
Canterbury Christ Church University’s repository of research outputs

http://create.canterbury.ac.uk

Please cite this publication as follows: 

Brown, Mathew, Digby-Bowl, C. and Todd, S. D (2017) Assessing infant carriage 
systems: ground reaction force implications for gait of the caregiver. Human 
Factors. ISSN 0018-7208. 

Link to official URL (if available):

https://doi.org/10.1177/0018720817744661

This version is made available in accordance with publishers’ policies. All material 
made available by CReaTE is protected by intellectual property law, including 
copyright law. Any use made of the contents should comply with the relevant law.

Contact: create.library@canterbury.ac.uk



  

1 
 

BIOMECHANICS, ANTHROPOMETRY, WORK PHYSIOLOGY 1 

Assessing infant carriage systems: ground reaction force implications for gait of the caregiver 2 

 3 

Author Names and Affiliations: 4 

Mathew B. Brown, Caroline J. Digby-Bowl, and Samuel D. Todd 5 

Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ 6 

Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK. 7 

 8 

Author Note 9 

Mathew B. Brown, Section of Sport and Exercise Science, School of Human and Life Sciences, 10 

Canterbury Christ Church University; Caroline J. Digby-Bowl, Section of Sport and Exercise Science, 11 

School of Human and Life Sciences, Canterbury Christ Church University; Samuel D. Todd, Section 12 

of Sport and Exercise Science, School of Human and Life Sciences, Canterbury Christ Church 13 

University.  14 

Correspondence concerning this article should be addressed to Mathew B. Brown, Section of 15 

Sport and Exercise Science, School of Human and Life Sciences, Canterbury Christ Church 16 

University, North Holmes Road, Canterbury, Kent, CT1 1QU. E-mail: 17 

mathew.brown@canterbury.ac.uk 18 

 19 

Manuscript Type: RESEARCH ARTICLE 20 

Word Count: 4194 21 

Running Header: Infant Carriage Systems 22 

 23 

    24 

mailto:mathew.brown@canterbury.ac.uk


  

2 
 

Abstract 25 

Objective: To assess the acute alterations of anterior infant carriage systems on the ground reaction 26 

force experienced during over ground walking. 27 

Background: Previous research has identified the alterations in posture and gait associated with an 28 

increased anterior load (external or internal); however the forces applied to the system due to the altered 29 

posture during over ground walking have not been established. 30 

Method: Thirteen mixed gender participants completed forty-five over ground walking trials at a self-31 

selected pace under three loaded conditions (unloaded, semi-structured carrier 9.9kg and structured 32 

carrier 9.9kg). Each trial consisted of a fifteen metre walkway, centred around a piezoelectric force 33 

platform sampling at 1200 Hz. Differences were assessed between loaded and unloaded conditions 34 

and across carriers using paired samples t-tests and repeated measures ANOVA. 35 

Results: Additional load increased all ground reaction force parameters; however, the magnitude of 36 

force changes was influenced by carrier structure. The structured carrier displayed increased force 37 

magnitudes, a reduction in the time to vertical maximum heel contact and an increased duration of the 38 

flat foot phase in walking gait.  39 

Conclusion: Evidence suggest that the acute application of anterior infant carriers alters both kinetic 40 

and temporal measures of walking gait. Importantly these changes appear to be governed not solely by 41 

the additional mass but also by the structure of the carrier. 42 

Application: These findings indicate carrier structure should be considered by the wearer and may be 43 

used to inform policy in the recommendation of anterior infant carriage systems use by caregivers. 44 

 45 

Key Words: Biomechanics, Gait, Posture, Kinetics, Loading, Product design. 46 

Précis: Use of infant carriers has expanded over the past two decades, however little understanding of 47 

the impacts of these on the caregiver exists. Results demonstrated increased forces being applied to 48 

the wearer as a result of load and carrier structure. Consideration needs to be given in carrier selection 49 

and use.  50 
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 51 

Introduction 52 

The use of ergonomic aids, in the form of woven wraps, to assist in the transportation of infants has 53 

been and continues to be commonplace in developing countries throughout the world (Glover, 2012; 54 

