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ARTICLE

Ontology-based decision tree model for prediction in
a manufacturing network
Zalan Mahmood Ayaz Khan , Salman Saeidlou and Mozafar Saadat

Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK

ABSTRACT
This paper aims to create a predictive model, which will assist in the
allocation of newly received orders in a manufacturing network. The
manufacturing network, which is taken as a case study in this
research, consists of more than 300 small manufacturing enterprises
with a central company as the project managing integrator. The
methodology presents the mapping of a PROSA (Product-Resource-
Order-Staff Architecture) based ontology model on a decision tree,
which was created with the Waikato Environment for Knowledge
Analysis (WEKA) application. Furthermore, the methodology also
demonstrates the formulation of the Semantic Web Rule Language
(SWRL) rules from the WEKA decision tree with the help of MATLAB
programming. The paper validated the result generated by the
ontology model with the results of the decision tree model.
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1. Introduction

In the late 1980s, when transportation became cheap, easier and fast, the manufacturing
industry started to become globalized. Due to this globalization, the multinational
companies connected their geographically dispersed plants by synergetic networks
(Ferdows, 1989, 1997; Ghoshal & Bartlett, 1990). Apart from the multinational enterprise
perspective, the ease of communication also enabled small enterprises to work with large
enterprises. Large enterprises outsource their non-core competencies to small enter-
prises. Consequently, the collaboration of a large enterprise and a number of small
enterprises make up a large manufacturing network (Jules, Saadat, & Saeidlou, 2013).
A manufacturing network affiliates the manufacturers on an interim basis; they work
together closely on a unique job and act together as a manufacturing service provider to
a central company known as a project managing company (Jules, Saadat, & Saeidlou,
2015). A group of such manufacturing companies is known as a collaborative network
organization (CNO) or a virtual breeding environment (VBE) (Camarinha-Matos,
Afsarmanesh, Galeano, & Molina, 2009). The GFM (Gruppo Fabbricazione Meccanica)
srl (GFM spa, 2018) is such an Italian-based project management company, who out-
source their projects to more than 300 small and medium size manufacturing companies
(Jules et al., 2013). Due to increase in the number of small and medium manufacturing
companies, the GFM srl was facing the difficulty of scheduling the newly received orders

CONTACT Zalan Mahmood Ayaz Khan zalan.ayaz@gmail.com Department of Mechanical Engineering, School
of Engineering, University of Birmingham, Birmingham, UK

PRODUCTION & MANUFACTURING RESEARCH
2019, VOL. 7, NO. 1, 335–349
https://doi.org/10.1080/21693277.2019.1621228

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0003-3617-3918
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21693277.2019.1621228&domain=pdf&date_stamp=2019-11-16


to the manufacturing companies. The small and medium manufacturing companies are
addressed as suppliers in this study.

Therefore, this paper aims to develop an artificially intelligent model for GFM srl,
which could predict the scheduling of a new order, which the company will receive in
future, to an appropriate supplier. Appropriate suppliers are those who can complete
the order and deliver it back in due time.

This paper is structured as follows: first, the literature review investigates a correct
method for producing an intelligent predictive model, highlights the gaps in the
research already done and formulates the objective of this study. Secondly, in the
‘Methodology’ section, a review of the computer applications used in this work will
be presented. In the methodology, the three main steps followed by this research,
namely data pre-processing, decision tree modelling and ontology modelling, will be
described. The results and discussion will be based on the produced results before the
conclusion is given.

2. Literature review

The idea of using a decision-tree-based ontology model in a predictive manufacturing
system is a novel approach evidenced from literature. As there are a number of
classification systems, like decision tree algorithms, etc. The decision tree algorithms
are widely used in prediction and classification problems by several researchers because
of their simple nature (Breiman, 2001; Chen & Guestrin, 2016; Cortez & Silva, 2008;
Sambasivan & Das, 2017). In addition, research on the combined use of a decision tree
model and ontology revealed that it is a trending topic amongst researchers in the field
of classification and clustering (Jules et al., 2013; Mehta, Kshirsagar, Merchant, & Nair,
2015; Ravishankar & Shriram, 2013; Zhe Zhong, Saeidlou, Saadat, & Abukar, 2018). The
reason for their use was that they found ontology-based clustering more efficient and
flexible than a typical decision tree clustering.

