.g. a dog vs a cat), or object segmentation, where an image is separated 

into specific desired segments (e.g. the sky and ground) (Khan et al. 2020). CV involves the 

conversion of digital image pixels values to binary values using a set of programs which can 

then be read by computers where patterns within the binary values are used to create 

recognisable features that can eventually be combined to recognise specific subjects within 

images, whether they are singular, part of groups, their position within images and whether 

they are 3D or 2D (Ikeuchi 2014; Lin et al. 2015). To achieve this, a computer program, more 

commonly referred to as a model, needs to be created. This model needs to go through a self-

teaching process known as training. Data in the form of images are fed into the model and the 

internal coding structure of the model, referred to as the architecture, instructs the model how 

to process the data held within the image pixels (Szeliski, 2010) (e.g. if the model was intended 

to recognise a dog within an image, a model would be fed images of a dog, go through a 

training process where the architecture is designed to allow the model to self-teach the 

recognition of specific features within the images that make up a dog, and then finally make a 

prediction based on these learned features).  

For instance, Yu et al. (2013) created a computer-based system that was able to 

automatically detect, identify and classify over 18 species of animal held within over 7,000 

images captured from camera traps with an accuracy of >90%, and pointed out that this 

method removed a large number of images that would be considered false positives as 

camera traps can be incorrectly triggered when nonanimal objects pass through the motion 

sensors. Hoque et al. (2011) used a computer-based system to automatically identify 

individual great crested newts (Triturus cristatus) from markings on their back by using a 

collection of 30 images and pointed out that being able to identify individuals using visual 

zoometrics would alleviate the need to utilise more traditional invasive methods such as 

amputation or tagging and automatization of the process could potentially increase the 

accuracy and speed of identification. These methods used computer-based programmes that 

are able to extract information from sources such as images or live video streams. 
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While some CV models can produce identification and classification results that are 

comparable to human identification (Kermany et al. 2018), there are still limitations that affect 

the subject as a whole. For instance, to create a CV model, extensive coding knowledge and 

computer literacy is required (Bebis et al. 2003). There are a variety of computer coding 

languages that the CV models can be written in (e.g. Python or C++) (TensorFlow 2020c), and 

there are a variety of operating systems that the computer hosting the CV model can be run 

on (e.g. Linux or Windows). Therefore, computer coding languages and operating systems 

need to be understood to successfully operate a model. The CV models are also resource-

intensive when being trained, where they require the computation power of many high-end 

computer components, in particular the Graphical Processing Unit (GPU), which all come at a 

high monetary cost (Coates et al. 2009). However, once a CV model is created, the 

computation power required to run a finished model is drastically lowered. Most high-end 

mobile devices at the time of writing this investigation are able to host and run a slimline 

version of finished model (Howard et al. 2017, 2019; Sandler et al. 2018). Finished models 

can even be hosted by a powerful device and accessed by multiple, less competent devices 

via a server. As mentioned, the application PlantSnap utilises this method to allow its 30 million 

users identify a range of plant species with almost any mobile device with a camera feed 

(PlantSnap 2020).  

  

 

1.8 Neural Networks  

 

Neural networks (NN) consist of nodes that are interconnected and are built in layers, typically 

referred to as input, hidden and output layers (Fig. 2) (Abraham 2005). Information in 

numerical form is inserted into the input layers and will lead to an output layer in numerical 

form that corresponds to a prediction while passing through hidden layers. The hidden layers 

will transform the original input value by multiplying these by a value know as weights. While 
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these weights start of as random numbers, they will be updated during each pass through 

after the output has been identified as a correct or incorrect prediction. These weights will 

continue to be updated until the value is optimised to produce a correct output value. NN can 

range in sizes for both the number of individual nodes within each payer and the number of 

hidden layers.  

  

 

Figure 2. A small neural network structure with three hidden layers where all circles 

represent nodes, and the interconnecting lines represent the connections and weights. 

 

 

1.9 Convolution neural networks  

 

When processing images, traditional NN would take an entire images pixels value and 

attempted to pass this through the network at a single instance (Amer and Maul 2019). For 

example, a colour image with 3x colour channels (Red, Green, Blue) of 300x300 (Height x 

Width) pixel resolution would equate to 3x300x300 or 270,000 individual inputs, where each 

pixel within each colour channel can have a pixel intensity value of 0-255. This large number 

of inputs would then require their own weights simultaneously updated during the training 

process, which would become unmanageable especially for large images (Yamashita et al. 

2018; Amer and Maul 2019; Batmaz et al. 2019). Traditional NN also have issues with the 
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translocation of subjects within an image. For example, if a NN has learned that the position 

of a subject is at the top right of an image, and then it is presented with an image where the 

subject is not within this area, the weights would not be associated with the subject in this area 

and would subsequently misidentify (Al-Saffar et al. 2017; Yamashita et al. 2018).  

Thus, a different technique called a Convolution Neural Networks (CNN) has been 

created that can classify subjects despite its location within an image. Although a CNN still 

contains a neural network, they include other layers that prevent the issues that would arise 

from the use of traditional NN (Al-Saffar et al. 2017; Khan et al. 2020; Yamashita et al. 2018). 

The first layers which are convolution layers pass numerous boxes known as filters over the 

images from left to right, top to bottom. These filters, which are size defined by the user, are 

generally much smaller than the image (i.e. 3x3 pixel resolution) and are used to search for 

patterns within the values that are being passed over. The CNN designates its own patterns 

to recognise based on the data fed in and assigns a specific pattern to each of the filters. 

These patterns will relate to features within the object that the CNN is being trained to detect 

starting of as simple features such as lines, corners and bends which are referred to as lower 

order features. These features are then put together in pooling layers to create feature maps 

that store all features. From this, more complex features such as specific sections of an object 

are then constructed from the lower order features (e.g. if a model was being trained to detect 

human faces, then the complex features could be items such as the eyes, ears or mouth). All 

these features would be pooled together again to create feature maps that make up the final 

predictions of a whole object. This sliding filter allows for a model to learn features without 

focusing on where these features are on an image (Yamashita et al. 2018).  

There are a multitude of different CNN architectures that use slightly different methods 

to achieve the desire results, for example Visual Geometry Group (VGG), Residual Neural 

Network (ResNet) and Inception (Khan et al. 2020). Gyanendra et al. (2018) and Favorskaya 

and Pakhirka (2019) report CNN systems which utilised the VGG architecture. These were 

used to classify images from camera trap of animals within a woodland area. They report that 

their system can positively classify with an accuracy of 91.4% and 94.1% respectively.   
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1.10 Image Classification and Object detection  

 

Objects within images can be classified into specific predetermined categories using a 

technique called image classification (Rawat et al. 2017). Here, a single object can be 

identified within an image by predicting the class that the image would be assigned to, referred 

to as a label, from a set selection of categories. This typically only works with one object per 

image. There are several different techniques that can be used to achieve this, such as K-

nearest neighbour, support vector machine, multi-layer perception and CNN. CNN has 

become the optimum and the most used method for achieving image classification since it 

was first showcased in the 2012 ImageNet large scale visual recognition challenge (ILSVRC), 

where it subsequently took 1st place within the competition (Krizhevsky et al. 2012). The life 

sciences have begun to utilise image classification. For instance, the CNN described by 

Kermany et al. (2018) wherein images were used to distinguish between two blinding retinal 

diseases, and the CNN described by Yu et al. (2013) wherein images were taken from camera 

traps and used to identify 18 individual animals. 

Building on from image classification is a technique called Object detection. Object 

detection is the name given to computer vision techniques that can localise the object within 

an image, can classify objects within an image, , can classify multiple objects within a single 

image or in real time over a live video feed (Huang et al. 2017; Nam and Hung 2018; 

Janahiraman and Subuhan 2019; Zhao et al. 2019; Hall et al. 2020). There are numerous 

object detection frameworks, but two that appear more popular among researchers being the 

Single Shot Detection (SDD) framework and the Faster-Region-based CNN (Faster-RCNN) 

framework (Arcos-Garcia et al. 2018; Nam and Hung 2018; Janahiraman and Subuhan 2019; 

Bose and Kumar 2020). The object detection framework is built on top of a CNN which has 

allowed for a multitude of possible model combinations (e.g. SSD_inception, Faster-

RCNN_VGG, SSD_ResNet) (Zhao et al. 2019; Zhang et al. 2019). 
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SSD is an object detection framework first described by Lui et al. (2016). SDD works 

in a single step where the CNN feed-forwards its learned features to the SSD framework, and 

then places a grid over an image where each grid space will have a large amount of default 

possible locations, referred to as bounding boxes or anchors. In SDD, each grid uses the 

feature maps from the CNN and assigns the best anchor to predict objects and their location 

within the image.  First described by Ren et al. (2016), Faster-RCNN uses a two-step approach 

for object detection. Built on top of a CNN where the features are learned, are then passed to 

two separate functions. One is a regional proposal network that uses a sliding window 

approach, but the window has its own set of anchors. These anchors will use the feature map 

to detect any subjects, however, it only indicates that there is an object within the location and 

does not define a class to this location. The second function is the one that defines the class. 

The Faster-RCNN frameworks are commonly reported as being more accurate than the SSD 

(Arcos-Garcia et al. 2018; Janahiraman and Subuhan 2019; Bose and Kumar 2020). Despite 

its lower performance potential, SSD is regarded as performing at greater speeds than the 

Faster-RCNN due to its single action, and it is suggested that the inferior speed of Faster-

RCNN prevents it from being used where near instant identification is required, such as the 

detection needed for autonomous navigation (Lui et al. 2016). The SSD framework also 

benefits from the architecture’s abilities to become streamlined when paired with the CNN 

MobileNet architecture, allowing the creation and operation of trained models that require 

extensively less computations, which the Faster-RCNN frameworks is currently unable to 

achieve (Howard et al. 2017; Sandler et al. 2017; Howard et al. 2019). 

There are other notable object detection frameworks. ‘You only look once’ (YOLO), is 

another framework that utilises a CNN and performs both classification and localisation in the 

same instance rather than separating the two tasks, again performing at high speeds while 

trading this for accuracy potential (Redmon et al. 2015). Histogram of orientation gradients, 

more commonly referred to as HOG, is a framework that does not rely on the use of a CNN. 

HOG framework detects edges with their orientation and gradient and does so in localised 
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sections, and a histogram of each section is created to observe for frequency of continuous 

data (Rybski et al. 2010). 

 

 

1.11 Evaluation of Object detection models 

 

To evaluate the performance of an object detection model several metrics have been designed 

over the years (Mariano et al. 2002). These include metrics such as Average fragmentation, 

which will detect and highlight if multiple detections occur for the same object and localised 

object count recall, which will detect and highlight how much of a detection is covered by the 

prediction box. However, current research almost exclusively uses a metric known as the 

mean average precision score (mAP). The mAP metric is used to evaluate different object 

detection models, and it was created so that different framework and CNN combinations, 

operating in slightly different ways to one another, could all be evaluated under the same 

metric system with a value produced between 0 – 1 (Girshick et al. 2014; Arcos-Garcia et al. 

2018; Shi et al. 2019). However, this value is worked out slightly differently depending on what 

evaluation protocol system is used, and there have been several evolving iterations that have 

been created, updated, and adopted by the scientific community (Hall et al. 2020). For 

instance, the Pascal-VOC protocol first described in 2007 and ran until 2012 (Everingham et 

al. 2009) has since been replaced by the MSCOCO (Microsoft Common Objects in Context) 

protocol which is now the most commonly used evaluation protocol (Lin et al. 2015; Hall et al. 

2020). Janahiraman and Subuhan (2019) compared both the SSD and Faster-RCNN 

frameworks and reported MSCOCO mAP values of 0.220 and 0.280, respectively. Ren et al. 

(2016) reported a MSCOCO mAP of 0.219 when first reporting the Faster-RCNN framework. 

Huang et al. (2016) reported a MSCOCO mAP of 0.413 for as custom object detection 

framework. However, some researchers still report the Pascal-VOC and some report both the 

Pascal-VOC and MSCOCO protocols (Arcos-Garcia et al. 2018). The MSCOCO metric is 
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reported to be more stringent than the Pascal-VOC metric (Huang et al. 2016). For instance, 

Lui et al. (2016) report a Pascal-VOC value of 0.822 while their MSCOCO value is 0.288.   