Wu, Huang, & Wang, 2016). This approach has seen significant increase in developed countries over 55 

the past two decades (Frisbee and Hennes, 2000; Glover 2012), resulting in the increased availability 56 

of commercial infant carriage devices. This trend can be in part attributed to its promotion by parenting 57 

organisations such as the National Childcare Trust (2016), Babywearing International (2015) and the 58 

Centre for Babywearing Studies (2016). Proposed benefits include convenience, the promotion of 59 

physical development, child mental and physical health, safety, and improved health for the wearer 60 

(Natural Life Mom, 2012; Sling Babies, 2011).  Whilst some of these claims have been supported in the 61 

literature, including convenience (Wu et al., 2016), reduction in crying (Hunziker and Barr, 1986) and 62 

an increase in infant mother attachment (Tessier et al., 1998; Gathwala, Singh, & Balhara, 2008), little 63 

attention has been directed towards the physical health of the caregiver. Specifically, the short- and 64 

long-term implications of carrying an infant on the caregiver’s posture, gait and structural health.   65 

The task of infant carriage is ostensibly one of load carriage, either anteriorly or posteriorly, while the 66 

majority of load carriage work examine the effects of posterior load on posture (Atwells, Birrell, Hooper 67 

& Mansfield, 2006; Schiffman, Bensel, Hasselquist, Gregorczyk & Piscitelle, 2006), gait (Birrell, Hooper 68 

& Haslam, 2007; Birrell & Halsam, 2008; Birrell & Halsam, 2010), ground reaction force (Cavanagh & 69 

LaFortune, 1980; Hsiang, Jiang,& McGorry, 1998; Lloyd and Cooke, 2000; Ciacci, Di Michelea, & Mern, 70 

2010; Birell et al., 2007), fatigue (Qu and Yeo, 2011) and cardiovascular response (Fallowfield, Blacker, 71 

Willems, Davey, & Layden, 2012). Application of many of these findings are limited in reference to 72 

anterior load carriage, given the significant differences reported by Fiolkowski, Horodyski, Bishop, 73 

Williams, and Stylianou (2006) in gait kinematics between anterior and posterior loads. However, 74 

findings associated with cardiovascular response, namely the increased energy cost associated with 75 

an additional load, as measured by oxygen consumption and heart rate (Fallowfield et al., 2012), and 76 

increase in forces experienced proportionate to the load applied (Birrell et al., 2007) are more readily 77 

transferable. Consequently, the use of an anterior infant carriage system could have cardiorespiratory 78 

adaptations resulting in enhanced health and reduced disease risk, supporting the claims of parenting 79 
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groups associated with the wearer’s health (Natural Life Mom, 2012; Sling Babies, 2011). However, 80 

focus on anterior load carriage has been sparse in the academic literature with reference to posture 81 

and gait parameters (Hsiang et al., 1998; Birrell and Haslam, 2008; Junqueira, Amaral, Lutaka, & 82 

Duarte, 2015; Fiolkowski et al., 2006; Perry, et al., 2010; Graham, Smallman, Miller, & Stevenson, 83 

2014). Findings indicate that anterior load carriage, using a front pack equivalent to 10 and 15% of 84 

participant mass, caused a reduced hip flexion and extension, compared to unloaded walking 85 

(Fiolkowski et al., 2006). While application of a fixed 4.4kg load (divers belt) identified a significant 86 

decrease in vertical ground reaction force at maximum vertical thrust at push off (Birrell and Haslam, 87 

2008), no other vertical force measures were significantly altered by the fixed anterior load. This may 88 

have been a result of the alteration in the centre of gravity caused by the anterior mass, reducing the 89 

impulse needed to accommodate the load at push off (Hsiang et al., 1998). Furthermore, Junqueira et 90 

al. (2015) identified significant alterations in trunk orientation when participants carried live infants and 91 

infant mannequins in their arms. These were characterised by increased trunk inclination, lumbar 92 

lordosis and thoracic kyphosis during standing posture and walking (Junqueira et al., 2015).   93 

