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Abstract: Gait speed is an important biomechanical determinant of gait patterns, with joint kinematics
being influenced by it. This study aims to explore the effectiveness of fully connected neural networks
(FCNNs), with a potential application for exoskeleton control, in predicting gait trajectories at varying
speeds (specifically, hip, knee, and ankle angles in the sagittal plane for both limbs). This study
is based on a dataset from 22 healthy adults walking at 28 different speeds ranging from 0.5 to
1.85 m/s. Four FCNNs (a generalised-speed model, a low-speed model, a high-speed model, and a
low-high-speed model) are evaluated to assess their predictive performance on gait speeds included
in the training speed range and on speeds that have been excluded from it. The evaluation involves
short-term (one-step-ahead) predictions and long-term (200-time-step) recursive predictions. The
results show that the performance of the low- and high-speed models, measured using the mean
absolute error (MAE), decreased by approximately 43.7% to 90.7% when tested on the excluded
speeds. Meanwhile, when tested on the excluded medium speeds, the performance of the low-
high-speed model improved by 2.8% for short-term predictions and 9.8% for long-term predictions.
These findings suggest that FCNNs are capable of interpolating to speeds within the maximum
and minimum training speed ranges, even if not explicitly trained on those speeds. However, their
predictive performance decreases for gaits at speeds beyond or below the maximum and minimum
training speed ranges.

Keywords: artificial intelligence; gait speeds; deep learning; exoskeletons; forecasting; gait; prediction;
extrapolation; kinematics

1. Introduction

Exoskeletons are robotic devices utilised to enhance the strength and ability of unim-
paired users, restore movement, and assist in rehabilitating people with pathological
gaits [1–3]. Exoskeletons have varying control strategies [4] and are broadly categorised
into weight-bearing devices that transfer the load to the ground and joint-targeting devices
that deliver targeted assistance to specific joints [1].

Some of these exoskeletons integrate Artificial Intelligence (AI) models into their
control systems [5] to perform tasks such as gait phase classification [6], prediction of joint
kinetics and kinematics [7,8], locomotion mode classification and intention prediction [9,10],
environment detection [11], and reference gait personalisation [12].

AI models require training on datasets and in the case of exoskeleton applications,
the training dataset could include gait parameters such as joint kinetics, joint kinematics,
foot pressure, and muscle activity [5]. AI models utilise these parameters as input to make
predictions or classifications, depending on the task. It is crucial for the training dataset
to be a representative sample of the data that the exoskeleton is expected to receive as
input during real-life operation. Depending on the data used for training and testing
the model, we can develop individualised (dependent), generalised (independent), and
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semi-dependent models [13]. A dependent model needs to be trained on data from an
exoskeleton user before using the exoskeleton. An independent model, on the other hand,
does not require training on data from each exoskeleton user but is instead trained on
data from multiple individuals. Semi-dependent models combine both approaches, where
a model is trained on data from multiple individuals but fine-tuned using data from the
specific user before using the exoskeleton [13]. Although individualised models have
demonstrated higher accuracy in performance compared to generalised models [13], it is
not always possible or practical to fine-tune models for each user, which is why generalised
models are sometimes adopted.

It is essential to consider how the models, often trained on data from able-bodied
users, would perform when controlling assistive and rehabilitative exoskeletons for users
with pathological gaits. The target users of these exoskeletons typically walk at slower
gait speeds [14]. For instance, able-bodied adults have walking gait speeds between 0.75
and 1.75 m/s, whereas adult stroke patients walk at much lower speeds, ranging between
0.08 and 1.05 m/s [15]. Additionally, over the course of a rehabilitation session, a patient’s
speed may change, with their mean velocity increasing [16].

The main contribution of this study is to investigate the effect of speed on the prediction
of gait trajectories for able-bodied users, as well as the performance of the models in
predicting trajectories at gait speeds that are excluded from the training speed range (see
Section 3 for details). We compare the performance of the models on gait speeds included
in the training range, as well as speeds excluded from it. This investigation enables us to
assess the generalisability of the models when tested on gaits from users walking at speeds
that have not been included in the training dataset and to examine the influence of speed
on gait. The findings of this study can serve as guidance for developers of exoskeletons,
informing their decision on which speeds to include when collecting data for training AI
models for exoskeleton control.