The MSCOCO mAP metric is calculated by creating recall-precision curves at 10 

different Intersection Over Union (IOU) thresholds. The IOU threshold is the minimum area 

allowed between the overlap of an object detection’s prediction of where an object is to where 

it is within an image with a value between 0 – 1 (Bose and Kumar 2020). Both the prediction 

and actual image location are defined to location by a surrounding box which is known as the 

bounding box. Equation 1 shows the IOU formula where the Union is defined as the 

accumulation of areas of both the actual and predicted bounding boxes that are not 

overlapped, while the Overlap is the area where both bounding boxes overlap (Xia et al. 2018; 

Chudzik et al. 2020) (Fig 3.).   

  

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎	𝑜𝑓	𝑂𝑣𝑒𝑟𝐿𝑎𝑝
𝐴𝑟𝑒𝑎	𝑜𝑓	𝑈𝑛𝑖𝑜𝑛

 

                                                                                                      (1)   

 

 

Figure 3. Intersection Over Union (IOU) diagram showing an example of an actual bounding 

box overlapping a predicted bounding box. 

 

These minimum thresholds start of at 0.5 and increase at 0.05 intervals until they reach 

0.95. The values obtained from each area under the precision-recall curve at each IOU value 

are then averaged out to create an Average Precision Value (AP). This AP is worked out for 
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each individual subject that is being trained for detection. Each of these individual AP values 

are then averaged again to produce the final mAP score. It is typical to report the mAP values 

only and rank these with the model producing the highest value being regarded as the best 

performing model out of any other within a sampled group (Girshick et al. 2014; Liu et al. 2016; 

Ren et al. 2016; Ren et al. 2017; Arcos-Garcia et al. 2018; Shi et al. 2019; Bose and Kumar 

2020).   

 

 

1.12 TensorFlow and TensorBoard  

 

Training an object detection model requires the combination of many different computation 

components made up of both hardware and software (Coates et al. 2009), and to allow all of 

these to work in unison and achieve the final resulting model, the use of a deep learning library 

is generally utilised (Goldsborough 2016; Pang et al. 2019). These libraries contain a range of 

toolkits and programs that are designed for the easy devolvement and deployment of machine 

learning and deep leaning models. There are several deep learning models in circulation, both 

paid-for and open-sourced, which include PyTorch created by Facebook, CNTK created by 

Microsoft, Apache MXNet created by Amazon, and TensorFlow created by Google. While all 

can perform object detection, the use of TensorFlow is a popular option with researchers and 

hobbyists due to its ease of use and community that provide guidance for its use (Al-Azzo et 

al. 2018; Janahiraman and Subuhan 2019; Chulu et al. 2019).  

The TensorFlow deep learning library is an open-sourced deep learning library that is 

designed to allow machine learning models to be deployed with ease to the user by working 

behind the scenes to connect a range of programs and hardware, such as the object detection 

frameworks, while harvesting the computational power of a workstation (Goldsborough 2016; 

Pang et al. 2019). Within the library is the TensorFlow Python API which is designed to work 

with a variety of deep learning models, including the object detection models, which can then 
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be trained and deployed using the Python programming language. TensorFlow allows the 

monitoring of model training through an included tool called TensorBoard. This produces a set 

of graphs that can illustrate how a model is evolving at defined intervals. TensorBoard is 

designed to work in unison with several evaluation protocols, including the MSCOCO protocols 

and its version of the mAP metric.   

  

 

1.13 Finetuning an object detection model  

 

To achieve the best possible mAP score, a model can be optimised and finetuned using a 

variety of techniques before the start of the training process (Xia et al. 2018; Probst et al. 

2019). Within machine learning which encompasses deep learning, a hyperparameter is an 

internal configuration value or specific function that is set from within the coded architecture 

itself (Bergstra and Bengio 2012; Probst et al. 2019). While some object detection models will 

share some basic hyperparameters such as the batch size (the number of images that is 

examined that are examined at any one instance) or epochs (how many times the total number 

of images are examined), some models will have individual hyperparameters that are 

individual to that specific architecture (e.g. the Faster-RCNN framework will contain 

hypermeters for its two separate functions). Some hyperparameters can be calculated by 

understanding the type of data and how much of it will be involved during the training phases 

(i.e. the batch size depends more on the capacity of the workstation and could be worked out 

prior to training). However, other hyperparameters cannot be calculated beforehand, therefore 

the only way to find optimum values is through trial-and-error methods or by reviewing the 

work of other researchers. Bergstra and Bengio (2012) highlighted two trial-and-error 

methods: one is a systematic method called grid searching where a large portion of 

hyperparameter values is systematically tested at set intervals, moving through a large portion, 

and sometimes all possible choices; the other is a random selection of values. They found that 
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randomly selecting values was the optimum method and proposed that this method produced 

models with equal optimisation to that of grid searching and did so within much greater 

timeframes than using grid searching.  

Chudzik et al. (2020) suggested that one of the most important hyperparameters is the 

Learning Rate (LR) and proposed how there is no universal value for this. The LR is a value 

that the weights within the neural network are updated by, and these weights will be unique to 

each model meaning that the only way to optimise this is through a trial-and-error process. 

Xia et al. (2018) trialled four LRs; 0.01, 0.001, 0.005 and 0.0005, and found that the learning 

rate of 0.001 produced the best results in terms of mAP values obtained when attempting to 

optimise the performance of a CNN model with a 1.4% increase in the performance of the 

worst performing LR of 0.01. Chulu et al. (2019) trialled several LRs and found 0.01 and 0.001 

to be the optimal values for two different epoch rates in terms of mAP values obtained when 

attempting to optimise the performance of InceptionV3. Xia et al. (2018) and Chudzik et al. 

(2020) both suggested that having a LR too high causes the weights to overshoot its optimum 

value, whereas having a LR too small will not allow the weights to keep up with the desired 

development.   

The IOU threshold is another hyperparameter that is utilised to optimise model 

performance. The IOU threshold is calculated in the same way that was shown in equation 1, 

however, this IOU threshold is used during the training stages, rather than within evaluation 

protocols. The optimum IOU can be dependent on the size of the object that is desired to be 

detected meaning that not all of a defined bounding box encompassing a subject need to be 

within a predicted bounding box to be correctly classified. Yan et al. (2019) suggested that 

large objects work well with large IOU thresholds, but smaller objects tend to do worse as 

there is more chance that there will be false positives contained around the objects. Having 

an IOU that is too small could allow too few features to be picked up, which would mean not 

enough feature information would be available to make a suitable correct prediction. Having a 

threshold that is too high can result in a decrease of computer performance by making it 

difficult for the actual and predictive bounding boxes to align under the threshold. Redmon and 
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Farhadi (2018) described how a high IOU threshold significantly decreased the performance 

of YOLO v3, another object detection framework. Redmon and Farhadi (2018), and Xia et al. 

(2018) and Bose and Kumar (2020) proposed that an IOU value of 0.5 produced the best 

performing models in terms of their respective mAP values.  

  

 

1.14 Quality of data  

 

The optimised performance of machine learning models depends on the quality of the data 

fed to it for training (Obermeyer and Emanuel 2016). To train an object detection model, a 

selection of data in the form of images that depict the required subject is required. Each 

individual subject is referred to as a class. For example, if an object detection model was 

designed to classify between dogs, cats and humans, that would mean that it would contain 

three classes and each class would be trained using images that portray each of the three 

objects. At present there is no definitive set number of images required to train an object 

detection model, however, it is generally recommended to use both a large set of images per 

class as well as many images in total overall. This is suggested to be because a model will 

not have enough data to correctly identify specific features within images and will identify 

random collections of pixels that are found shared among the images (Srivastava et al. 2014; 

Wong et al. 2016; Hussain et al. 2017; Shijie et al. 2017; Valan et al. 2019).   

There are also suggestions that an imbalance between the total images within each 

specific class could result in a drop in a model’s potential, as this would produce skewed 

results where one or more classes and their features are trained more robustly than other 

classes and their features (Yue 2017; Batista et al. 2016). To counter this, there are two similar 

techniques that can be utilised known as up-sampling and down-sampling (Batista et al. 2016; 

Pickek et al. 2016). To down-sample, the number of images within the smallest class, known 

as the minority class, would be taken to down sample all other classes until each had the same 
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number of images as the minority class, ultimately balancing the classes. While this does not 

require the addition of new images, it is possible to use randomisation techniques to avoid 

biases when downsizing the groups. Up-sampling is where the class with the highest number 

of images is consider the benchmark, known as the majority class, meaning that the minority 

classes would need to be increased to the same value. This approach could also be extended 

if a number of images exceeding the majority class was desired and thus all classes would 

have to have additional images. However, to achieve up-sampling methods of acquiring 

additional data need to be considered, for example by harvesting new images from sources 

such as the web which is not always possible. Typically, an up-sampling approach would be 

paired with data augmentation. This is the creation of synthetic images by creating copies of 

the original images and then altering their appearance.  

Within the literature there is an inconsistency between the different number of images 

used within their respective models. Some studies have used extremely large numbers of 

images to train the models. Krizhevsky et al. (2012) used 1.2 million total images equally 

spread over 1000 classes which equates to approximately 1,200 for each class when 

developing ‘Alexnet’, an award-winning CNN architecture. The mobile device application 

PlantSnap used over 100 million total images to train its 610,000+ classes although make no 

reference to how these are divided between classes (PlantSnap 2020). Others have used 

much smaller numbers of images with balanced image sets. Xia et al. (2018) used 4800 total 

images, spread equally across 24 classes, equating to approximately 200 images per class. 

However, others have used both small and imbalanced image sets. Chulu et al. (2019) used 

780 and 400 respectively for a two-class model. Patel and Bhatt (2019) used 319, 131 and 

143 images for a three-class model.  

The size of each individual image can affect a model’s optimum outcome. There is no 

current set image resolution for optimum performance that is required when training an object 

detection model, however, it is recommended that images be of a low-resolution quality 

(Sabottke and Spieler 2020). An image with a high resolution would require considerably more 

calculations within the internal algorithms that are involved in the training. This would in turn 
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require extensive finetuning of hyperparameters and would require the computing power of an 

advanced workstation to handle the resulting workload. However, previous studies show that 

images with higher resolution would ultimately produce more accurate results if the resources 

needed to utilise these large images were available; for instance, Lui et al. (2016) reported 

that image resolutions between 300x300 and 512x512 pixels worked optimally when creating 

and reporting the original SSD object detection framework.  

What is present in the images also can affect a model’s optimum outcome. An image 

of interest would contain both a subject of interest and a background. A model’s ability to 

classify a subject can be directly tied in to whether the model can also detect what kind of 

background the subject of interest is set in. Xiao et al. (2020) showed within their research 

that a model’s performance can be skewed by putting desired subjects on backgrounds 

unfamiliar to what the model was taught on. They suggest that this can be both a disadvantage 

and advantageous. Some subjects could potentially skew a model training or chance to 

classify correctly if they are within unfamiliar backgrounds. However, if a subject is going to 

be found within a background exclusively through both the training phase and post-training 

detection phase, this would ultimately result in a higher chance for a positive detection. 

 

 

1.15 Transfer learning  

 

There is a final technique known as transfer learning that can be used to help optimise the 

performance potential of models pre-training and it can be used when working with models 

that have image sets with a small number of images. As mentioned, while there is no final 

number of images required to train a model, to train it specifically from the beginning an 

extremely large number of images would be required to allow a neural network to learn enough 

features to correctly classify a subject (Kermany et al. 2018). This can be troublesome as the 

hours required to collect, organise and label these images will be extremely high. For instance, 
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the team that created the MSCOCO mAP metric also created a large dataset consisting of 

330,00 images where 1.5 million objects were labelled (Lin et al. 2015). They created this set 

so that researchers could test new model architectures while using this image set and 

evaluation metric in unison as a benchmark. During its creation, Lin et al. (2015) mentioned 

that it took over 70,000 combined hours to prepare and organise the images, and that it took 

the combined efforts of over 1000 people to achieve this. This timeframe and team effort would 

be unachievable for the majority of investigations. However, rather than being faced with this 

daunting task of collecting and organising images, models that have been trained on these 

large image sets can be used as steppingstones or checkpoint for models that have much 

smaller image sets.  

The checkpoint model trained on large image sets neural networks consists of layers. 

These layers move from the beginning where it started off learning low order features, to the 

last layers where neural networks learn higher order features, and finally combine these to 

create whole objects. The last few layers can effectively be ‘undone’ by removing any 

information that has been created to form the final objects and leaving behind stored lower 

order features. These undone networks can then have a smaller dataset inserted in place. 