In 2013, Guiovanni D. et al. used the same case study, which is used in this paper, for
mapping the ontology model on the PROSA (Product Resource Order Staff Architecture).
PROSA is a reference architecture for holonic manufacturing systems and was proposed in
1998. The PROSA introduced three main holons: product, resource and order. The staff
holon can be used as an ad-hoc holon (VanBrussel,Wyns, Valckenaers, Bongaerts, & Peeters,
1998). The three basic holons in the PROSA architecture can be used to design any type of
manufacturing system with all its important manufacturing functionality (Giret & Botti,
2009). In 2018, more developments were done by Zhong et al. on the case study of Jules et al.
(2013). Zhe Zhong et al. (2018), which predicted the conformity of the orders with very high
accuracy. They based their ontology model on PROSA architecture like Jules et al. (2013).
But, their SWRL rules for logical reasoning were based on a decision tree. The decision tree
was developed manually, which was only sufficient for small amount of data. On the other
hand,Mehta et al. (2015) applied the concept of using decision-tree-based ontology to predict
the completion of graduations in a university in Portugal. They used a decision tree to make
a classification model for the prediction of graduation and used the same concept in making
the ontology model. However, unlike Zhe Zhong et al. (2018) model, the decision tree in this
work was created withWEKA, which is a powerful tool for developing a decision tree model.
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In addition, the ontology model was created with Protégé, which is a popular tool for making
ontology models. The SWRL rules were followed for the classification in the ontology.

Therefore, considering the gaps in the above-mentioned studies, in this work we
have produced a predictive ontology model, which will be based on the decision tree
algorithm, created with WEKA. It uses MATLAB for the automated extraction of the
SWRL rules from the decision tree model. Unlike Zhe Zhong et al. (2018), the data will
be imported to Protégé fully automatically with ‘Cellfie plugin for Protégé’. The model
is automated to a certain level, where minimum human intervention is required for
either entering the data or creating the rules in Protégé.

2.1. WEKA workbench review

The Weka (Waikato Environment for Knowledge Analysis) workbench is an assemblage of
up-to-date machine learning algorithms and data pre-processing tools, which was developed
in the University of Waikato, New Zealand. It provides a number of data mining techniques
like data preprocessing, feeding the data into the learning schemes, analyzing the classifier
result, and able to visualize the result (Witten, Frank, Hall, & Pal, 2016). This paper uses
WEKA as a widely employed preprocessing and classification tool for raw data. The paper
uses WEKA’s Gain Ratio Attribute Evaluator with Ranker as a search method for attribute
selection and uses J4.8 as a classifier. J4.8 in WEKA is a slightly improved JAVA version of
C4.5 revision 8 decision tree learner. The C4.5 is a divide-and-conquer algorithm, which is an
improved version of the ID3 (Iterative Dichotomiser 3) decision tree algorithm. The ID3 uses
information gain as an attribute evaluator and selects the root attributes on the bases of value
numbers (Peng, Chen, & Zhou, 2009; J. Ross Quinlan, 1986). However, a new attribute
selection was introduced in the C4.5 algorithm, called the gain ratio. The gain ratio takes the
number of branches also into account before the split. (J Ross Quinlan, 1996, 2014; Witten
et al., 2016)

2.2. Protégé review

Protégé is an open-source ontology editing software, and was developed by the Stanford
Center for Biomedical Informatics Research at the Stanford University School of
Medicine (Musen, 2015). Protégé has an attractive user interface, which enables users
to make, edit and manage multiple ontologies. Furthermore, plugins can be added to
Protégé, which makes it a fully customized framework (Noy et al., 2003). Some of the
plugins which are used in this work are Pellet Reasoner, Cellfie and SWRL Tab.