Associated literature addressing impact of increased anterior load can be found in analysis of gait during 94 

pregnancy; Junqueira et al. (2015) highlighted commonalities in qualitative movement patterns of 95 

pregnant gait and postpartum infant carriage gait. Furthermore, significant reduction in walking velocity 96 

during pregnancy (McCrory, Chambers, Daftary, & Redfern, 2011) and postpartum infant carriage 97 

(Junqueira et al., 2015) has been established. These alterations are suggested to be compensatory to 98 

mitigate the increased instability of the caregiver/child system caused by changes in the position of the 99 

centre of gravity (Branco, Santos-Rocha, & Vieira, 2014). Consequently, these similarities may indicate 100 

that mothers are well positioned to transfer from in vivo carriage to postpartum carriage; however, non-101 

maternal caregivers will have had no such adaptations. Furthermore, the TICKS guidelines developed 102 

by the Consortium of UK Sling Manufacturers (National Childbirth Trust, 2016) state that the child should 103 

be positioned high on the chest close enough for the carer to kiss the child on the forehead. In 104 

comparison to previous research, where loads were carried in a much lower position, the centre of 105 

gravity will be raised and therefore the alterations in gait characteristics further exaggerate.  106 

Considering the alterations in walking posture and kinematics (Fiolkowski et al., 2006; Junqueira et al., 107 

2015) understanding the loading of the body is important, as joints and muscles will be loaded outside 108 

of the general motor pattern, exposing the wearer to increased prospects of injury (Bonci, 1999). This 109 



  

5 
 

could be magnified by a lack of pregnancy adaptations in non-maternal caregivers, therefore the use of 110 

anterior infant carriage systems could have health implications for caregivers. In light of the limited work 111 

toward understanding the impact of anterior load, and specifically, that no research has yet established 112 

the impact of anterior infant carriage on the caregiver, the aim of the current research was to ascertain 113 

the changes in ground reaction forces experienced when carrying an anterior load on the chest using 114 

an infant carrier. Moreover, it aims to determine acute alterations in temporal and kinetic parameters of 115 

the foot ground interaction experienced by the caregiver during walking, and if this is affected by specific 116 

carrier structure.  117 

 118 

 119 

 120 

Method 121 

Participant Recruitment 122 

Thirteen injury free participants (female = 7; male = 6; mean age = 29.3 ± 8.65 years) volunteered to 123 

take part in this study. Participant demographics are presented in Table 1.  This research complied 124 

with the tenets of the Declaration of Helsinki and was approved by the Institutional review board at 125 

Canterbury Christ Church University. Informed consent was obtained from each participant. Inclusion 126 

criteria required all participants to be free from injury at time of data collection and have had no back, 127 

lower limb or shoulder injuries in the previous 12 months. No participants had given birth in the 128 

previous 12 months. 129 

Table 1. Participant Demographics 130 

Gender No. of 
Participants 

Descriptive 
Statistic 

Age  
(years) 

Height  
(cm) 

Mass  
(kg) 

BMI 
(kg/m2) 

Female 7 Min 23 162.30 57.60 19.80 
  Max 48 174.60 90.70 31.24 
  Mean 31.71 168.83 69.06 24.23 
  SD 10.84 5.20 11.74 3.94 

 
Male 6 Min 23 179 65.30 19.67 
  Max 35 190.20 95 27.31 
  Mean 26.5 184.37 80 23.49 
  SD 4.59 4.29 11.67 2.90 
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 131 

No previous research was deemed acceptable for an a priori sample size estimation, therefore post-132 

hoc power analyses were conducted for the repeated measures T-test and repeated measures 133 