With a large selection of features already established and a large selection of tuned weights 

set within the network, features can be adapted to the new images held within a smaller 

dataset. These image sets can be specific to objects; for example, when the desired object to 

train are vertebrate species, an image set called ‘pets’ would be recommended as it contains 

a large selection of images made up of vertebrate species such as dogs and cats. Therefore, 

its lower ordered features and assigned weights that would be held within the checkpoint 

model would be tailored towards vertebrate species and could be adapted within a new model 

easily. The MSCOCO image set is a general image set, hence the name ‘common objects’, 

where the common objects are considered to be made up of general shapes, meaning that its 

stored features and weights could easily be adapted to a range of specific subjects. This use 

of checkpoints is widely considered as an effective method to help train a model with small 
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datasets and is routinely used within many investigations (Lim et al. 2011; Yang et al. 2016; 

Thenmozhi and Srinivasulu Reddy 2019).  
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2. Aims and Hypothesis  

 

2.1 Aims  

 

The general aim of this study was to create a proof of concept of an automatic identification 

tool of chironomid larvae heads mounted on microscope slides through the application of 

object detection classification and deep learning techniques. The purpose of this project was 

to develop a user friendly and computationally simple or ‘lite’ approach to rapidly classify 

images that could, in the future, be used by ecologists.  This computational process involved 

the creation of an optimal object detection program by testing two different neural network 

architectures and varying object detection parameters that could automatically detect and 

distinguish three previously identified chironomid genera, Cricotopus, Eukiefferiella and 

Rheotanytarsus. For this study, a large set images of taxonomically identified head capsules 

of chironomid larvae mounted on microscope slides, originated from the River Stour (Kent), 

were used for the training, validation and testing of the object detection programs. This study 

then evaluated the models in their complete format, with top models being put through a 

separate testing phase to highlight the actual classification potential for identifying freshwater 

organisms for ecological studies, including biomonitoring.  

 

The specific aims of this study were:  

 

- To develop object detection models (using SSD and Faster-RCNN frameworks) 

with the intention of automatically identifying and classifying images of head 

capsules of chironomid larvae mounted on microscope slides belonging to three 

taxonomic genera, Cricotopus, Eukiefferiella and Rheotanytarsus.  
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- To study the effect of image augmentation within an object detection model for 

the classification of these three genera of chironomid larvae.  

 

- To test how different hyperparameters (Learning Rate, Intersection Over Union) 

affect overall performance of object detection models of the three genera of 

chironomid larvae.  

 

 

2.2 Hypothesis  

 

It is hypothesised that:  

 

- There will be a significant difference in the correct classification of the three 

genera of chironomid larvae between the two object detection frameworks, SDD 

and Faster-RCNN 

 

- There will be a significant difference in the correct classification of the three 

genera of chironomid larvae between the three image sets (A, B and C) 

generated using different augmentation methods.  

 

- There will be a significant difference in the correct classification of the three 

genera of chironomid larvae when varying the learning rate and Intersection over 

union hyperparameters.   
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3. Methodology 

 

3.1 Specimen collection and Taxonomic identification 

 

For the taxonomic identification of chironomid larvae, animals were collected via kick sampling 

at various points on the river stour, within the river benthos and sorted out visually from other 

freshwater invertebrates. Chironomid larvae were then mounted onto microscope slides, 

separating the head capsule from the rest of the body, and the mounted specimens were 

finally identified based on morphological features using taxonomic keys to the taxonomic level 

of genus (Vega et al. 2021). The original collection comprised of 1352 individually prepared 

chironomid head capsules mounted on microscope slides (Fig. 4).  

  

 

Figure 4. Image showing a close-up of a head capsule of a chironomid larva mounted on a 

microscope slide. 
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Some of the chironomid specimens had been identified to the taxonomic level of 

species; however, all were identified to genus level. Therefore, for this study, this was the 

taxonomic level used. Unfortunately, several specimens appeared to be labelled incorrectly, 

and a small number of samples had degraded or had been damaged during the microscope 

slide mounting steps. Therefore, because of this, a total of 863 specimens, which covered 

three chironomid genera (Cricotopus, Eukiefferiella and Rheotanytarsus) were used for the 

object detection experiment (Table 1).  

  

Table 1. Chironomid genera and total number of images of 
identified specimens used for this study.  
Genus Number of images 

Cricotopus 487 

Eukiefferiella 115 

Rheotanytarsus 261 
 

 

 

3.2 Dataset preparation and Image annotation 

 

3.2.1 Dataset construction 

 

A database consisting of a set of images was constructed for use within this investigation 

where these images would comprise of chironomid head capsules. Although the head 

capsules are individually mounted on microscope slides, their minute size means that to 

currently view them, the use of a high-powered microscope was needed (40X total 
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magnification). However, the microscopes available for this study were not equipped with 

image taking capabilities. Therefore, it was decided to develop a camera system that could 

capture images through the eye piece of a regular high-powered microscope. To achieve this, 

a Raspberry Pi (RPI), model 3b+ along with several other components was used (Raspberry 

Pi 2020). An RPI is a low powered and cheap credit card sized single board computer that is 

often used by researchers and hobbyists to construct a whole range of electronic and custom 

devices due to the large amount of modular components that can be added to it. These 

include, for example, wireless environmental monitoring systems (Ferdoush and Li 2014) and 

email-controlled home automation systems (Jain et al. 2014). Pagnutti et al. (2017) reviewed 

the capabilities of an RPI and its ability to capture and process images for use within the 

scientific and engineer community and concluded that it could produce high quality grade 

images. An RPI was set up to run the Raspbian Buster operating system. An RPI official 

camera v2.1 was used to take digital images of the chironomid larvae head capsule slides. 

This is designed to plug straight into the RPI for ease of use. A button was added to a 

breadboard and attached to the RPI at GPIO point 17 so that images could be captured in 

quick succession (Fig. 5).   
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Figure 5. The Raspberry Pi (RPI) device used, showing the components for image capture 

(2-pin push button and RPI camera module) attached to a breadboard. 

 

A script titled RPI_image_capture.py was written to produce a window box that 

displayed a video showing the feed from the camera module. When the button was pushed 

an image was captured and saved into an instructed folder. The camera feed remained visible 

until instructed to cancel. The camera module was mounted on top of an eye-piece of a high-

powered microscope (Leica DM500). As there was no official camera mount available, a 

makeshift mount was created consisting of a piece of plastic sheeting with two thick rubber 

bands. The plastic sheeting was wrapped around one of the two available eye-pieces of the 

microscope and the camera module. One rubber band was placed at the bottom of the plastic 

sheeting to secure it around the eye piece. The camera module was then inserted into the 

tube so that the lens faced towards the eye-piece and it was secured into the plastic sheeting 

with the second rubber band. The plastic sheeting around the eye-piece secured by the first 

band allowed the camera to be moved closer and further from the eye-piece. This allowed for 

initial focusing and positioning of the video feed through a trial-and-error process, much like it 

would be expected if a person was using a microscope. Once a near optimum image was 



 44 

observed, final finetuning of the focusing was done using the course and fine adjustment 

knobs (focusing dials) of the microscope (Fig. 6).  

 

 

Figure 6. High power microscope (Leica DM500) and makeshift camera setup connected to 

Raspberry Pi (RPI). 

 

The 4X objective lens was used for all images (40X total magnification). The 

microscope has an internal light source, so no additional light sources were used. Microscope 

slides containing the mounted specimens of chironomid larvae were placed onto the 

microscope stage, secured in place by the stage clips, and images of the slides were taken. 

Each microscope slide had either three or four chironomid larvae mounted, each one 

containing the head capsule and abdominal segments, and each specimen was placed under 

a circular cover slip (Fig. 7). The label on slide followed standard labelling system for 

presenting specimens mounted on microscope slides (location, site and date system). The 

slide is shown sitting on top of a labelled microscope slide box with general details. The head 

capsules were recorded with a reference number and all its taxonomic classification 

information.  
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Figure 7. Image showing a microscope slide mounted with four chironomid specimens 

obtained from the River Stour, Kent (label indicates that samples were taken the 24th of May 

2015, site EA4). 

  

All identified specimens were photographed (Fig. 8) and the images were labelled with 

their corresponding Excel reference number so that they could be organised and referenced 

with ease. All images used were then organised into their respective taxonomic group, also 

known as their class, at the genus level.   
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Figure 8. Examples of images of chironomid larvae head capsules captured under the 

microscope (40X total magnification) using a camera - Left to right: Cricotopus, 

Eukiefferiella, and Rheotanytarsus. Mandibles, antenna and mentums for each specimen 

has been labelled to allow a visual comparison of relative sizes and shapes of these 

structures which are typically used for morphological identification and taxonomic 

classification. 

 

Cricotopus has wide head capsules with thin, curved mentums, relatively large 

mandibles and no obvious antenna. Euiefferiella has thin head capsules with dark mandibles 

and very dark, curved mentums. Rheotanytarsus has a wide head capsule, mandibles on the 

side of their heads, a flat mentum and very prominent antennae. The relative shapes and sizes 

of the mandibles also vary among the three genera. 

 

 

3.2.2 Creating the bounding boxes  

 

When training an object detection model, each image needs to be labelled or annotated with 

a bounding box creating a set of coordinates that can be used to train the object detection 

models. There are several methods for achieving this, including free opensource methods, 

paid for programmes and paid for service such as outsourcing to third party teams. For this 

investigation, a free opensource python-based programme called LabelImg (Tzutalin, 2015) 
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was used. LabelImg has the ability to annotate several subjects within a single image. Figure 

10 shows a screen grab of LabelImg in operation.  

  

 

Figure 10. Example of an image being annotated with bounding boxes (green square). 

 

Here an image of a Chironomid head capsule is being labelled with a bounding box 

with label Cricotopus. This label can be anything desired by the user, in this case the three 

classes that represent the three Chironomid genera used: Cricotopus, Rheotanytarsus and 

Eukiefferiella. Therefore, all images were labelled with its corresponding bounding box label.   
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3.3 Pre-processing 

 

3.3.1 Quality of data 

 

While all images contain one chironomid head capsule of either of the three chironomid 

genera, the quality of the specimen preparation varied from complete subjects to those that 

had broken apart while conducting mounting procedures or due to general degradation. Some 

images contained rear segments, and some would contain entrails where the head capsule 

and rear segments were detached from each other. Some images also showed wear and 

degradation to the slide itself as air and dirt make their way within the slide. There was also a 

difference in the shade of the background within each slide. Figure 9 shows several different 

images from the genus Cricotopus image collection where differences in quality can be 

observed, such as a difference in background colour, the varying in the completeness of the 

structure of the head capsule itself and the quality of the slide. 
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Figure 9. Head capsules of Cricotopus showing differences in quality of the images. 

 

 

 



 50 

3.3.2 Splitting of test images 

 

When training, validating, and testing the models used within this investigation, the images 

sets used within this investigation needed to split. To do this, the holdout method, was utilised 

wherein a set percentage of the total image set stock is set aside (Yadav and Shukla. 2016). 

These images are taken randomly from the stock of images and there is no set amount for 

this process which can range from various splits. For example, the following researchers utilise 

the holdout method with the following splits for their training and validation: 70%/30% 

(Russakovsky et al. 2015), 80%/20% (Yang et al. 2016) and 90%/10% (Chulu et al. 2019). 

When bringing on a final testing phase, this can then create another split, i.e. a split of 

80%/10%/10% for training, validation and testing respectively. However, this investigation will 

be comparing many different models under different conditions, including different sized 

images sets. While the holdout method would be utilised for the training and validation split, 

set at 90%10% respectively, a set amount of test images was taken from the original stock of 

images so that all models in their finished format could be evaluated equally. 

 

3.3.3 Test image removal 

 
Thirty images were removed from each of the three classes original stock of images so that 

each class still had a fairly large number of images to train with across all image sets. A script 

titled rm_images.py was created to randomly remove 30 images from each class to avoid 

chances of biased based selection (Salkind 2010). With the test images removed this now 

brought the total images within each class to the following (Table 2):  
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Table 2. Image stock totals after removal of test images. 
Genus   Number of images 

Cricotopus 457 

Eukiefferiella 85 

Rheotanytarsus  231 
 

 
 

3.3.4 Creation of image sets 

 

Three image sets were created for comparison and evaluation of models. As proposed by Yue 

(2017) and Batista et al. (2016) it is recommended to keep images within each class balanced, 

so this advice was followed for all image sets. The first image set titled ‘image set A’ comprised 

a small number of images per class. As the class ‘Eukiefferiella’ had the lowest number of 

images (N = 85), this number was picked to be the number used for all classes, and the other 

two classes within this image set were down-sampled to this amount, giving a total of 255 

images across the three chironomid classes. The second image set, titled ‘image set B’ 

comprised 500 images per class, which equated to 1500 images in total. The third image set, 

titled ‘image set C’ comprised 1000 images per class, which equated to 3000 images in total. 