3. Methodology

The flowchart in Figure 1 presents the methodology of the work done in this research.
The elaboration of the main functions and steps of the flowchart are as follows:

3.1. Data pre-processing

Data from databases usually contain missing, noisy and conflicting information because
sometimes they are generated by different sources or sometimes generated during a long span
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Figure 1. Flowchart demonstrating the methodology.
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of time. Low quality of data will prompt low quality of data mining. Therefore, it is required
to know the quality of data and clean it (Han, Pei, & Kamber, 2011).

3.1.1. Data cleaning and transformation
Figure 2 shows the raw data provided by GFM srl for this research, which was recorded
from the years 2006 to 2016 and contained 102,219 orders completed by more than 300
suppliers. Each row represents a single order and the columns represent the informa-
tion related to every order: such as, year and date the order was taken, supplier code,
quantity (QTY), requested delivery date (RDD), actual delivery date (ADD).

Before importing the data to any software, the data were cleaned, for example the
row with zero values was removed, changes were made to the values of the on-time

Figure 2. Original data (column A to M) from real industrial case study.
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delivery (OTD) column and few extra columns were also added, such as requested
delivery days (RDDy) and actual delivery days (ADDy).

In the original data, the OTD column was declaring all those orders as delayed,
which added another day after the requested delivery date (RDD). Therefore, changes
were made to the OTD column according to Table 1.

3.1.2. Data extraction
As mentioned above, the data contained more than a hundred thousand orders with
more than 300 suppliers. For easier data manipulation and analysis, the model was
trained and tested with only eight supplier’s data. The combined number of orders for
all the eight suppliers are about 21,700, which were made into two sets: a training and
a testing set. The training set contained 66% of the total data, which were around 14,300
orders and the testing set contained the remaining 33% of the data, which were about
7,400 orders. The orders of each specific supplier were extracted from the original data
with the help of MATLAB and exported to eight different Excel files. Then the eight
files are combined into two Excel files namely, Training Set and Testing Set, in a ratio of
66% and 33%, respectively. Later, a copy of these two files was also made in the format
of Comma-Separated Value (CSV). The Excel file was used by the Cellfie Plugin of
Protege, and the CSV file was used to make an ARFF (Attribute-Relation File Format)
file because the ARFF file is supported by WEKA.

3.2. Decision tree

WEKA Software was used to make a predictive decision tree. Several steps were taken in
developing the decision tree such as conversion of data to ARFF format, developing the
decision tree with J4.8. These steps are explained below.

3.2.1. Conversion to ARFF format
Weka provides the ArffViewer tool, which imports the data from a CSV file and then
can save it as an ARFF format. In this way, we converted the training set and testing set
file, which were in CSV file format, into ARFF format.

3.2.2. Attribute selection
Later, the ARFF formatted training set file was fed to WEKA. The Gain Ratio Attribute
Evaluator was used with Ranker as a search method. As the name itself defines, Gain
Ratio Attribute Evaluator is an attribute evaluator used by the C4.5 algorithm. The
Ranker search method, associate ranks to the attributes by their individual evaluation
(Dinakaran & Thangaiah, 2013; Mehta et al., 2015; Witten et al., 2016). The evaluator
sorted all the attributes on the bases of their importance, as shown in Figure 3.