2. Literature

Gait speed is known to impact spatiotemporal parameters (cadence, step length,
and stride length), joint kinetics, ground reaction forces, and joint kinematics [17]. The
magnitude of this impact varies among children, young adults, and older adults [17].
The effect of gait speed on joint kinematics has been shown to be moderate to large [17].
In young adults, for example, gait speed has been shown to impact the minimum and
maximum joint angle values, specifically increasing hip flexion, hip extension, knee flexion,
and ankle plantar-flexion angles with higher speeds [17]. Furthermore, gait speed appears
to have a more significant impact on the kinematics of children, whose gait patterns have
not fully matured, compared to individuals from other age groups [17,18].

Since speed is a vital biomechanical determinant of gait patterns [14], it is essential to
consider it when generating reference gait patterns for position-controlled exoskeletons.
Fukuchi et al. utilised regression to generate normalised reference gait patterns that were
speed-dependent. They aimed to establish a database of reference gait patterns at varying
speeds that could be used to assess the gait patterns of individuals with gait pathologies [14]
who often walk at lower speeds compared to able-bodied individuals [19,20]. Zaroug et
al. assessed the performance of deep learning models in predicting lower limb kinematics
at speeds 20% lower and higher than preferred walking speeds. The performance of their
models decreased when predicting gait at slower speeds but increased when predicting gait
at faster speeds [21]. Apart from speed, anthropometric parameters can also influence gait
patterns [22–24]. Zou et al. [25] developed a two-step method for gait trajectory prediction
based on an individual’s unique anthropometrics and desired speed during rehabilitation.
Their approach consisted of a Gait Parameter Model (GPM), which is a neural network
that selects gait parameters based on anthropometrics and speed, and a Gait Trajectory
Model (GTM), which uses these parameters, along with kernelised movement primitives,
to reconstruct the reference gait patterns for an exoskeleton. Han et al. [26] implemented
Future Generative Adversarial Nets (F-SeqGAN) trained on varying gait speeds for gait
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trajectory prediction, even during acceleration, without the need to pre-define the input
speed. Embry et al. [27] developed a basic model that can continuously predict joint
kinematics based on gait phase, speed, and inclination.

Although many of the existing approaches test their models on the gait speeds in-
cluded in the training speed range, only a few have explored how the models perform
and extrapolate to speeds that are excluded from the training set. For the task of gait
phase prediction, Lu et al. [28] observed a decrease in the performance of a long short-term
memory (LSTM) network on speeds not included in the training set. However, their study
was limited to only two subjects, and the training data were biased towards constant speeds.
Meanwhile, Kang et al. [13] implemented neural networks for gait phase prediction and
found that their models were capable of extrapolating to higher speeds, with the semi-
dependent model outperforming the dependent and independent models. Their results
were based on 10 subjects, but they only extrapolated to speeds 0.1 m/s higher than the
training speed range. The two aforementioned studies assessed the ability of the models
to classify gait phases on speeds excluded from the training speed range, but either had a
low number of participants or extrapolated to speeds that were only slightly beyond the
training speed range. Furthermore, no studies have investigated the task of gait trajectory
prediction, where the performance of models is evaluated for gait speeds that are both
lower and higher than the training speed range.

To address these gaps, our study aims to evaluate and compare the performance of
deep learning models when tested on speeds that are both included and excluded from the
training speed range. This assessment may help determine the transferability of the models
to real-world applications, where an exoskeleton may need to operate in an environment
with greater variability than what it was initially trained for.

3. Methodology
3.1. Overview

In our study, we evaluated how fully connected neural networks (FCNNs) for gait
trajectory prediction extrapolate to speeds excluded from the training range. The FCNNs
were trained to perform one-step-ahead predictions of joint kinematics, focusing on the
angles of the hip, knee, and ankle for both the left and right legs. Predictions were based on
a short input window of past joint kinematic values. We developed and trained four FCNNs
using data obtained at varying gait speeds. Subsequently, we assessed the performance of
the models by testing them on gait speeds included and excluded from the training speed
range (refer to Table 1 for further details).

Table 1. Range of speeds FCNNs were trained and tested on (low speeds 0.5–1.0 m/s, medium
speeds 1.05–1.45 m/s, and high speeds 1.5–1.85 m/s).