However, this now required additional images to be added to each class for image sets B and 

C. While there are online databases that contain images of chironomid larvae head capsules, 

not all the required genera used were available within these databases. Therefore, this would 

now require image sets B and C to have additional images created through the augmentation 

purposes. Perez et al. (2018) proposed that a model’s performance can be increased if the 

training, validation, and testing images are augmented. Because of this, it was decided to use 

augmentation for training and validation images for image sets B and C. however, as image 

set A used nonaugmented images for both training and validation images, it was decided to 

keep the test images nonaugmented so that could be consistent for all image sets. 
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3.3.5 Up-sampling by image augmentation  

 

With image augmentation, a single image can have duplications but with random 

transformations made to effectively produce images that are considered new to the model that 

uses it to train with. There are a variety of augmentations that can be implemented. This 

includes, but is not limited to, translocations, horizontal and vertical flips, rotations, drop in 

image quality, zooming, colour changes, the removal of random pixels, and the removal of 

sections. There is currently no definitive list of which augmentations provide the best results 

and thus different investigations use different augmentations. For instance, Shijie et al. (2017) 

trialled several techniques but found flipping, rotating, and cropping as the most effective. 

Hussain et al. (2017) trialled several techniques and found flips, rotations and shears as the 

most affective forms of augmentation; they also notably showed a decrease in performance 

with augmentations such as the removal or adding of random pixels.  

While these augmentations can be implemented by the user at an image-by-image 

basis, this could be considered time consuming. Thus, an automated application was used 

specifically for this purpose. While there are a several applications, both free to use and paid 

for, it was decided to use the free to use augmentation Python programme Augmentor (Bloice 

et al. 2017). This has a variety of different augmentation possibilities, which includes rotations, 

horizontal flips, vertical flips, zooms, warps and the removal of random sections of an image. 

Upon the completion of augmentations, a new image kept at the same resolution as the 

original is produced (i.e. an image with the resolution of 300x300 pixels produces a new 

augmented image with a 300x300 pixels resolution). Each augmentation can have a 

probability score between 0 – 1 (0% - 100%) which determines the frequency that each 

augmentation can occur, with each augmentation having its own respective metrics. The 

augmentations are designed to be done at random which creates a non-bias in their creation.  
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For instance, by observing the following code:  

 

p.zoom(probability=0.5, min_factor=0.5, max_factor=1.5)  

 

In this code the augmentation applied is a zoom factor (p.zoom), that has a probability 

of 0.5 (probability of 50%) and can be produced between 0.5 and 1.5, which equates to a 

zoom factor randomly set between the values of 0.5x and 1.5x. The augmentations used for 

this investigation were rotation to the left up to 180 degrees, rotation to the right up to 180 

degrees, zooming in, zooming out, a horizontal flip and a vertical flip. Each augmentation had 

a random probability of 0.5 (50%) applied so that each augmentation had equal chances of 

being applied as well as a combination of all the augmentations. The script titled 

Augmentations.py was used to create all augmented images. Table 3 shows the number of 

original images within each class and the number of images that were augmented to bring this 

to 1000 images.   

 

Table 3. Total original and augmented images for image set C. 
Genus Number of 

Images 
Number of 
augmented 

images 

Total number 
of images 

Cricotopus 457 543 1000 

Eukiefferiella 85 915 1000 

Rheotanytarsus 231 769 1000 
 

 

Table 4 shows the number of original images within each class and the number of the 

augmented images that were needed to bring this to a total of 500 images per class. 
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Table 4. total original and augmented images for image set B. 
Genus Number of 

images 
Number of 

augmented images 
Total number of 

images 

Cricotopus 457 43 500 

Eukiefferiella 85 415 500 

Rheotanytarsus 231 269 500 
 

 

Rather than creating new augmentations, the required number of images were 

randomly selected from the pools of augmented images for each respective class using the 

rm_images.py script.   

 

 

3.3.6 Down-Sampling  
 

To down-sample the majority classes, the rm_image.py script was used to randomly select 85 

images from the original stock within both the Cricotopus and Rheotanytarsus files. This now 

created three image sets for investigation (Table 5).  

 

 

Table 5. Highlights of the three image sets. 
Image set Number of 

images per class 
Total number of 

images 
Image type 

A 85 255 All original 

B 500 1500 Combination 
of original & 
augmented 

C 1000 3000 Combination 
of original & 
augmented 
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3.3.7 Nonbiased image organisation  
 

Using the holdback method, a split of 90%/10% for training and validation was used. The 

rm_image.py script was used with each image set to randomly remove the required images 

from each class from each image set:  

  

Image set A: 10% of 85 = 9  

Image set B: 10% of 500 = 50  

Image set C: 10% of 100 = 1000  

 

All three classes train and validation sets were combined from each respective image 

set which created new image splits within each image set (Table 6).  

 

Table 6. Image sets with their train and validation amounts. 
Image set No. of training 

images 
No. of validation 

images 

A 228 27 

B 1350 150 

C 2700 300 
 

 

3.3.8 Model architecture construction 
 

Object detection models can be constructed using a variety of different components which 

includes an object detection framework, a CNN and an evaluation method. While these can 

be configured manually, the team at TensorFlow have also produced a collection of 

preconfigured models that contain both a pre-constructed model architecture which is linked 

via a configuration file and a pretrained model using this model configuration which has been 
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trained from scratch using a large image data set (I.e. the MSCOCO set or the Pets set) which 

can be utilised for a transfer learning checkpoint (TensorFlow 2020a).   

For use in this investigation, two model configurations were selected: The 

SSD_inception_v2_coco and the Faster_RCNN_Inception_v2_coco. Each model 

configuration is made up of an object detection framework, CNN and evaluation protocol. For 

instance, the SSD_inception_v2_coco consists of the object detection framework SSD, the 

CNN Inception v2, and the evaluation protocol MSCOCO. The SSD and the Faster-RCNN 

frameworks were selected as focal points for comparison within this investigation because 

each framework is recognised as powerful and accurate additions to object detection models, 

yet each is shown to work very differently to one another. However, to act as a standardisation, 

the same CNN and evaluation protocols were picked to work alongside both architectures. 

Therefore, the Inception v2 was picked because TensorFlow has created an SSD model and 

a Faster-RCNN model where both include this particular CNN. The MSCOCO metric protocols 

were selected due to their current use as one of the standard metrics within current object 

detection model evaluation within the majority of literature. The preconstructed networks can 

be downloaded from the TensorFlow model repository which is found on their GitHub page 

(TensorFlow 2020ab). As mentioned, these files also come with a pretrained model that has 

been trained using the MSCOCO image set which has created a general collection of features 

and weights within the internal network with the intention of being adapted when used with a 

new image set. These models were used as transfer learning checkpoints when new models 

were eventually trained.  

Using the three image sets and the two different model configurations, combining these 

created six models for comparison (Table 7). From this point on, all models containing the 

model configurations of SSD_inceptionV2_coco and Faster-RCNN_inceptionV2_coco would 

be referred to as SSD and FR, respectively.  
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Table 7. Model configurations and image sets for 
comparison. 
Model configuration Image set 
SSD A 
SSD B 
SSD C 
FR A 
FR B 
FR C 

 

3.3.9 Learning rate hyperparameter  
 

Following the work of Xia et al. (2018), four LR hyperparameter values (0.1, 0.001, 0.005, and 

0.0005) were chosen for model performance comparison (Table 8). Each model configuration 

would comprise of an object detection framework, an Image set and a LR.  

 

Table 8. Model configuration, image sets and learning rates. 
Model 
configuration 

Image set LR 

SSD A 0.01 
SSD A 0.001 
SSD A 0.005 
SSD A 0.0005 
SSD B 0.01 
SSD B 0.001 
SSD B 0.005 
SSD B 0.0005 
SSD C 0.01 
SSD C 0.001 
SSD C 0.005 
SSD C 0.0005 
FR A 0.01 
FR A 0.001 
FR A 0.005 
FR A 0.0005 
FR B 0.01 
FR B 0.001 
FR B 0.005 
FR B 0.0005 
FR C 0.01 
FR C 0.001 
FR C 0.005 
FR C 0.0005 

 



 58 

3.3.10 IOU Union threshold hyperparameter  

 

Three IOU threshold hyperparameter were chosen while keeping the optimum performing LR 

that worked best for the model configuration and image-set combination. The IOU values 

investigated were 0.5, 0.6 and 0.7. Both the SSD_InceptionV2_coco and Faster-

RCNN_InceptionV2_coco model configurations had an IOU threshold initially set at a value of 

0.6 when it was used to examine the LR threshold.   

 

Table 9. Framework, image set and IOU variation. 
Model configuration Image set IOU 

SSD A 0.5 
SSD A 0.6 
SSD A 0.7 
SSD B 0.5 
SSD B 0.6 
SSD B 0.7 
SSD C 0.5 
SSD C 0.6 
SSD C 0.7 
FR A 0.5 
FR A 0.6 
FR A 0.7 
FR B 0.5 
FR B 0.6 
FR B 0.7 
FR C 0.5 
FR C 0.6 
FR C 0.7 

 

 

3.3.11 Configuration files 
 

The configuration file that was downloaded with the pretrained models links all the separate 

components that make up the model configurations as well as dictating the hyperparameter 

settings and linking the transfer learning checkpoint. A configuration file comes with both the 

SSD_inceptionV2_coco and the Faster-RCNN_inceptionV2_coco. These files have already 



 59 

had hyperparameters set when they were training the respective models that they were 

included in. The majority of the values set for each respective hyperparameter is adequate to 

train models with custom image sets, however, there is a possibility a trained model’s 

performance could be improved by finetuning the hyperparameters. Therefore, these files 

would be used for this investigation but would have their hyperparameters changed in several 

sections. Because each of the object detection frameworks are structured differentially in 

terms of their coding architecture and how they perform object detection, the configuration 

files and their respective hyperparameters are laid out differently. For instance, for the 

ssd_inception_v2_coco.config configuration file:  

 

The number of classes needs to be set to 3 as there are three classes that equate to 

the three chironomid genera:  

  

Line 9: num_classes:3  

  

 The size of the images that are used during the training stages can be determined 

within the configuration file where both the SSD and Faster-RCNN frameworks can 

automatically resize the images before they are utilised. The original image sizes of the 

chironomid specimens were of resolution 1280 x1024 pixels. Several initial trials were 

conducted using a range of resolutions. Firstly, the images were left at their original resolution 

of 1280 x 1024 pixels, but this brought up memory allocation faults during trial training practises 

from the limitations of the GPU used. The file was then changed so that the images were 

resized to 512x512 pixels but again this brought up memory allocation issues. The resolution 

of 300x300 pixels was then trialled, and this was found to show no issue. Therefore, the 

configuration file was set to resized to the aspect ratio of 300x300 pixels.  

 

Line 51: height: 300 

Line 52: width:300 
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The batch size was set to 10. Several trials were set with batch size and a value of 

batch size 10 worked for both the SSD and the Faster-RCNN model configurations so this 

number was used with both to act as a form of standardisation:  

  

Line 136: batch_size:10  

  

The number of images within the validation image set (i.e. for the models using image 

set C, where the validation images within this set is 300):  

  

Line 176: num_examples: 300  

  

Several different epoch values were trialled, and it was found that the mAP value 

plateaued off around 3-5k epochs on the majority of models. The number of epochs was 

therefore set to 5000:  

  

Line 157: num_steps: 5000  

  

This also benefits from a small amount of time to train each iteration which was 

advantageous as there were many iterations of models throughout the investigation. The files 

also contain lines that need to be linked to the label map, transfer learning check point, the 

training images, training image labels, the validation images and the validation image labels 

which are found at lines 172, 151, 170 and 184, respectively.   
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3.4 Training 

 

3.4.1 Workstation  

 

All training was commenced from a workstation with the main contributing components being 

the Central Processing Unit (CPU) – Intel Core i7 9700K 3.6GHz Octa Core and Graphical 

Processing Unit (GPU) – Nvidia GeForce GTX 1060 3Gb, both of which are instrumental in 

leveraging as much performance potential when training an object detection model (Coates et 

al. 2009). The operating system was Linux Ubuntu Bionic beaver 18.04 operating system, with 

Python programming v3.6. All organised images were transferred from the RPI to this 

workstation.  