Table 1. Changes made to the OTD column.
RDDy Delay days OTD

<1 month >0 days Delayed otherwise On-Time
<3 months >1 week Delayed otherwise On-Time
<6 months >2 weeks Delayed otherwise On-Time
<1 year >3 weeks Delayed otherwise On-Time
>1 year >1 month Delayed otherwise On-Time
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The attributes like GFM CODE, PO NUMBER, PO POSITION have nothing to do
with our model. They were for the use and benefit of the company only. Therefore,
these attributes were deleted from the list. Furthermore, the attributes like PO_YEAR
and PO_DATE, requested delivery date (RDD), actual delivery date (ADD) represent
the year and date on which the order was given, requested and delivered, respectively.
These attributes cannot contribute to the prediction of a new order because a new order
will have a new date; therefore, they were also deleted. The requested delivery days
(RDDy) and actual delivery days (ADDy) are the derived attributes from the RDD and
ADD, respectively, and they can be of importance to the model. However, the model
was tried with the ADDy attribute in it, which gave an overfitted big tree. Over-fitting is
a phenomenon in which the learning system tightly accommodate the given training
data so much that it would unable to predict accurately the result of untrained data.
Therefore, the ADDy attribute was also eliminated in order to avoid overfitting. The
delay days and OTD (on-time delivery) attributes both tell whether the order was
delayed or not, but the delay days was a numerical attribute and OTD was a binary
attribute. Therefore, the delay days attribute was removed while the OTD attribute was
left, as binary attributes are easy to classify (Han et al., 2011). Furthermore, the quality
attribute was removed for two reasons: first, the ontology will predict the supplier name
for a new order; therefore, new orders do not have conformity information with them;
hence, they cannot be fed to the model. Second, we are already having an ontology
model for the prediction of conformity of these data, which was in previous work done
on this project and can be found here (Zhe Zhong et al., 2018). As a result, we were left
with the only attributes shown in Figure 4, for creating a decision tree model. The
supplier code was selected as a target attribute for the decision tree.

Figure 3. Attributes sorted by the evaluator.
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3.2.3. Developing the decision tree with J4.8
With the selected attributes a decision tree was created with WEKA using J4.8 classifier
algorithm. Despite the attribute selection algorithms already performed on the data set
in the ‘Attribute Selection’ section, J4.8 will also apply its gain ratio attribute evaluator
on the data. The training set was validated with the 10-fold cross validation. In 10-fold
cross validation, the training set is divided into ten equal sets each having equal amount
of target attribute. Nine out of the ten sets are used to train the model, and the last set is
used as a testing set. This process continues for ten times until all the sets are used as
testing sets; thus, it is called 10-fold cross validation (Witten et al., 2016).

The configuration of the J4.8 classifier was set as the following:

● confidence factor for pruning was set to 0.001
● minimum number of objects per leave (minNumObj) was set to 50
● unpruned option was set to false

They all are strategies used by WEKA to prune a decision tree. If the unpruned option
was set to true, then the pruning of the tree will never take place. In addition, lowering
the confidence factor decreases the post-pruning effect and eliminates the nodes which
are not relevant. The minimum number of objects prevents the making of a new branch
until the nodes in the branch are equal or greater than the specified threshold. Thus,
this is a pre-pruning strategy (Drazin & Montag, 2012; Han et al., 2011; Rajput & Arora,
2013; Witten et al., 2016). Besides the above three options, all the rest of the options
were left as default. The portion of the modelled decision tree is shown in Figure 6. This
decision tree was used to create SWRL rules for the Ontology model.

Therefore, now it is time to jump to Protégé and model the Ontology part of the
project and define SWRL rules for that model. The modelling and SWRL rules extrac-
tion are explained below in ‘Generating SWRL Rules’ section.

3.2.4. Ontology model
The ontologymodel was created in the Protégé software tool (Musen, 2015), which is based
on the PROSA concept, and consists of five classes, namely, order, process, product,

Figure 4. Final selected attributes.
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resource and staff. The suppliers were considered resources to the company. Therefore, the
class ‘Resource’ has a subclass ‘Supplier’ and the ‘Supplier’ class further has the names of all
the suppliers as subclasses. Figure 5(a) shows the classes in the Protégé environment.

3.2.5. Data properties
Figure 5(b) shows the data properties: LOT VALUE in Euros, OTD, PRODUCT
VALUE, REQUESTED DELIVERY DAYS and QTY, which are same as the attributes
in the WEKA model and headings of the columns in the original data.