Model
Training Set

Speed Range (m/s)
(Included Speeds)

Testing Set
Speed Range (m/s)
(Excluded Speeds)

Generalised-speed model
all

(0.5–1.85)
all

(0.5–1.85)

Low-speed model
low and medium

(0.5–1.45)
high

(1.50–1.85)

High-speed model
high and medium

(1.05–1.85)
low

(0.5–1.0)

Low-high-speed model
low and high

(0.5–1.0, 1.50–1.85)
medium

(1.05–1.45)

3.2. Data

The FCNNs in our study were trained using an online gait dataset by Camargo et al. [29].
The dataset consists of gait data collected from 22 able-bodied individuals (age 21 ± 3.4 years,
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height 1.70 ± 0.07 m, mass 68.3 ± 10.83 kg). Gait patterns were recorded while walking
on a treadmill at 28 different speeds (0.5 m/s to 1.85 m/s in 0.05 m/s increments). The
dataset contains joint kinematic values including the hip, knee, and ankle angles of the left
and right legs in the sagittal plane, which were used in our study. The joint angles were
derived using OpenSim’s inverse kinematics tool based on motion capture data collected at
a 200 Hz sampling frequency. For a visual representation of the demographic distribution
of the dataset, refer to Figure 1. Additional details about the data processing procedures
can be found in [29].

Figure 1. Box plots showing the demographics of the individuals in the training and testing sets,
including age, height, and mass. The box represents the quartiles, the whiskers represent the
interquartile range, and the points located outside the whiskers represent outliers in the dataset.

3.3. Pre-Processing

In order to evaluate the predictive performance of the FCNNs at speeds excluded from
the training range, we segmented the data into three distinct speed ranges: low speeds
ranging from 0.5 m/s to 1.0 m/s, medium speeds ranging from 1.05 m/s to 1.45 m/s,
and high speeds ranging from 1.5 m/s to 1.85 m/s. These speed ranges were determined
based on the low-, comfortable-, and high-speed ranges reported in the literature for young
adults [17,30,31].

Four FCNNs were developed and evaluated in our study. They consisted of the same
architecture (including the number of layers and nodes per layer) but each was trained on
gait data at varying speeds. The respective training and testing speed ranges for each of the
models were as follows: (1) the generalised-speed model was trained and tested on all gait
speed ranges, (2) the high-speed model was trained on medium and high speeds and tested
on low speeds, (3) the low-speed model was trained on low and medium speeds and tested
on high speeds, and (4) the low-high-speed model was trained on low and high speeds
and tested on medium speeds. Details about the FCNN models and their corresponding
training and testing speed ranges can be found in Table 1.

The data from the 22 able-bodied individuals were randomly split into two sets: a
development set and a test set. This division was performed at the subject level, with
11 subjects in each set. The development set was used for two main purposes: hyperpa-
rameter optimisation and model training. For hyperparameter optimisation, 70% of the
subjects in the development set were used for training (8 subjects), whereas the remaining
30% (3 subjects) were used for validation. After the hyperparameter optimisation phase,
cross-validation was performed using the leave-one-subject-out method. In this process,
the FCNNs were trained on data from 10 subjects in the development set, with the data
from the 11th subject left out for validation. This procedure was repeated 11 times, each
time using a different subject as the validation subject. The test set, consisting of data
from unseen subjects, was used to evaluate the performance of the models each time (see
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Figure 2). This evaluation included assessing the performance of the models on the gait
speeds included in the training range, as well as on outlier speeds.

Figure 2. Illustration of the train-test split used for training and evaluating the FCNNs using the
leave-one-out cross-validation method.

The windowing method was used to generate training and testing samples for each
set in the study [32]. The stride length, which determines the number of training samples
that will be derived from each gait sequence, was varied for the different FCNN models to
ensure that all models, including the generalised-, low-, high-, and low-high-speed models,
were trained on a similar number of samples. Each training sample consisted of an input
matrix, xin, and target vector yout. xin represents a 200-time-step window of joint angle
values, including the hip, knee, and ankle angles for the left and right legs in the sagittal
plane. The input window corresponds to 1 s of data for a sampling frequency of 200 Hz.
yout represents the values of the joint angles (hip, knee, and ankle angles for the left and
right feet) for the next time-step. The output window size is 1 time-step, representing the
immediate future joint angle values that the FCNN models are trained to predict.

For n samples in a set, Xin ∈ Rn×lin× f , lin (set to 200) is the input window size and f (set
to 6) is the number of input features (kinematic joint angles). Similarly, in Yout ∈ Rn×lout× f ,
lout (set to 1) is the output window size and f (set to 6) is the number of output features.