 

 

3.4.2 TensorFlow Installation  

 

Anaconda is a free open-sourced python package installer and was created with the intention 

of grouping together relevant and synergistic python packages aimed at data sciences and 

machine learning which can be quickly installed. It was installed following the protocols from 

their website (Anaconda 2020). When installed, the Ubuntu terminal was used to create an 

Anaconda virtual environment. This enables all installations and their respective 

dependencies to be installed and allows them to remain unchanged and unaffected by the 

continuous updating of any workstation for the duration of their use. This automatically 

installed Python v3.6 which is used for the duration of this investigation to run the majority of 

scripts and programmes from within the virtual environment.   

The Anaconda distribution package of the TensorFlow object detection API version 

TensorFlow-GPU v1.15 was installed. This install includes a collection of programmes and 
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dependencies that have been compiled by Anaconda that are required for the specific version 

of TensorFlow. This importantly includes Nvidia Cuda and Cudnn both of which are required 

to utilise the GPU when TensorFlow is training the models.   

  

 

3.4.3 TensorFlow ‘Model_Main’ and Premade models 

 

TensorFlow provide a master file system that can be downloaded from their GitHub page 

(TensorFlow 2020a). This contains all the necessary coding files that are required to train a 

variety of machine learning models which includes, but not limited to, object detection models. 

This was downloaded so that the training could be successfully run. Training is run using the 

‘model_main.py” that is provided by tensorflow within their provided master file system 

 

 

3.4.4 Training schedule 

 

Each model configuration and image set trailed one of the 4 LR settings, where each was run 

three times. The resulting MSCOCO evaluation system produced an mAP value which were 

collected. These were used to calculate which LR hyperparameter variation worked best for 

each model configuration and image set by taking the average of the three runs. The three 

runs of the best performing LR models were then put through post training testing phases to 

compare their performances when used in real-time using the test images. Additionally, a 

significance evaluation in the form of a nested ANOVA was used to examine how the two 

model configurations compared, and how their nested image sets and hyperparameter 

variations affected the mAP value across all the trained models. This was then repeated for 
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the IOU hyperparameter variations while using the optimum LR for each model configuration 

and image set combination. 

 

 

3.4.5 Validation 

 

The ‘model_main’ master file system contains internal coding which includes a validation 

process (Tensorflow, 2020c). This utilises the validation images from each of the image sets 

that were split using the hold-out method. This validation can be visual observed from within 

TensorBoard. This validation is represented as a loss value graph and can be viewed against 

the loss value of the training data graph which will indicate if a model is overfitting wherein 

the learned features become to generalised, rather than learning the desired subjects. While 

the validation has no bearing on the development of the model through the updating of 

weights during training processes, the validation can be used to verify if a model is developing 

as intended (Tensorflow, 2020c). The models training can be considered improving if the loss 

of both training and validation graphs is constantly decreasing at each epoch and if each is on 

par with each other in terms of the loss value. If either begins to increase or deviate from 

each other, then this is grounds to speculate that the model has failed to learn its desired 

subject or has generalised its features. 
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3.5 Testing 

 

3.5.1 Post training model preparation 

 

Firstly, the trained models had to be converted to a ‘finished model’ format. Once completed 

these could now be used to classify the 90 test images that were previously set aside. To 

achieve this, a script was created to classify specific objects (the chironomid larva head) from 

the batch of test images available. Figure 11 shows an example of one of the test images 

being classified by a model using the script where it predicted that the chironomid subject 

belongs to the genus Rheotanytarsus, where it has attributed it a confidence score of 100%.  

  

 

Figure 11. Example of a model showing its prediction and confidence score. A chironomid 

larva head capsule has been classified as belonging to the genus Rheotanytarsus with 

100% confidence. 

  

This script could classify a batch of images within a specified folder and given the name 

identify_bacth_images.py. Once executed the script produces a new window on the 

workstation that contains the image with the model’s predicted bounding box, as well as a 
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confidence score (%) of how confident the model calculates its prediction. When the ‘Q’ button 

is pushed, the window will switch to the next image within the folder containing the test images. 

A single prediction for each of the 90 images was then recorded. If there was more than one 

prediction, only the prediction with the highest confidence score would be recorded and all 

lower predictions would be rejected. The threshold that dictates the minimum confidence score 

to accept as a positive classification was decreased to allow all images to be detected 

regardless of the confidence value. The results were then put into a 3x3 confusion matrix 

which is a specific table within machine learning that can be used to assess the performance 

of a trained model (Xu et al. 2019). Using this confusion matrix, a selection of metrics can be 

obtained to evaluate the working performance of the final model.  

  

 

3.5.2 Confusion matrix analysis  

 

Figure 12 shows a 2x2 confusion matrix in a format that is typical of simple classification model 

evaluation. Here, the model’s prediction is pitted against what is actually present. Both can 

either represent a positive or a negative result, and the combination will produce one of four 

possibilities: True Positive, False Positive, False Negative and True Negative. A data set is 

passed through a model where each result is tallied in one of the four outcomes. The amounts 

within each of the four outcomes can then be used to calculate a series of evaluation metrics. 

Equations 2 – 5 are used to calculate the following metrics: Recall, Specificity, Precision, and 

Accuracy.  
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Predicted  
  

Positive  negative  

Actual  
  

Positive  

True Positive 
(TP)  

False Positive 
(FN)  

Negative  

False Negative 
(FN)  

True Negative 
(TN)  

 

Figure 12. A 2x2 confusion matrix typically used for simple classification model evaluation. 

 

Where:  

TP is a correct classification of a subject as a subject  

FP is the number of non-subjects classification as subjects  

FN is the number of subjects not classification as subjects  

TN is the non-classification of a non-subject 

 

 

Within classification, Accuracy is the measurement of the ratio between total correct 

predictions to the overall total predictions (Eq. 2) (Landgrede et al. 2006; Chudzik et al. 2020), 

defined as:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

(2) 

 

However, this current method would only work on a 2-class classifier. When a classifier 

takes on >2 classes, the confusion matrix and its respective equations need to be altered to 

accommodate the extra classes. While a 2-class classifier creates absolute values for the 
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whole model, a model with >2 classes will require the working of individual metrics for each 

respective class and then an average of all classes taken. The models used in this study 

consisted of three classes (the three chironomid genera) and thus the confusion matrices were 

altered accordingly to accommodate this. Figure 13 shows the 3x3 confusion matrix with the 

three classes: Cricotopus, Rheotanytarsus and Eukiefferiella.   

 

  
  

  
  

 Predicted   

Cricotopus  Rheotanytarsus  Eukiefferiella  

Actual  

Cricotopus Tcc  Fcr  Fce  

Rheotanytarsus Frc  Trr  Fre  

Eukiefferiella Fec  Fer  Tee  

 

Figure 13. A 3x3 confusion matrix as used in this study for the classification of three 

chironomid genera. 

 

  Where:  

Tcc is the correct identification of a Cricotopus with a prediction of Cricotopus 

Fcr is the incorrect identification of a Cricotopus with a prediction of Rheotanytarsus 

Fce is the incorrect identification of a Cricotopus with a prediction of Eukiefferiella 

Frc is the incorrect identification of a Rheotanytarsus with a prediction of Cricotopus 

Trr is the correct identification of a Rheotanytarsus with a prediction of Rheotanytarsus 

Fre is the incorrect identification of a Rheotanytarsus with a prediction of Eukiefferiella 

Fec is the incorrect identification of a Eukiefferiella with a prediction of Cricotopus 

Fer is the incorrect identification of a Eukiefferiella with a prediction of Rheotanytarsus 

Tee is the correct identification of a Eukiefferiella with a prediction of Eukiefferiella 

 

 And the accuracy equation for the Cricotopus class now becomes: 
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Cricotopus Accuracy = !""	$	(!&&$!'')
!""		$	()"&	$	)"*)	$	()&"$)'")	$	(!&&$!'')

 

 

(3) 

3.5.3 Confidence threshold analysis 

 
TensorFlow attributes a confidence score to each object predicted when a model is used post 

creation. This value is between 1-100% (where 0% would be no detection). The 90 test images 

were passed through each model using the identify_batch_images.py script. Again, threshold 

was decreased so that all detections were made, thus allowing all confidence scores to be 

recorded. If there was more than one prediction, only the prediction with the highest 

confidence score would be recorded and all lower predictions would be rejected. All images 

then had their confidence values tabulated. From this, each model had three metrics 

calculated: the mean confidence value which was derived from averaging of all confidence 

scores obtained, the minimum confidence value which was derived from the lowest value 

given from within the 90 test images, and the maximum confidence value which was derived 

from highest confidence score given from within the 90 test images.  

 

 

3.6 Statistical analysis 

 

To test if there was a significant difference among the models, a nested Analysis of Variance 

(ANOVA) was performed on the mAP scores among on LRs nested within Image Sets nested 

within Models (SDD and FR). The data was first examined for normality using methods 

outlined by Holmes et al. (2016). A post hoc examination was used when significant 

differences were found among the nested groups. This nested ANOVA test was chosen as it 
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would allow an examination of the relationship between the two object detection frameworks, 

and how the image sets and learning rates all work together to produce the overall mAP 

values. This statistical analysis was performed using Minitab v19 (Minitab, LLC). 
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4. Results 
 

4.1 Learning rate mAP analysis 

 

The training of the six different models’ configurations had their LR varied (0.01, 0.001, 0.005, 

0.0005) and each was run three times. All these models final mAP is reported in Figure 14. 

The highest mAP value obtained for the SSD models was 0.698 produced by the configuration 

SSD-B-0.005. The lowest mAP value obtained for the SSD models was 0.507 produced by 

the configuration SSD-A-0.01. The highest mAP value obtained for the FR models was 0.747 

produced by the configuration FR-A-0.001. The lowest mAP value obtained for the FR models 

was 0.624 produced by the configuration FR-A-0.0005.  
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A) 

 

B) 

 

 

Figure 14. mAP values in ascending order for A) SDD models and B) FR models, each 

under four different Learning Rates (LR) and three replicates. 

  

The three runs for each LR were then averaged; averaged mAP values for SDD ranged 

between 0.579 and 0.678, and for FR ranged between 0.639 and 0.744; in all cases FR 

showed larger mAP values than SDD (Fig. 15). The averaged mAP values indicated which LR 

was most effective for each model and image-set combination, and thus these runs were 

brought forward for evaluation and the values were kept when investigating the second 

hyperparameter IOU.  
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Figure 15. Average mAP values for the three replicate runs of each model configuration 

(SDD and FR). 

  

Figure 16 shows the mAP values for the best performing SSD and Faster-RCNN 

focused model configurations with the alternating LR and how they developed over the course 

of training for the 5000 epochs. The SSD models all started producing mAP values near 0 and 

increased over time. However, the FR models all produced starting mAP values over 0.4, 

increased rapidly and then levelled off and maintained a mAP value of approximately 0.7.  
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A) 

 

B) 

 

 

Figure 16. Best performing models for A) SDD models and B) FR models, each under four 

different Learning Rates (LR) and three replicates. The models were run for 5000 epochs. 

 

 

4.2 Learning rate confusion matrix analysis  

 

The confusion matrix evaluation protocol outlined in Figure 13 were then performed on all of 

the best performing models that were brought forward with their respective runs.  
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Table 10. Confusion matrix results for the best performing model configurations. 

Model Config Run Accuracy 

SSD-A-0.0005 1 0.967 
 2 0.978 
 3 0.978 
SSD-B-0.001 1 0.956 
 2 0.978 
 3 0.978 
SSD-C-0.001 1 0.978 
 2 0.978 
 3 0.956 
FR-A-0.01 1 0.956 
 2 0.967 
 3 0.978 
FR-B-0.001 1 0.978 
 2 0.978 
 3 0.978 
FR-C-0.005 1 0.978 
 2 0.978 
 3 0.956 

 

 

Table 10 displays the accuracy score for all the best performing model configurations 

across their three runs. There was little difference in the values between all the models and 

their runs. For instance, the worst accuracy score of 0.955 was achieved by the configuration’s 

SSD-2-0.001 run 1, SSD-3-0.001 run 3, FR-1-0.01 run 1 and FR-3-0.005 run 3. The best 

performing accuracy score of 0.977 was achieved by all the model configurations on at least 

one run and was achieved by all three runs on the model configuration FR-B-0.001.  