3.2.6. Instances
Figure 5(c) shows the instances which were imported from the Excel file with the help
of the Cellfie plugin of Protégé. The Cellfie plugin was used to import axioms from

Figure 5. (a) Classes hierarchy (b) Data properties (c) Individual instances.

Figure 6. The decision tree mapped from WEKA to the notepad.
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spreadsheets to Protégé (Hardi, 2018a). Transformation rules were used to map the
spreadsheet data to the ontology. The syntax used for the rules are Manchester OWL
(Web Ontology Language) Syntax (Horridge & Patel-Schneider, 2009), which is
a domain specific language (Hardi, 2018b).

3.2.7. Generating SWRL rules
After creating classes, data properties and instances in the ontology. We must define the
SWRL rules for reasoning. The main challenge was to generate the SWRL rules from the
decision tree model. Therefore, the SWRL rules were extracted from the decision tree in
MATLAB. The decision tree which was built in the WEKA was mapped to a notepad, as
shown in Figure 6, and a program was written inMATLAB which could read text from the
notepad file and extract SWRL rules to another text file. MATLAB extracted each leaf of the
tree as a single SWRL rule. For instance, the first rule in Figure 6 would be:

If PRODUCT VALUE ≤ 1.128 && LOT VALUE in Euros ≤ 88.55 THEN put the
order in s2341064 (Supplier name).

The SWRL rule for the above rule would be:
Order(?od) ^ PRODUCT_VALUE(?od, ?P) ^ swrlb:lessThanOrEqual(?P, ‘1.128’^^xsd:

decimal) ^ LOT_VALUE_in_Euros(?od, ?L) ^ swrlb:lessThanOrEqual(?L, ‘88.55’^^xsd:
decimal) – > s2341064(?od)

The total number of rules generated for this model are 45, and the number are the same
as the leaves of the decision tree. These rules can be copied to the SWRL tab plugin in
Protégé. After generation of the SWRL rules, they are supposed to be run by the Pellet
reasoner. The Pellet reasoner is an OWL-Description Logic (OWL-DL) reasoner with
a sound reasoning efficiency and high popularity amongst its competitors. It is an open
source and written in JAVA (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007).

4. Results and discussion

The ontology was based on the decision tree model, which was modelled in WEKA. It
was therefore necessary to verify the ontology model against the given data, to check
whether it would give the same exact result as the decision tree model.

The decision tree was modelled on the training set and was tested on the testing Set with
the configuration of the J4.8 classifier, as shown in Table 2. In the first three trials, the
confidence factor changes but the minNumObj is kept as default (i.e. 2). We can see how
the number of leaves and size decreases by the converging of the confidence factor to
a much smaller number, but the accuracy almost remained the same. However, lowering
the confidence factor means we have less confidence in our training data (Rajput & Arora,
2013); therefore, the confidence factor was set fixed at 0.001. In addition, as mentioned in
(Patel &Upadhyay, 2012), by increasing theminNumObj the size of the tree and number of
leaves decreases dramatically with a very small amount of compromise on the accuracy,
which can be seen in Table 3. Consequently, this configuration (i.e. confidence factor 0.001
and minNumObj 50) has been chosen as the final configuration. The details of this model
are given in Figure 7.

The training set, with which the model was trained with 70.4% accuracy, contained
14,261 instances; and the testing set, with which the model was tested, contained 7,317
instances. Amongst the 7,317 instances, 61.6% (i.e. 4,508 instances) are classified correctly
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and 38.39% (i.e. 2,809) are classified incorrectly. The number of leaves is 45 and the size of
the tree is 89. The confusion matrix of the model in Table 3 presents the correctly and
incorrectly classified instances for the specific classes. The instances highlighted blue are
correctly classified and these correctly classified instances are on the diagonal. In the first
row of the confusion matrix, the 2,062 instances (highlighted as blue) are the correctly
classified; the 9 instances (highlighted as green) belong to s234107, but are incorrectly