The FCNN models (generalised-speed, low-speed, high-speed, and low-high-speed
models) were trained and tested on different gait speeds. All inputs to the models and
the corresponding target outputs were normalised using min-max normalisation such that
Xin ∈ [0, 1] and Yout ∈ [0, 1]. The min-max values were chosen to accommodate for the
minimum and maximum values of all the individuals in the dataset, with an additional
safety boundary to ensure the data fell within the normalised range.

3.4. Model Architecture and Optimisation

In a previous study of ours, the fully connected neural network (FCNN) demonstrated
low errors in both short-term and long-term gait trajectory prediction tasks and exhibited
higher robustness to added noise [33]. These were the reasons for selecting the FCNN for
this study. The input to the FCNN, which was 2-dimensional R200×6 as it included the
values of 6 joint angles for a 200-time-step window, was flattened into a 1-dimensional
vector R1200 and passed through 5 fully connected linear layers with ReLU activation
functions in between. The FCNN architecture is illustrated in Figure 3.
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Figure 3. Fully connected neural network (FCNN) architecture.

For training, each of the models was optimised to minimise the mean squared error
(MSE) difference between the predictions and the target one-step-ahead kinematic values
using the Adam optimiser. The optimal hyperparameters, including the learning rate,
number of layers, number of nodes per layer, and batch size, were selected based on the
tree-structured Parzen estimator algorithm, a type of Bayesian hyperparameter sampler.
Hyperparameter optimisation (HPO) was applied to the generalised model, and the opti-
mised architecture resulting from this process was used for the other models (low-speed,
high-speed, and low-high-speed models). The search space and corresponding selected
values are shown in Table 2.

During training, the dynamic time-warping (DTW) distances were calculated between
200 recursively predicted time-steps and the true gait values after each training epoch. The
DTW distances were used as a metric to determine when to end the training of the models.
The models were trained for 70 epochs, with training being terminated earlier (using the
early stopping method) if the DTW distances on the validation set did not decrease for
20 epochs. In our previous study [33], we elaborated on how DTW distances are used to
optimise gait trajectory prediction models.

The Pytorch machine learning framework was used in this study, along with various
libraries, including Matplotlib, Numpy, Seaborn, SciPy, Scikit-Posthocs, and Optuna, for
hyperparameter optimisation [34]. The DTW Python package was used for calculating
dynamic time-warping distances [35]. The computations were performed using an Nvidia
Geforce RTX 2070 GPU.

Table 2. Search space for FCNN hyperparameters and the selected values.

Hyperparameter Search Space Selected Value

learning rate [0.01, 0.001, 0.0001, 0.00001] 0.00001

number of layers [3, 4, 5, 8, 10, 12] 5

nodes per layer [10, 30, 70, 100, 150, 200] 100

batch size [32, 64, 128, 256, 512] 32

3.5. Evaluation Metrics and Statistical Analysis

The mean absolute error (MAE) and mean squared error (MSE) were used as the
evaluation metrics to assess the performance of the models. These metrics were calculated
for both short-term predictions, comparing one predicted time-step to the actual gait
values, and long-term predictions, comparing 200 time-steps of gait values generated
using recursive forecasting (where predictions are fed back as input to generate further
predictions) to the actual gait values. The MAEs and MSEs were calculated after the
de-normalisation of the models’ outputs. The MAE and MSE formulas for f features, n
test samples, and lout output prediction lengths (set to 1 for short-term predictions and to
200 for long-term predictions) are:
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Mean absolute error (MAE):

MAE =
1

n f lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1
|yi,j,k − ŷi,j,k| (1)

Mean squared error (MSE):

MSE =
1

n f lout

n

∑
i=1

f

∑
j=1

lout

∑
k=1

(yi,j,k − ŷi,j,k)
2 (2)

In Section 4, we report the results of the statistical tests we conducted. The tests were
carried out in Python using the Scipy and Scikit-Posthocs libraries.