 

  

4.3 Learning rate confidence score analysis  

 

The confidence score evaluation protocols were then performed on all of the best performing 

models that were brought forward with their respective runs. Table 11 displays the average 

confidence score, minimum confidence score and maximum confidence score. The highest 
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average confidence score of 99.9% was achieved by configuration FR-B-0.001 run 2, 

however, all the FR models achieved an average confidence score of above 99%. The lowest 

average confidence score of 80.92% was achieved by model configuration SSD-C-0.001 run 

3. All SSD models achieved an average confidence score within the range of 80-90% except 

for SSD-A-0.0005 run 2 which achieved a score of 91.01%. The minimum confidence score 

achieved across all configurations was 03% which was achieved by configuration SSD-

A0.0005 run 2. The maximum confidence score of 100% was achieved by all configurations. 

The lowest minimum confidence score for the FR model of 42% was achieved by configuration 

FR-A-0.01 run 3. The highest minimum score for the FR models of 95% was achieved by 

configuration FR-B-0.001 run 3. The highest minimum score for the SSD models was 27% 

and was achieved by the configuration SSD-B-0.001 run 3.  

  

Table 11. Confidence score analysis for best performing model configurations for SDD 
and FR models. 
Model Config Run Av Conf (%) Min Conf (%) Max Conf (%) 

SSD-A-0.0005 1 83.430 07 100 
 2 91.010 03 100 
 3 87.640 14 100 
SSD-B-0.001 1 86.840 19 100 
 2 82.950 13 100 
 3 89.910 27 100 
SSD-C-0.001 1 86.100 13 100 
 2 86.780 05 100 
 3 80.920 15 100 
FR-A-0.01 1 99.040 71 100 
 2 99.560 78 100 
 3 99.300 42 100 
FR-B- 0.001 1 99.430 81 100 
 2 99.900 93 100 
 3 99.800 95 100 
FR-C-0.005 1 99.740 93 100 
 2 99.180 69 100 
 3 99.530 84 100 
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4.4 Statistical analysis for all LR models 

 

A nested ANOVA test was used to evaluate for significance of the mAP scores achieved by 

all model configurations by comparing the two frameworks and how each was influenced by 

the image set and LR (Table 12). There was a significant difference between the two 

frameworks and among the different learning rates; however, there was no significant 

difference among the different learning rates. This produced an R2 value of 81.87%.  

 

Table 12. Nested ANOVA of mAP values with three levels (Framework, Image set and 
Learning rate). 
Source DF SS MS F P 
Framework 1 0.114 0.114 31.806 0.005 
Image Set 4 0.014 0.004 1.840 0.165 
Learning Rate 18 0.035 0.002 2.583 0.005 
Error 48 0.036 0.001 

  

Total 71 0.200 
   

 

 

After removing Image Set from the nested design, the nested ANOVA showed 

significant differences in mAP values between the two models, and among the different 

learning rates within the models (Table 13). This produced an R2 value of 68.20%.  

  

Table 13. Nested ANOVA of mAP values with two levels (Framework and Learning 
rate). 
Source DF SS MS F P 
Framework 1 0.114 0.114 30.920 0.001 
Learning Rate 6 0.022 0.004 3.720 0.003 
Error 64 0.064 0.001 

  

Total 71 0.200 
   

 

 

The post-hoc test showed that there was a significant difference between the FR 

architecture and the learning rate of 0.0005 and that there is significance between the SSD 

architecture and the learning rates 0.01 with p-values <0.05 (Table 14).  
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Table 14. Results of post-hoc examination for Learning Rate 
among the two different frameworks (SSD and FR). 
Term  
LR(Framework) 

P-Value 

0.0005(FR) 0.025 
0.0010(FR) 0.826 
0.0050(FR) 0.225 
0.0100(FR) 0.397 
0.0005(SSD) 0.138 
0.0010(SSD) 0.050 
0.0050(SSD) 0.641 
0.0100(SSD) <0.001 

 

 

 

4.5 IOU mAP analysis  

 

The training of the six different model configurations had their IOU varied three times (at 0.5, 

0.6 and 0.7), and each was run three times. All these models final mAP is reported in figure 

17.  
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A) 

 

B) 

 

 

Figure 17. mAP values arranged in ascending order for A) the best SDD models and B) the 

best FR models, each under three different IOUs (0.5, 0.6 and 0.7) and three replicates. 

  

The three runs for each IOU were then averaged; averaged mAP values for SDD 

ranged between 0.639 and 0.679, and for FR ranged between 0.713 and 0.745; in all cases 

FR showed larger mAP values than SDD (Fig. 18). The averaged mAP values indicated which 

IOU was most effective for each model and image-set combination, and thus these runs were 

brought forward for evaluation.  
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Figure 18. Average mAP values for SDD and FR models, each under three different IOUs 

(0.5, 0.6 and 0.7) and three replicates. 

  

Figure 19 shows the mAP values for the best performing SSD and FR configurations 

with the alternating IOU and how they developed over the course of training for the 5000 

epochs. After 100 epochs, the SSD models started with mAP values near 0 and increased 

over time but remained below 0.7. However, the FR models always started with mAP values 

over 0.4 after 100 epochs, increased rapidly, then levelled off and maintained mAP values 

above 0.7.  
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A) 

 

B) 

 

 

Figure 19. mAP values for the best performing for A) SDD and B) FR models, each under 

three different IOUs (0.5, 0.6 and 0.7) and three replicates run for 5000 epochs. 
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4.6 IOU confusion matrix analysis  

 

The accuracy values for all the best performing models across their three runs are shown in 

Table 15. There was little difference in the values between all the models and their runs. For 

instance, the worst accuracy score of 0.944 was achieved by the FR-A-0.5 run 1, and the best 

performing accuracy score of 0.9777 was achieved by configuration SSD-B-0.5, SSD-C-0.6, 

FR-B-0.6 and FR-C-0.7 on at least one of their runs.  

 

Table 15. Confusion matrix analysis for best performing models. 
Model Config Run Accuracy 

SSD-A-0.5 1 0.967 
 2 0.967 
 3 0.967 
SSD-B-0.5 1 0.956 

 2 0.978 

 3 0.967 
SSD-C-0.6 1 0.978 
 2 0.978 
 3 0.956 
FR-A-0.5 1 0.944 
 2 0.967 
 3 0.967 
FR-B-0.6 1 0.978 
 2 0.978 
 3 0.978 
FR-C-0.7 1 0.978 
 2 0.956 
 3 0.978 
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4.7 IOU confidence score analysis  

 

Performing the confidence score evaluation protocols on all the best model configurations 

showed important differences between SSD and FR (Table 16). The highest average 

confidence score of 99.99% was achieved by the configuration FR-B-0.6 run 2, however, all 

the FR models achieved an average confidence score of above 99%. The lowest average 

confidence score of 80.92% was achieved by configuration SSD-C-0.6 run 3. The highest 

average confidence score for the SSD was 91.98 achieved by SSD-A0.5 run 2. The minimum 

confidence score achieved across all configurations was 4% which was achieved by SSD-A-

0.5 run 2. The maximum confidence score of 100% was achieved by all configurations. The 

lowest minimum confidence score for the FR model of 52% was achieved by FR-C-0.7 run 2. 

The highest minimum score for the FR models was of 95% was achieved by FR-B-0.6 run 3. 

The highest minimum score for the SSD models was 44% and was achieved by the MC SSD-

B-0.5 run 3.  

 

Table 16. Confidence score analysis.  
Model Config  Run Av Conf Min Conf Max Conf 
SSD-A-0.5  1 89.420 4 100 
   2 91.620 13 100 
   3 81.000 26 100 
SSD-B-0.5  1 86.370 12 100 
   2 91.980 39 100 
   3 91.170 44 100 
SSD-C-0.6  1 86.100 13 100 
   2 86.780 5 100 
   3 80.920 15 100 
FR-A-0.5  1 99.180 64 100 
   2 99.460 57 100 
   3 99.200 67 100 
FR-B-0.6  1 99.430 81 100 
   2 99.990 93 100 
   3 99.800 95 100 
FR-C-0.7  1 99.620 85 100 
   2 99.070 52 100 
   3 99.540 69 100 
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4.8 IOU significance evaluation  

 

A nested ANOVA test was used to evaluate for significance of the mAP scores achieved by 

all model configurations by comparing the two frameworks and how each was influenced by 

the image set and IOUs (Table 17). There was a significant difference between the two 

frameworks and among the different image sets; however, there was no significant difference 

among the different IOUs. This produced an R2 of 85.09%.  

  

 
Table 17. Nested ANOVA of mAP values with three levels. 
Source DF SS MS F P 
Framework 1 0.067 0.067 29.790 0.005 
Image-Set 4 0.009 0.002 18.398 <0.001 
IOU 12 0.002 0.000 0.324 0.980 
Error 36 0.014 0.000   
Total 53 0.091    
 
  

After removing IOU from the nested design, the nested ANOVA showed significant 

differences in mAP values between the two models, and among the different image sets within 

the models (Table 18). This produced an R2 of 83.48%. 

 

Table 18. Nested ANOVA of mAP values with two levels (Framework & Image set). 
Source DF SS MS F P 

Framework 1 0.066831 0.066831 29.79 0.005 
Image-Set 4 0.008974 0.002243 7.18 <0.001 

Error 48 0.015006 0.000313   

Total 53 0.090811    
 

 

The post-hoc test showed that there was a significant difference for FR with Image  

Sets A and C and for SSD with Image Sets B and C with with p-values <0.05 (Table 19).  
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Table 19. Results of post-hoc examination.  
Term  P-Value 

ImageSet(Framework) 
 

  A(FR) 0.044 

  B(FR) 0.194 

  C(FR) 0.001 

  A(SSD) 0.215 

  B(SSD) <0.001 

  C(SSD) 0.008 
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5. Discussion  

 

This investigation set out to develop an object detection model that would be able to classify 

three different chironomid genera (Rheotantarsus, Cricotopus and Eukiefferiella). To study 

this, 863 head capsules of three chironomid larvae were photographed and subjected to 

classification by using an object detection system using the frameworks SSD and Faster-

RCNN. As a proof of concept, the results demonstrated that object detection systems and 

deep learning techniques can be successfully used for the correct identification and 

classification of chironomid larvae mounted on microscope slides. The use of object detection 

and deep neural networks is a relatively novel approach for identifying organisms for 

ecological studies with potential for future implementations for biomonitoring freshwater 

ecosystems.  

To achieve the best performance in terms of classification of the three chironomid 

genera, several approaches were investigated during the development of the models. This 

included comparing two object detection frameworks, comparing three different images sets, 

and comparing the effect of changing two different hyperparameters at separate times, the 

Learning Rate (LR) and Intersection Over Union (IOU) threshold. By reviewing literature, three 

hypotheses were proposed for the performance of the different models evaluated based on 

the MSCOCO mAP scoring system. The first hypothesis proposed that there would be a 

significant difference in the correct classification of the three genera of chironomid larvae 

between the two object detection frameworks, SDD and Faster-RCNN. The second proposed 

that there would be a significant difference in the correct classification of the three genera of 

chironomid larvae between the three image sets (A, B and C) generated using different 

augmentation methods. The third proposed that there would be a significant difference in the 

correct classification of the three genera of chironomid larvae when varying the learning rate 

and Intersection over union hyperparameters. Moreover, a series of novel post training 

evaluations were conducted on all the best performing models to see how their post training 
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performance, as an actual detection model for chironomid larvae would compare against each 

other.   

 

 

5.1 Object detection framework significance  

 

There were significant differences between the means of both object detection frameworks, 

SSD and FR. Almost all of the models using FR achieved mAP values over 0.7 with the highest 

reported value of 0.747, whereas the models using the SSD framework achieved mAP values 

under 0.7 with the highest reported value of 0.698. This difference between the FR and SSD 

was seen during the second round of hyperparameter testing where the IOU threshold was 

varied. Therefore, it can be ascertained that the FR framework is better than SDD, as 

expected. Previous studies had already described the greater mAP scores for FR than SSD; 

for example, Arcos-Garcia et al. (2018), and Janahiraman and Subuhan (2019). 