ANOVA. Using G*Power (v. 3.19.2) with an alpha of 0.05 and a large effect size (0.8), demonstrated 134 

power was 0.75 and 0.9 for the t-tests and ANOVA respectively.    135 

Experimental Conditions 136 

Participants completed fifteen barefoot trials at a self-selected walking pace over a 15 m distance in 137 

each condition (unloaded 1.54 ± 0.03m·s-1; and 2 anteriorly loaded conditions, structured [SC] 1.54 ± 138 

0.03m·s-1; semi-structured [SSC] 1.52 ± 0.03m·s-1), making contact with their right foot on a force 139 

platform. Barefoot conditions were used to ensure that differences between shoe construction and 140 

condition between participants did not affect force measures, as these have been demonstrated to 141 

influence force attenuation and foot and ankle kinematics during gait (Novacheck, 1998).   142 

Table 2. Specifications of Infant Carriage Systems 143 

Infant Carrier Semi Structured Structured 

Picture 

  
Weight (g) 576 997 

Material 100% cotton Main material: 60% cotton, 40% 
polyester 
Lining: 100% cotton 
Waist belt: 100% polyester 
Mesh: 100% polyester 
Cover for leg position zip: 100% 
cotton 

Product Features A comfortable and supportive baby 
carrier that allows you to carry on 
your front, hip or back.  
Allows the carrier to grow with 
your child to fit any size of baby or 
toddler from newborn up to 4 
years old. 
Baby is securely supported in the 
best position for healthy hip 
development.  
Wide shoulder straps to evenly 
spread the weight around your 

Ergonomic baby carrier with wide 
seat area 
Extra-padded shoulder straps 
Good stability in the waist belt 
Perfect for a newborn – no infant 
insert needed. 
Front-facing carrying option 
From newborn to 3 years 
Acknowledged as a hip-healthy baby 
carrier by International Hip 
Dysplasia Institute 
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body and provide a custom fit for 
each user.  
Padded waist for extra comfort.  

 144 

The unloaded condition was completed barefoot, wearing minimal clothing, defined as tight fitting top 145 

and sports shorts and no carrier. The loaded conditions consisted of the wearing of 2 different 146 

anteriorly loaded infant carriers, one semi-structured and one structured, specifications for which can 147 

be found in Table 2. Both carriers were loaded with a purpose-made mannequin with the equivalent 148 

mass of a 12 month old on the 50th percentile on the NHS growth charts (9.9 kg) (NHS, 2017). A 149 

mannequin was used as it has previously been reported (Junqueira et al., 2015) that the carriage of a 150 

mannequin results in similar alterations in walking kinematics to carrying one’s own infant when 151 

compared to unloaded walking. Participants were instructed to allow their arms to swing naturally 152 

during walking trials, rather than holding on to the mannequin and carrier. The order in which the 153 

participants completed each condition was randomised using an online research randomizer 154 

(Urbaniak and Plous, 2013).  155 

    156 

 157 

Figure 1. Annotated typical ground reaction force trace. P1 – Initial Contact, P2 – Impact Force Peak, P3 – Medial Peak 158 
Force, P4 – Max Posterior Braking, P5 – Max Heel Contact, P6 – Midstance, P7 – Max Vertical Thrust, P8 – Max Anterior 159 
Propulsive, P9 – Toe Off, I1 – Medial Impulse, I2 – Braking Impulse, I3 – Propulsive Impulse. 160 

 161 
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Instrumentation 162 

Ground reaction force (GRF) data were sampled at 1200 Hz via a 900 x 600 mm Kistler force platform 163 

(Model 9287BA, Kistler Instruments Ltd) using Bioware software (v5.3.0.7, Kistler Instruments Ltd).  164 

Timing lights (in house, Canterbury Christ Church University) recorded the time taken to complete the 165 

central 5 m of the over ground walking trials, centred over the force platform, to allow calculation of 166 

walking velocity.   167 

 168 

Data Analysis 169 

Data files containing GRF components for over ground walking were filtered in Bioware (v5.3.0.7, 170 

Kistler Instruments Ltd) using a dual-pass Butterworth low-pass filter with a cut-off frequency of 50 Hz 171 