4. Results

We first evaluated the performance of the four different models (generalised-speed,
low-speed, high-speed, and low-high-speed models) on speeds included in the training
range but from unseen subjects. The MAEs and MSEs for the short-term (1-time-step)
and long-term (200-time-step) predictions are presented in Table 3. For the short-term
predictions (depicted in Figure 4), the MAEs ranged from 1.21 to 1.34°, with a maximum
MAE difference of 0.14° across the four models. The low-speed model showed slightly
higher errors compared to the other three models (see Figure 5a, illustrating the MAE
difference for short-term predictions). Meanwhile, for the long-term predictions (depicted
in Figure 6), the MAEs were higher, ranging from 4.42 to 5.39°, with a maximum difference
of 0.97° across the four models. The low-high-speed model exhibited the highest MAEs,
whereas the high-speed model exhibited the lowest MAEs (see Figure 5b, illustrating the
MAE difference for long-term predictions). All differences in the one-step-ahead prediction
errors on speeds included in the training range among the various FCNNs were statistically
significant. The statistical significance was determined based on the Kruskal–Wallis H-test
(p < 0.05), followed by Dunn’s post hoc test for pairwise comparisons.

We then evaluated the performance of the four models on speeds excluded from the
training range and from unseen subjects. The MAEs and MSEs for the short- and long-term
predictions on excluded speeds are presented in Table 4. For the short-term predictions on
excluded speeds, the MAEs ranged from 1.31 to 2.03° across the four models, and from 4.86
to 8.42° for the long-term predictions. We compared the difference in the performance of
the models on speeds included in the training range and speeds excluded from the training
range (see Figure 7). It was observed that the performance of the low- and high-speed
models worsened when tested on the excluded speeds. For the one-step-ahead predictions,
the MAE of the low-speed model on the excluded speeds was 66.2% higher compared to
the MAE on speeds included in the training range, whereas the MAE of the high-speed
model was 43.7% higher. For the long-term predictions, the MAE of the low-speed model
on the excluded speeds increased by 54.3% compared to the MAE on the included speeds,
whereas the MAE of the high-speed model increased by 90.7%. However, the low-high-
speed model showed different outcomes. It performed better on the excluded speeds
(i.e., medium-speed ranges) compared to the included speeds (i.e., low- and high-speed
ranges). In fact, the MAE for the excluded speeds decreased by 2.8% for the short-term
predictions, compared to the MAE for the included speeds, and by 9.8% for the long-term
predictions. All differences in the prediction errors (MAEs) between the included and
excluded speeds for each FCNN model were statistically significant for both the short- and
long-term predictions. Statistical significance was determined based on the Kruskal–Wallis
H-test (p < 0.05).
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Table 3. MSEs and MAEs for 1-step-ahead and 200-time-step gait trajectory predictions for
generalised-, low-, high-, and low-high-speed models evaluated on speeds included in the training
range (in degrees).

Generalised-Speed
Model

Low-Speed
Model

High-Speed
Model

Low-High-Speed
Model

1
time-step

MSE 2.58 2.66 2.62 3.43
MSE std 0.99 1.08 1.32 2.58

MAE 1.21 1.22 1.21 1.34
MAE std 0.24 0.25 0.30 0.46

200
time-steps

MSE 60.84 58.36 43.13 63.25
MSE std 25.97 22.00 24.18 23.92

MAE 5.24 5.13 4.42 5.39
MAE std 1.04 0.98 1.06 0.97

Figure 4. Short-term (one-step-ahead) prediction of the flexion-extension angles of the hip, knee, and
ankle. Predictions (green marks) are made based on a 200-time-step input to the model (blue lines)
and then compared to the actual values (red marks).
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Figure 5. Prediction errors on speeds included in training range. (a) Errors in short-term (1-step-
ahead) predictions. (b) Errors in long-term (200-time-step) recursive predictions.

Figure 6. Long-term (200-time-step) prediction of the flexion-extension angles of the hip, knee, and
ankle. Recursive predictions (green lines) are made based on a 200-time-step input to the model (blue
lines) and then compared to the actual values (red lines).
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Table 4. MSEs and MAEs for 1-step-ahead and 200-time-step gait trajectory predictions for low-,
high-, and low-high-speed models on speeds excluded from the training range (in degrees).