This difference in object detection performance could be due to the way that the 

frameworks develop over their specific training sessions. For instance, SSD frameworks took 

more time to reach the highest mAP scores, and the first reported mAP value was near 0 at 

epoch 100. However, the FR frameworks almost instantly reached a mAP of over 0.4 by epoch 

100, and some models even reached mAP values over 0.6 and near 0.7. Interestingly, and to 

the best of the author’s knowledge, there is no literature that explains why either framework 

would develop in such ways. A possible explanation could be that the finetuning checkpoint 

that was created with the FR framework was able to produce a set of features and weights 

that were more suited towards the classification of chironomid larvae, and their respective 

features needed to make an accurate prediction when training was conducted.   
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5.2 Image sets significance  

 

When focusing on the models where the LR was varied, the nested ANOVA indicated that 

there was no significance between the image sets (Table 12), although the image sets did 

have some impact on the performance of the models. When the image set group level is 

included within the nested ANOVA, the R2 was 81.87%. When the image set level is removed, 

the R2 was 68.20%. This would indicate that while it was not significant, the image sets did 

have bearing on the overall relationship of the different levels of the model.  

When reviewing the results from models from the IOU analysis, the results do suggest 

that there is significance within the values obtained from the image sets. By observing Table 

18, the p-value was <0.001 which would indicate it being strongly significant. By observing 

Table 19, a post hoc examination indicated that there was a relationship between the two 

frameworks and the three image sets. However, there was no consistency in which image sets 

have produce significant results. The SSD framework was significant when paired with image 

set A and C while the FR framework was significant when paired with Image sets B and C. 

Image set C, the largest of the three image sets agrees with discussed literature, however, it 

was somewhat surprising that Image Set C did not have a greater effect with the two 

architectures and Learning Rates. Previous studies indicate that the larger the image or data 

set, the more relationships within the network itself that can potentially be constructed 

(Srivastava et al. 2014; Shijie et al. 2017; Hussain et al. 2017; Wong et al. 2016; Valan et al. 

2019), yet this did not produce the strongest evidence of significance.  

Examples of image set numbers from the literature indicate that there is a general lack 

of consistency when deciding on the total number of images to include for training (Krizhevsky 

et al. 2012; Xia et al. 2018; Chulu et al. 2019). While it is generally considered that when 

training a model from scratch, there is a need for a large image set to allow a build-up of 

features and weights (Kermany et al. 2018), this can be alleviated by using a finetuning 

checkpoint, thus negating the need for a large image set. However, a lack of consistency has 
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created a lack of guidance that could instruct researchers on how to utilise their specimens to 

create their own image sets to eventually create their own automated classifiers. For example, 

the original chironomid collection used in this investigation could be seen as both small in size 

and imbalanced between the classes. The collecting of chironomids was part of several 

surveys across a time frame of several years (Vega et al. 2021) and several factors (ecological 

and/or methodological) could have led to the resulting imbalanced and small amounts of 

chironomid specimens available for this investigation (in relevance at least to the numbers 

needed for the training of a computer-based model). Similar small and imbalanced specimen 

numbers can be observed in similar chironomid surveys (Johnson and Bligh, 1995; Orendt 

1999; Lencioni et al. 2012) and this is mirrored in surveys of other animal groups (Smart et al. 

2005; Avenant 2011). This suggests that if another researcher within this field wanted to create 

their own automated classifier, they would most likely be faced with similar imbalanced 

specimens’ groups and a small number of specimens to work with. The inconsistency between 

the literature and the results obtained within this investigation indicate that perhaps with the 

use of finetuning checkpoint along with a correct framework is more important to the 

performance than the number of images required and whether they are augmented not when 

attempting to optimise a model.  

  

 

5.3 Hyperparameter significance  

 

When focusing on the hyperparameter testing groups, the combination of Learning Rate (LR) 

and architecture showed significant relationships. Significant effects were found when the 

SSD framework was paired with LR 0.01, and when the FR framework was paired with LR 

0.0005. Previous studies show no guidance or universal LR value (Chudzik et al. 2020), 

indicating that each model and its respective neural network will require an optimisation of its 

own individual LR. This suggests that the LR rates that performed best with their respective 



 89 

frameworks were indeed the most optimum out of the four LR trailed. When reporting the SSD 

framework, Liu et al. (2016) set the learning rate at 0.001 and Ren et al. (2016) set the LR at 

0.003 when reporting the FR frameworks, further reinforcing the idea that this value is 

independent to the individual model; this also means that LR must be finetuned on a modelby-

model basis to achieve the best possible results from the training sessions. 

There was no significant relationship between the different IOU values trialled and 

mAP values. However, there was a small effect of model performance (1.61% difference in 

the strength of the relationship with and without IOU). Thus, all together, alternating the IOU 

threshold hyperparameter value could be considered negligible in the general performance 

output of the models in terms of its mAP score. When observing the individual mAP that was 

obtained from each individual model configuration, image set, IOU and run, an IOU of 0.5 did 

increase the mAP value of the best performing FR model, however this increase was only by 

0.02%. 

 

 

5.4 Statistically reviewing the performance of a whole model  

 

A nested ANOVA was chosen for model evaluation because it would allow to see if there was 

variation in mAP scores between the two architectures and within nested subgroups of image 

sets and hyperparameters. The nested ANOVAs showed significant differences in mAP 

between the two frameworks, as expected from previous studies, however, any significance 

between the remaining factors and variables within the model had not been explored 

previously. A nested ANOVA can effectively be broken down into its individual levels where 

each could be considered a one-way ANOVA (Bentler and Satorra 2010). By following the 

protocols of a one-way ANOVA (Doncaster and Davey 2007), a minimum of three repetitions 

is needed to review the means of a group for significance, therefore justifying that the number 

of repetitions of each respective model chosen was enough to meet the requirements and 
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thus reinforce the significant values obtained. However, this justification and the significance 

would have been greater if there were more repetitions performed. Unfortunately, due to the 

length of time required to train each model and the time frame available, only three replicate 

runs were possible.  

Furthermore, previous studies on object detection and computer vision models either 

do not carry out replications or examine the variances among replicate runs while reporting 

overall performance. Within the life sciences, replication is fundamental for confirming that 

observed patterns are not due to chance (Cassey et al. 2006). Yet within the computer 

sciences, replication appears to be unreported. Without replication, statistical examinations 

and significance tests cannot be performed. As mentioned in the introduction, almost all object 

detection models exclusively report one single mAP value (see for example Girshick et al. 

2014; Liu et al. 2016; Ren et al. 2016; Ren et al. 2017; Arcos-Garcia et al. 2018; Shi et al. 

2019; Bose and Kumar 2020). mAP scores are typically ranked against models of different 

architecture construction, yet the replication of a single object detection model has yet to be 

observed within the computer science literature. By observing the repetition of runs within this 

study, the results obtained showed important variation and did not produce exact results each 

run. By observing the range of mAP values obtained from multiple runs of all the model 

configurations, there were differences between 2% and 10%. Achieving a small gain in mAP 

performance is often considered an achievement; for example, Xia et al. (2018) reported a 

1.7% improvement from their LR finetuning experimentation and a 3.72% performance 

potential of their custom model when reviewed against a VGG16 CNN model. It appears 

perplexing that such an opportunity to exploit the possibility of performance gains is not 

reported or investigated.   
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5.5 mAP values  

 

Using the MSCOCO metric system, the model that produced the highest mAP value (0.751) 

was configuration framework FR, Image set C, Learning rate 0.005 and IOU 0.7. If following 

the protocols set out by the majority of literature within computer science, this configuration 

would be considered the most optimum (Girshick et al. 2014; Liu et al. 2016; Ren et al. 2016, 

2017; Arcos-Garcia et al. 2018; Shi et al. 2019; Bose and Kumar 2020). The MSCOCO mAP 

results obtained from this investigation were high when compared to other investigations. For 

instance, the mAP obtained by the TensorFlow team when training the Faster-RCNN and SSD 

finetuning checkpoints reported final MSCOCO mAP values of 0.28 and 0.24 respectively.  

Janahiraman and Subuhan (2019) reported mAP scores of 0.28 and 0.22 for the Faster-RCNN 

and SSD frameworks, respectively. Lui et al. (2016) produced a mAP value of 0.28 when first 

reporting the SSD. Ren et al. (2016) produced a mAP of 0.22 when first reporting the 

FasterRCNN framework. This are all lower than any of the mAP values obtained here from 

these same frameworks when using the MSCOCO metric. This could indicate that the results 

obtained here are due to an error produced from within the training protocols. However, the 

mAP obtained in those other studies have used the MSCOCO metric in unison with the 

MSCOCO image set as a way to benchmark their model analysis. This investigation used a 

custom image set which has unknown expectations and is also built on top of the work of these 

large image sets. Thus, it is entirely possible that the mAP values obtained here for chironomid 

genera detection are correct for the combination of model configurations along with the 

weights already produced within the finetuning checkpoint. There is unfortunately a lack of 

investigations that utilise their own image sets with object detection frameworks to make direct 

comparisons against reported MSCOCO mAP values.  
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5.6 Post training performance  

 

Within object detection there is little observable post training performance protocols described 

in the literature. Again, while most studies report the mAP value, which is obtained during the 

training phase, there is little attention given to how the models perform in real time once 

training has ceased and the model is in its finished form. Because of this, it was decided to 

conduct a series of novel post training evaluations as a way of highlighting and comparing the 

performance potentials, which was ultimately the goal of this investigation. Firstly, a script was 

written that would allow the finished models to classify a batch of 90 images which consisted 

of 30 images from all three genera, one after the other. The results of this were then input into 

a 3x3 confusion matrix which could then be used to work out a series of evaluation metrics.  

Typically, confusion matrix analysis is used within classification model and not within 

an object detection model (Xu et al. 2019). Classification models are designed to only make 

one prediction per image whereas an object detection model can classify multiple objects at 

any one time (Lui et al. 2016; Rawat et al. 2017). To allow this to still work effectively, it was 

decided to negate any multiple predictions and only accept a single prediction with the highest 

confidence value as the correct prediction. To make sure that all images could be classified, 

the confidence threshold was decreased until all subjects within each image were successfully 

classified. From this the accuracy score could be produced. 

Interestingly, there was very little difference between any of these models in terms of 

accuracy. All models were able to positively classify the majority of the test images. All models 

achieved an accuracy between 94.4% - 97.8%. The most mistakes any model made was a 

total of 4 images incorrectly predicted, and the least mistakes any model made was 2 images 

incorrectly predicted. Moreover, almost all of the incorrect predictions across all models were 

the same images. two of the images belonging to Eukieferriella were incorrectly classified by 

all the models as either Cricotopus or Rheotanytarsus (Fig. 20). However, one specific 

configuration (SSD-A-0.005) did correctly classify the image on the right.  



 93 

  

 

Figure 20. Images of Eukiefferiella incorrectly classified by all models. From left to right, 

image A classified as Cricotopus, and image B classified as Rheotanytarsus. 

  

The configuration SSD using image set A and using a LR value of 0.005 gave an 

extremely low confidence value of 0.3, 0.7 and 0.14 across the three runs when correctly 

predicting the image. The fact that all 36 model configurations incorrectly classified one image 

as the same incorrect genus, and 33 model configurations incorrectly classified another image 

as the same incorrect genus, suggest that there could have been an issue with these images 

themselves. All these images were identified by a third party using visual methods at a 

previous date. Literature indicates that this method is prone to mistakes (Wiederholm 1983; 

Haase et al. 1998), so it is logical to suggest that perhaps these images were misidentified 

during visual identification and the models are in fact attempting to identify these correctly.   

For the second phase of the post training evaluation, a review of the confidence values 

attributed to each image prediction was conducted. Again, any incidences where there was 

more than one prediction only included the prediction with the highest confidence score and 

all other would be negated. Using this method, three metrics were devised: 1) the average 

confidence score where all confidence scores for all predictions, either correct or false, were 

averaged out, 2) the highest confidence scores were then recorded for each model, and 3) 

the lowest confidence score was then recorded for each model. However, there is a difference 
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between the model’s lowest confidence scores and the average confidence scores obtained. 

All the FR models across both groups achieved an average confidence score of above 99%. 

However, the SSD models achieved average values between 80% and 90%. The SSD models 

produced several extremely low confidence scores values with several models producing a 

value <10%, whereas the lowest confidence score produced by an FR was 42%.  

These novel methods for reviewing the post-training performance of the models have 

shown many differences between them. It should be noted that not all the models trained were 

put through these evaluation tests. Only the models that achieved the best performing 

hyperparameter settings and their respective runs were put through post-training performance 

evaluation. This meant that although the configuration of FR-A-0.001 achieved the highest 

mAP value out of all models, it was not included within the evaluation process because the 

other runs within this series produced low mAP values, thus lowering the average mAP. 