(McCrory et al., 2011; McCrory, Chambers, Daftary, & Redfern, 2013).  A Fast Fourier Transformation 172 

of 13 randomly selected trials revealed data to be below 45 Hz.  GRF data files were exported from 173 

Bioware to Excel, where a purpose-written analysis template extracted key kinetic and temporal 174 

components for further analysis. Peak vertical and anteroposterior force and impulse were calculated 175 

as key events in the loading of the gait cycle and have been demonstrated to be important responders 176 

to assess force during general load carriage (Birrell, 2007). Rates of force loading and unloading were 177 

included to assess acceleration changes to the caregiver and carriage system, beyond that of 178 

maximal amplitudes, as indication of increased injury risk (Greenhalgh, Sinclair, Protheroe and 179 

Chockalingham, 2011). The mediolateral assessment was included, as despite the small magnitude 180 

of these during walking gait, research suggests mediolateral stability is important in similar anterior 181 

load carriage tasks (Branco et al., 2013; Branco et al., 2014; Lymbery and Gilleard, 2005) and 182 

therefore was deemed important for inclusion. Calculations for all variables are outlined in Tables 3 183 

and 4, figure 2 and with reference to figure 1, except for rate from peak medial force to max lateral 184 

force was calculated using maximums prior to midstance (MS). The fastest and the slowest walking 185 

trials were removed from analysis, leaving 13 trials per condition per participant, and GRF data were 186 

normalised to body weight (BW), and temporal measures were normalised to contact time. 187 

Statistical Analysis 188 
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Data were checked for normality using a Shapiro-Wilk test. Pairwise assessment of loaded 189 

(combination of the two loaded conditions) versus unloaded, and between carrier conditions were 190 

conducted to ascertain if carrier structure was associated with any significant differences in GRF. 191 

Pairwise comparison between loaded and unloaded were calculated using either a paired t-test or a 192 

Wilcoxon matched-pairs test, from which a Cohen’s d effect size was calculated and interpreted as 193 

small (0.2), medium (0.5) and large (0.8). Cross carrier assessment employed either a repeated 194 

measures ANOVA across carrier condition, where significant differences were ascertained through 195 

pairwise comparison using a Bonferroni Post Hoc analysis, or a Friedman Test. Effect size for the 196 

repeated measures ANOVA was calculated using partial eta-squared and interpreted as small (0.01), 197 

medium (0.09) and large (0.25). The alpha level for all tests was set to 0.05 and all tests were carried 198 

out using SPSS (version 22, IBM, NY). 199 

 200 

Results 201 

Unloaded vs. Loaded 202 

Kinetic Analysis 203 

Pairwise comparisons between unloaded and loaded conditions (Table 3) identified significant 204 

increases in impact force peak (IFP: t (10) = -3.243, p = 0.009, d = 0.98, Un: 0.745 ± 0.034, Loaded: 205 

0.869 ± 0.054), maximum heel contact (MHC: t (12) = -11.307, p = 0.000, d = 3.14, Un: 1.206 ± 0.032, 206 

Loaded: 1.375 ± 0.034), midstance (MS: t (12) = -10.752, p = 0.000, d = 2.98, Un: 0.663 ± 0.019, 207 

Loaded: 0.772 ± 0.019) and maximum vertical thrust (vertical force component propulsive peak; 208 

MaxT: t (12) = 14.714, p = 0.000, d = 4.08, Un: 1.149 ± 0.012, Loaded: 1.275 ± 0.017) under loaded 209 

conditions. Rate of vertical force loading at heel contact (VLR) and rate of force unloading (VLOR) at 210 

end of stance also significantly increased when loaded (t (12) = -3.890, p = 0.002, d = 1.08; t (12) = 211 