Low-Speed
Model

High-Speed
Model

Low-High-Speed
Model

1 time-step

MSE 7.40 5.41 3.21
MSE std 4.64 3.18 2.50

MAE 2.03 1.74 1.31
MAE std 0.63 0.54 0.44

200 time-steps

MSE 142.49 152.09 49.85
MSE std 107.71 65.94 21.87

MAE 7.92 8.42 4.86
MAE std 3.06 2.02 1.06

Figure 7. Comparison of prediction errors between gait speeds included in the training range
and excluded speeds. (a) Errors in short-term (1-step-ahead) predictions. (b) Errors in long-term
(200-time-step) recursive predictions. All differences in prediction errors (MAEs) between included
and excluded speeds for each FCNN model are statistically significant for both short-term and
long-term predictions (significance determined using the Kruskal–Wallis H-test (p < 0.05)).

5. Discussion

In this study, fully-connected-neural networks (FCNN) were implemented for gait
trajectory prediction. The FCNNs were trained on four different gait speed ranges and
evaluated on speeds included in and excluded from the training set. The results showed
that the performance of the generalised-, low-, high-, and low-high-speed models was very
similar when evaluated on the speeds they were trained on. The low-high-speed model
exhibited slightly higher errors compared to the other three models for both short-term and
long-term predictions. On the other hand, the high-speed model exhibited slightly lower
errors, especially for long-term predictions. The findings are consistent with the results of
a previous study by Zaroug et al. [21], which reported improved performance for lower
limb kinematic predictions at higher gait speeds.

In comparison to related studies, Kang et al. [13] reported good performance of their
gait-phase estimation model on extrapolated speeds, although they only evaluated speeds
slightly higher than their training speed ranges. Meanwhile, Lu et al. [28] evaluated their
continuous gait-phase recognition algorithm on untrained speeds and observed a decline
in performance, but their results were based on a small number of subjects. In this study,
the performance of the low- and high-speed FCNN models worsened when evaluated on
excluded speeds, as indicated by an increase in mean squared errors (MSEs) and mean
absolute errors (MAEs) for both short-term and long-term predictions. The MAEs increased
by 43.7% to 90.7% for the low- and high-speed models when compared to the MAEs on
trained speeds. Interestingly, the low-high-speed model, which was trained on low- and
high-speed ranges only, performed well on medium speeds. In fact, the MAEs for medium
speeds improved by 2.8% for short-term predictions and 9.8% for long-term predictions
compared to the low- and high-speed ranges the model was trained on. These results
suggest that FCNNs are capable of interpolating to speeds that lie between the maximum
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and minimum training speeds, even if they have not been explicitly trained on those speeds.
However, they are unable to extrapolate to speeds beyond or below the maximum and
minimum speeds of the training range.

One important limitation of our study is the relatively small size of the dataset used
to develop and test our models, which included data from 22 subjects. This limitation is
a common challenge for many applications involving human data, as data scarcity often
arises due to practical constraints and limited resources. To mitigate the risk of overfitting
our models and assess their generalisability across different subjects, we implemented leave-
one-out cross-validation. Nonetheless, we still need to validate our findings with FCNNs
that are trained on larger datasets. Advancements in wearable technology that enable
continuous data collection may assist in addressing the issue of data scarcity. Another
limitation of our study is that the data used to train the models were collected from
gait cycles performed at constant speeds. To improve the implementation, it would be
beneficial to include data from gait cycles with dynamic speeds, as this better reflects
real-life walking conditions. Additionally, the study only considered data captured on even
surfaces, without accounting for inclinations or unevenness that may be encountered in
outdoor environments. Furthermore, the gait data used in the study were captured using a
motion capture system. In practical applications such as exoskeletons, data would typically
be obtained from onboard wearable sensors such as inertial measurement units (IMUs) or
built-in encoders.

6. Conclusions

This study explored the performance of fully connected neural networks (FCNNs)
in predicting gait trajectories across different speed ranges. It examined both short-term
and long-term predictions and evaluated the models on speeds that were both included
and excluded from the training gait speed range. The results revealed that the FCNN
models exhibited a decline in performance when predicting kinematic joint trajectories
at gait speeds significantly higher or lower than the training speed ranges. However, the
FCNN models demonstrated satisfactory performance on speeds within the maximum and
minimum speed ranges, even if those speeds were not included in the training dataset.
These findings highlight the importance of considering the range of speeds that an exoskele-
ton may encounter in real-life applications during the training and development of the
models. They also emphasise the need for the development of explainable AI techniques
to gain insights into the influential input features and limitations affecting the model’s
performance. This information can enrich our knowledge of gait analysis and biomechanics,
leading to improved interventions for gait assistance and rehabilitation.
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