Table 2. Different configuration of the J.48 classifier with its respective results.
Number of Trials Confidence Factor minNumObj No. of Leaves Size of Tree Accuracy %

1 0.25 2 1095 2189 62.5
2 0.01 2 402 803 62.7
3 0.001 2 216 431 62.5
4 0.001 10 134 267 62.1
5 0.001 20 85 169 60.2
6 0.001 50 45 89 61.6

Table 3. Confusion matrix.

a b C d E f g h <-- Classified as

2062 9 25 0 9 677 29 0 a = s234107

267 84 1 11 3 145 0 0 b = s2341033

121 1 841 0 0 115 0 0 c = s2341064

0 0 0 11 13 0 0 0 d = s23410225

94 0 0 4 106 32 1 0 e = s23410258

897 11 50 9 7 1395 2 0 f = s23410277

101 0 4 7 0 93 9 0 g = s23410420

13 0 38 0 0 20 0 0 h = s23410335

a

Figure 7. Detailed result of the chosen configuration of the J4.8 classifier.
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classified as instances of the s2341033 supplier; the 25 instances (highlighted as red) belong
to s234107, but are incorrectly classified as instances of the s2341064 supplier and so on.
The TP Rate (True Positive Rate) in Figure 8 shows the percentage of correctly classified
instances of each class. Therefore, s2341064 has 78% of correctly classified instances, which
is the highest amongst all the other suppliers. On the other hand, s23410335 performed the
worst with 0% correct instances.

For the verification and validation of the ontology model, the supplier s23410225 was
chosen because only 24 instances belong to this supplier in the testing set file and it is easy to
verify all the 24 instances. Hence, all these 24 instances are fed to the ontologymodel, which
can be seen in Figure 5(c). After the running of the Pellet reasoner on the ontology, the
instances were classified as expected. Figure 9(a) below shows the 11 correctly classified
instances and Figure 9(b) shows the 13 incorrectly classified instances; they are classified as
instances of the s23410258 supplier. Sometimes, when the classifier produces an incorrect

Figure 8. Detail accuracy by class.

Figure 9. The correctly classified (a) and incorrectly classified (b) instances of the supplier s23410258.

346 Z. M. A. KHAN ET AL.



classification on a specific input, either the data has noise or may require additional
information to achieve a good classification (Breiman, 2001). Therefore, the input data
properties of these incorrectly classified instances matches the data properties of the
s233410258 supplier; which is why the ontology model put them in the s23410258 supplier
class. Hence, the accuracy of the model can be increased with a further addition of
information regarding the supplier with which it is dealing.

5. Conclusion

The research aims to create an artificially intelligent predictive model for a manufacturing
network, which can assist a project managing company in allocating a newly received
order to its suppliers. This aim was achieved by developing an ontology model based on
decision tree algorithm, created with the WEKA tool, which was mapped into ontology
with the help of SWRL rules. The SWRL rules were extracted from the decision tree model
with the help of a MATLAB program. The model gave 60.4% prediction accuracy using 8
suppliers, which is considered as a solid foundation for a model aimed at illustrating the
idea of allocation of a newly received orders. The model benefits the manufacturing
network industry by accelerating their planning and scheduling of tasks. In addition,
a good level of automation is achieved in this work, which limits the large amount of
manual data entry and enables the model to be used for large amount of data.

6. Future work

The model will be applied in an industrial case study as the future work when it is
further optimized using more supplier instances. Moreover, the extraction of further
attributes will be investigated which will hugely impact upon the overall prediction
performance.

The import of SWRL rules from MATLAB to the Protégé was the only step used in
this work where the data were manually entered. This can also be eliminated as the
future work by programming this whole work in JAVA language using the APIs
(application program interfaces) of WEKA and Protégé, which as result will also discard
the use of the MATLAB.
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