6.283, p = 0.000, d = 1.74, respectively).  212 

Similarly, maximum posterior braking force (MPB: t (12) = 4.566, p = 0.001, d = 1.27) and maximum 213 

anterior propulsive force (MAP: t (12) = -6.734, p = 0.000, d = 1.87) significantly increased under 214 

loaded conditions. Loaded walking also resulted in significant increases in braking impulse (BI) and 215 

propulsive impulse (PI: t (12) = 8.921, p = 0.000, d = 2.47; t (12) = -7.852, p = 0.000, d = 2.18, 216 



  

10 
 

respectively), however rate of braking force (BLR) application was not significantly altered (z = -1.645, 217 

p = 0.101). Furthermore, load significantly increased the medial peak force (MPF: t (12) = -2.386, p = 218 

0.034, d = 0.66) and medial loading rate (MLR: z = -2.481, p = 0.013, d = 0.69), however medial 219 

impulse (MI) did not alter significantly. 220 

In the transition from MHC to MaxT (the flat foot phase of stance), significant increases were evident 221 

in the magnitude of force changes between MHC and MS (t (12) = -2.812, p = 0.016, d = 0.78) and 222 

MHC and MaxT (t (12) = -3.156, p = 0.008, d = 0.88) under loaded conditions. However these 223 

changes were not sufficient to significantly alter the load off rate between MHC and MS and the rate 224 

of force application from MS to MaxT (p>0.05) or the force magnitude change between MS and MaxT.  225 
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Table 3. Kinetic Analysis 226 

  Unloaded Loaded (combined) Semi-Structured (SSC) Structured (SC) 

Peak Force (BW)     

𝑃4 Fy - Max Posterior Braking * α β γ  -0.250 ± 0.008 -0.272 ± 0.008 -0.269 ± 0.009 -0.275 ± 0.008 
𝑃8 Fy - Max Anterior Propulsive * α β γ  0.271 ± 0.007 0.307 ± 0.008 0.304 ± 0.008 0.309 ± 0.009 
𝑃3 Fx - Medial Peak Force * α γ  0.068 ± 0.007 0.075 ± 0.008 0.074 ± 0.008 0.076 ± 0.008 

Impulses (BW·s)     

𝐼1 Fx - Medial Impulse  0.0020 ± 0.0002 0.0022 ± 0.0002 0.0022 ± 0.0002 0.0022 ± 0.0002 
𝐼2 Fy -Braking Impulse * α β γ  -0.0371 ± 0.0011 -0.0420 ± 0.0013 -0.0418 ± 0.0015 -0.0422 ± 0.0011 
𝐼3 Fy - Propulsive Impulse * α β γ  0.0358 ± 0.0013 0.0406 ± 0.0013 0.0404 ± 0.0013 0.0409 ± 0.0013 

Loading Rates (BW·s-1)     
𝐹𝑧𝑃2

− 𝐹𝑧𝑃1

𝑡𝑃2
− 𝑡𝑃1

 
Fz - Impact Loading Rate * α β γ 51.285 ± 3.430 56.256 ± 3.680 55.678 ± 3.687 56.841 ± 3.746 

𝐹𝑧𝑃9
− 𝐹𝑧𝑃7

𝑡𝑃9
− 𝑡𝑃7

 
Fz - Load Off Rate* α β γ  -16.615 ± 0.588 -18.725 ± 0.718 -18.413 ± 0.706 -19.038 ± 0.763 

𝐹𝑥𝑃3
− 𝐹𝑥𝑃1

𝑡𝑃3
− 𝑡𝑃1

 
Fx - Medial Impact Loading Rate * α γ 3.184 ± 0.458 3.681 ± 0.577 3.632 ± 0.547 3.730 ± 0.611 

- Fx - Max Med. to Max Lat. Rate α β  1.257 ± 0.235 1.428 ± 0.216 1.450 ± 0.207 1.406 ± 0.232 
𝐹𝑧𝑃6

− 𝐹𝑧𝑃5

𝑡𝑃6
− 𝑡𝑃5

 
Fz - MHC to MS Load Off Rate α γ δ -3.436 ± 0.298 -3.654 ± 0.299 -3.525 ± 0.304 -3.784 ± 0.307 