Therefore, the models put through this evaluation were only the ones that produced the 

highest average mAP across the three runs, which were then used to calculate the most 

optimum hyperparameter setting for each framework and image set combination.  

  

 

5.7 Potential use as a biomonitoring tool 

 

For a biomonitoring tool to assist or even replace current methods, one would expect this tool 

to work on par or better than current methods. Chironomids can be used exclusively for the 

biomonitoring of ecosystems, but this method relies on the correct identification to as high of 

a taxonomy level as possible (García and Añón Suárez 2007; Rawal et al. 2018). At present, 

the two lead methods for the identification of chironomids are by visual identification 

(Wiederholm 1983; Haase et al. 1998) and through genetic barcoding (Valentini et al. 2009). 

To identify chironomids visually, an expert taxonomist and a microscope is required. The 

current best method for viewing under a microscope is to remove the head capsule of a 
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specimen and to display it as flat as possible on a microscope slide so that all features of the 

head (mandibles, mentum, antennae, position of eyes, and other morphological characters) 

can be observed (Beckett and Lewis 1982). This method can be time consuming and is prone 

to mistakes (Wiederholm 1983; Haase et al. 1998), even from experts, however the 

microscope slides can be stored, reused and reanalysed for many years to come. 

  Identification using genetic barcoding can be done on single specimens using 

DNA barcoding and from environmental samples using eDNA metabarcoding. DNA barcoding 

involves the identification of specimens using the mitochondrial CO1 gene which is currently 

the best gene for the identification of invertebrates (Valentini et al. 2009). For chironomid 

larvae, this requires the destruction of the specimen to extract DNA for molecular amplification 

and DNA sequencing. This process does require skill to use the scientific instruments 

correctly, and the scientific instruments and reagents can be expensive, even if pooling of 

samples is possible. However, if done correctly, this process can identify easily up to the 

taxonomy level of species. eDNA metabarcoding can identify genera and/or species of 

chironomids from an environmental source, such as water meaning that specimens do not 

have to be collected and harvested to extract readable genetic makeup (Deiner et al. 2015). 

Again, this requires the use of expensive scientific instruments and reagents, it is time 

consuming and requires the use of scientific expertise. 

  In its present state, the proposed method using object detection and deep 

learning techniques created within this investigation requires chironomids to be collected on a 

site, euthanised and have their head capsules placed on microscope slides. These slides then 

need to be viewed under a microscope slide and images taken of these slides. These images 

then need to be transferred to a computer where they can be examined by the object detection 

models which will classify the chironomid head capsule to one of three genera. Three genera 

severely underrepresent the total 20,000 estimated species of chironomid across the globe 

and the 600 species estimated within the UK. To perform an accurate and meaningful 

biomonitoring examination using strictly chironomid larvae, each species would need to be 

first identified, the same object detection and deep learning technique needs to be applied, 
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evaluated and tested, and then it can be automated for classifying new samples. . Therefore, 

in its current state, the proposed method of using an object detection model to classify three 

genera of chironomids by using images of head capsules displayed on microscope slides is 

unable to perform as an effective biomonitoring tool. However, as a proof of concept towards 

a biomonitoring tool this approach shows potential.  

Once trained, despite their individual configurations and settings, each of the models 

were able to accurately classify between the three genera, where all the models were able to 

correctly classify between 86/90 and 88/90 images. It should be noted that all the specimens 

used for both training and testing were originally identified by visual methods, meaning that at 

present the models created have not surpassed or are on par with the potential of an expert 

taxonomist. The model’s potential to factor in more genera or to identify to species level was 

hindered by the lack of usable data in the form of images, so there is unfortunately no way of 

knowing the full potential of this current method. The models were only able to work the 

taxonomy level of genus and not of species so there is no way of knowing whether this type 

of method is even capable of distinguishing at the species level. Nonetheless, there is also 

currently no maximum number of classes that can be added within a model, so it is entirely 

feasible to consider that a model could one day be trained to encompass the whole of the 

20,000 species within Chironomidae. 

  As well as a general biomonitoring tool, this type of identification method has 

potential for other uses within the life sciences. Although the process of putting specimens 

onto a microscope slide can be laborious, it is still a frequently used method for the storage of 

invertebrate specimens. The Natural History Museum (NHM, London) currently houses 

around 80 million specimens where 2.4 million are on microscope slides where a large portion 

of these have not been identified (Allan et al. 2019). The NHM is also in the process of taking 

digital images of all these specimens. Having an automatic tool that is trained to identify and 

classify through a large selection of images of microscope slides could drastically shorten the 

time frame needed to identify these. Again, however, this relies on a more competent model 

being trained than what has been created within this investigation, but as such this project 
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demonstrates that the automatic object detection and classification using deep learning 

techniques of chironomid larvae mounted on microscope slides is feasible. 

 

   

5.8 Limitations  

 

Object detection is a relatively new subject in terms of its creation and use within the scientific 

community. Because of this, the literature is still limited and inconsistent, especially when 

compared to other forms of computer vision. For example, image classification has been in 

development since 1989 (Cun et al. 1989) and contains less coding components than object 

detection dictating its use and finetuning. When creating object detection models, the various 

components work in an almost modular approach which can be constructed by different object 

detection frameworks, their internal convoluted neural networks, and the evaluation protocols. 

Each will require its own specific finetuning requirements, and this has created a range of 

hyperparameters that can only be finetuned by a trial-and-error process. As pointed out, there 

are several important hyperparameters that have no universal value, and these can be 

instrumental in a model performing at its optimum. The integration of object detection in other 

disciplines suffers even greater than the study of it within its own discipline as there is even 

less literature and implementation guidance available. Computer science literature has 

created its own evaluation processes that have been adopted within its own field but have 

apparently moved away from evaluation processes used by other disciplines. The computer 

sciences also make little effort to report how their models perform once fully trained when used 

in real world instances and therefore there are no evaluation processes to accompany this. 

Geirhos et al. (2020) suggest that this is due to a phenomenon called ‘shortcut learning’ 

wherein computer scientists have created their own benchmarking systems but have invested 

little attention outside of these systems and how real-world performances of their object 

detection models actually compare against the scoring systems created.   
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Within this investigation, there were many inconsistencies within the results obtained, 

particularly from the significance examinations. While there was clear evidence to support that 

the FR frameworks reliably produced a significant higher mAP value, there is little evidence to 

justify the impact that the different image sets had on the models. While there was justification 

for the learning rate values that were used, there was little evidence for the effect that the 

different IOU values created. When considering the hyperparameters picked for this 

investigation, a small selection of values was trialled, however, there is a large selection of 

numerical values that could have theoretically been input. There are also many other 

hyperparameters that could have been examined for finetuning (e.g. batch size and epoch), 

however, the time needed to investigate this would have been long.  

This investigation used an object detection system to classify single subjects set within 

an image exclusively. While object detection can classify images, it also localises them within 

the image itself which gives it the potential to classify multiple subjects at any one time and 

can do so in real time over a live video feed. However, none of these extra features of an 

object detection system were utilised within this investigation and could have been completed 

using an image classification system. Image classification systems use a CNN much like an 

object detection system but then do not have to perform a localisation task. There is 

unfortunately a lack of research into whether the localisation factor could dimmish the potential 

of an object detection to classify on par with an image classification system classifying on the 

same data set. As mentioned, there is also a lack of post-training performance analysis for 

object detection systems and their ability to correctly classify. Therefore, this investigation had 

to adopt and alter a technique used for image classification analysis. Despite all this, the 

approach using the object detection systems within this investigation did create models that 

had a high classification accuracy and rate. 

It should be noted that this investigation did not take on ecological assessments using 

the final models. While these models have the potential to classify different genera of 

chironomids, the fact that only three genera were trained dramatically decreases the model’s 

potential to be a viable tool within ecological studies. A model with a significantly larger class 
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data base has the potential to not only classify a larger selection of chironomids but can also 

be utilised for ecological assessments. However, this study can be seen as a preliminary 

approach or pilot study to the use of object detection and deep learning for classifying 

chironomid larvae, with potential for future developments and implementations in ecology.  
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6. Conclusion  

 

To conclude, this investigation set out to see if an object detection model could be used to 

distinguish between three genera of chironomid larvae. This was intended as a proof of 

concept to show whether the techniques were feasible for future use by ecologists and 

taxonomists. To achieve this, several different deep learning techniques were used to create 

an optimum model that could classify the three genera. This included the comparison of two 

object detection frameworks, SSD and Faster-RCNN, the creation of three different image 

sets which followed the recommendations of various literatures and the varying of two 

important hyperparameters, the learning rate and the intersection over union threshold. To 

ascertain which configuration was most optimum, three sets of evaluation protocols were 

used. Firstly, the standard computer science metric system used to evaluate object detection 

models called the mean average precision score following the MSCOCO protocol was used. 

This was followed by a statistical analysis which was performed by running each model 

multiple times. Finally, a series of novel tests were devised to evaluate a model when used in 

real time.  

Using the mAP system, the model configuration that produced the highest mAP value 

was Faster-RCNN, Image set C, learning rate 0.005 and IOU 0.7 with a value of 0.751. 

Moreover, the object detection framework Faster-RCNN performed generally better than the 

SSD framework, however, the image sets and hyperparameters showed inconsistencies and 

produced evidence of nonsignificance. Using this approach, all models performed almost 

equally high (95.5% - 97.7%) in accuracy when used in real time, however, there were major 

differences between the two object detection frameworks when considering their confidence 

scores given to each prediction, wherein the Faster-RCNN framework produced average 

confidence scores of >99% while the SSD framework produced average scores of <90%. By 

combining all these factors, the most important was the choice of object detection framework.  
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As expected, the Faster-RCNN framework performed better than SSD in almost all 

evaluations. However, it must be noted that both frameworks performed almost identically 

when being utilised as a simple detector. The Faster-RCNN framework is considered more 

accurate than other frameworks but requires more computational power to utilise. The SSD, 

while not considered as accurate as Faster-RCNN, it requires extensively less computational 

power to run (it is considered as ‘lite’ programming) and can be streamlined to run on low 

powered devices. Both frameworks therefore create different avenues for this type of project 

to move into. If one wishes to create a powerful, confident, and accurate automatic classifier, 

then the use of a powerful workstation would be required to run the Faster-RCNN framework. 

However, if a more mobile device or lite approach was required, so that assessments could 

be utilised on site for example, then the SSD framework could be used which while still 

accurate, is less confident in its own predictions.  

The intention of this study was to create a cost-effective and fast-working computer-

based model that could act as an identification tool to aid or replace more traditional methods 

such as the visual identification through morphology or by using molecular methods of 

identification. Visual identification has been used for many years and is still being used today. 

However, it can take a human many years to gain the necessary visual and taxonomic skills 

to be effective and be considered an expert within the field. Even then, this method is 

considered slow, laborious, and prone to misidentification. DNA barcoding has the potential to 

produce highly accurate results if voucher specimens and a DNA library are already available. 

However, the instruments needed for DNA barcoding require experience to use, the many 

stages involve long time to complete, and the whole process incurs many different monetary 

requirements.  

The new deep learning method proposed here, which involves a trained object 

detection model, can classify images in <1s, can be executed simply with little computer 

training, and can do the identification automatically with high accuracy (>97% accuracy). While 

the initial stages require the use of a costly workstation and requires an expert to create 

optimum training conditions, once completed the model could potentially be used by anyone 
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with access to a computer. This automatic computer model, when paired with a camera 

device, such as an affordable USB camera, could be used in real time and could identify 

chironomid larvae specimens just by passing them in front of the camera feed rather than 

having to work exclusively with digital images.  

However, it should be mentioned that this demonstration only uses a very small fraction 

of the total chironomid diversity, where only three genera were utilised for detection out of an 

estimated 200+ genera worldwide and did not attempt to distinguish between species 

taxonomy level, where there is an estimated 20,000+ species worldwide. There are other 

models already in existence that can distinguish between large amounts of individual subjects 

(i.e. PlantSnap with its database of 610,000+ individual possible detections), which suggests 

that this type of approach could potentially be upscaled to include the whole diversity of genera 

and species of the taxonomically rich family Chironomidae.  

Computer vision models, and in particular, the use of object detection using deep 

learning techniques is still in its infancy for their use in ecological sciences. However, this 

study is a relevant demonstration on how it can be applied for the rapid identification of 

taxonomically challenging organisms. It is envisaged that future work in object detection will 

open new opportunities for biological diversity and biomonitoring, not only of chironomids but 

also other group of freshwater organisms.   
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