𝐹𝑧𝑃7
− 𝐹𝑧𝑃6

𝑡𝑃7
− 𝑡𝑃6

 
Fz - MS to MaxT Load Rate 2.658 ± 0.164 2.734 ± 0.145 2.716 ± 0.156 2.751 ± 0.141 

𝐹𝑦𝑃4
− 𝐹𝑦𝑃1

𝑡𝑃4
− 𝑡𝑃1

 
Fy - Braking Force Rate -3.681 ± 0.379 -4.064 ± 0.493 -3.950 ± 0.477 -4.178 ± 0.516 

Delta Changes (BW)     

𝑃6 −  𝑃5 Fz - MHC - MS Difference* α γ  0.543 ± 0.050 0.603 ± 0.050 0.585 ± 0.051 0.622 ± 0.050 
𝑃5 −  𝑃7 Fz - MHC - MaxT Difference * α γ  0.057 ± 0.034 0.100 ± 0.038 0.089 ± 0.037 0.112 ± 0.039 
𝑃7 −  𝑃6 Fz - MS - MaxT Difference  0.486 ± 0.025 0.503 ± 0.023 0.496 ± 0.025 0.510 ± 0.022 

*Denotes significant difference between loaded and unloaded condition; α denotes a significant finding from Repeated Measures ANOVA; β denotes significant pairwise comparison between Unloaded and Semi-227 
Structured; γ denotes significant pairwise comparison between Unloaded and Structured; δ denotes significant pairwise comparison between Semi-Structured and Structured. 228 
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Temporal Analysis 229 

A significant (t(12) = -2.260, p = 0.043, d = -0.63) increase in time between the MHC and MaxT in the 230 

loaded condition (57.81 ± 0.57%) in comparison to unloaded (56.91 ± 0.47%), indicated that the load 231 

increased the time during which participant’s full foot was in contact with the force platform. No 232 

significant difference between loaded/unloaded conditions were observed for other temporal 233 

measures (Table 4). 234 

Table 4. Temporal Analysis 235 

Calculation 

 

Unloaded Loaded 
(combined) 

Semi-Structured Structured 

𝑡𝑃9
− 𝑡𝑃1

 Contact Time (s)  
0.604 ± 0.009 0.607 ± 0.008 0.608 ± 0.008 0.606 ± 0.009 

𝑡𝑃2
− 𝑡𝑃1

𝑡𝑃9
− 𝑡𝑃1

 
Time to Impact Peak 
(% CT)   

3.95 ± 0.55 4.26 ± 0.91 4.49 ± 1.08 4.02 ± 0.80 

𝑡𝑃5
−  𝑡𝑃1

𝑡𝑃9
− 𝑡𝑃1

 
Time to Max Heel 
Contact (% CT) α  

21.29 ± 0.44 20.65 ± 0.46 20.87 ± 0.53 20.43 ± 0.42 

𝑡𝑃6
− 𝑡𝑃1

𝑡𝑃9
− 𝑡𝑃1

 
Time to Midstance 
(% CT)   

47.34 ± 0.61 47.87 ± 0.71 48.11 ± 0.74 47.64 ± 0.71 

𝑡𝑃6
− 𝑡𝑃5

𝑡𝑃9
− 𝑡𝑃1

 
Time to MS from 
MHC (% CT)   

26.05 ± 0.63 27.22 ± 0.72 27.23 ± 0.72 27.21 ± 0.72 

𝑡𝑃7
− 𝑡𝑃1

𝑡𝑃9
− 𝑡𝑃1

 
Time to MaxT (% CT)   

78.20 ± 0.43 78.46 ± 0.45 78.38 ± 0.48 78.53 ± 0.43 

𝑡𝑃7
− 𝑡𝑃5

𝑡𝑃9
− 𝑡𝑃1

 
Time to MT from 
MHC (% CT) *α γ  

56.91 ± 0.47 57.81 ± 0.57 57.51 ± 0.61 58.11 ± 0.56 

𝑡𝑃7
− 𝑡𝑃6

𝑡𝑃9
− 𝑡𝑃1

 
Time to MaxT from 
MS (% CT)   

30.62 ± 0.57 30.55 ± 0.55 30.25 ± 0.55 30.86 ± 0.61 

𝑡𝑃9
− 𝑡𝑃7

𝑡𝑃9
− 𝑡𝑃1

 
Time from MaxT to 
Toe off (% CT)   

21.80 ± 0.43 21.54 ± 0.45 21.62 ± 0.48 21.47 ± 0.43 

 
Time Max medial 
Force to Max Lateral 
Force (%CT) 

20.64 ± 1.92 19.45 ± 1.60 19.35 ± 1.77 19.56 ± 1.55 

- Velocity Final (m·s-1)   
1.538 ± 0.031 1.532 ± 0.031 1.519 ± 0.030 1.545 ± 0.032 

*Denotes significant difference between loaded and unloaded condition; α denotes a significant finding from Repeated Measures ANOVA; β 236 
denotes significant pairwise comparison between Unloaded and Semi-Structured; γ denotes significant pairwise comparison between 237 
Unloaded and Structured; δ denotes significant pairwise comparison between Semi-Structured and Structured. 238 

 239 
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Analysis by Carrier Type 240 

Kinetic Analysis 241 

Significant findings in all vertical force measures from the paired samples t-tests were duplicated in 242 

the overall effect of the repeated measures ANOVA when load was separated by carrier type. Post 243 

hoc pairwise comparisons identified the magnitude of the MHC (F(2,24) = 96.589, p < 0.001, η2 = 244 

0.89) was significantly higher under the SC condition (1.390 ± 0.034 Bw), with MHC diminishing 245 

through the SSC condition (1.361 ± 0.035 Bw) to the unloaded condition (1.206 ± 0.032 Bw). All other 246 

vertical force measures exhibited no difference between SSC and SC, this held true for the peak 247 

forces and impulses in anterior posterior forces. Medial impulse (F(1.359,16.309) =1.9, p = 0.171, η2 = 248 

0.137) and MPF (F(1.399,16.794) =4.91, p = 0.031, η2 = 0.29) also echoed the paired samples 249 

analysis, however Bonferroni post hoc pairwise analysis of the MPF was too conservative to identify 250 

the source of the significant difference. Further investigation using a lowest significant difference 251 

(equivalent to no adjustments), identified the source of the difference, with the SC condition (0.076 ± 252 

0.008 Bw) MFP magnitude being significantly higher than the unloaded condition (0.068 ± 0.007 Bw). 253 

Resultantly, the same pattern of significance was identified in the MLR (X2 (2) = 6.615, p = 0.037) and 254 

the Wilcoxon post hoc identified significance between SC and Unloaded (z = -2.481, p = 0.013, d = 255 

0.69). 256 

The transition from MHC to MaxT highlighted further impacts of the SC carrier condition. The 257 

magnitude change between MHC and MS (F(2,24) =7.267, p = 0.003, η2 = 0.38) was significantly 258 

impacted by load condition, post hoc testing highlighted a significantly greater drop from MHC to MS 259 

(SC: 0.622 ± 0.050, Unloaded: 0.543 ± 0.050). This lead to a significant increase in the load off rate 260 

from MHC to MS (F(2,24) =3.707, p = 0.040, η2 = 0.236). Interestingly, the SC condition (-3.784 ± 261 

0.307 Bw.s-1) was significantly faster than the unloaded (-3.436 ± 0.298 Bw.s-1), but not the SSC (-262 

3.525 ± 0.304 Bw.s-1, p = 0.051) conditions, although this findings required the use of the least 263 

significant differences approach due to the conservative nature of the Bonferroni post hoc previously 264 

identified.   265 

The magnitude of change between MHC and MaxT showed further significance alterations due to 266 

increased anterior load (f (2,24) = 8.201, p = 0.002, η2 = 0.406): again the SC condition (0.112 ± 267 

0.039 Bw) was significantly higher than unloaded (0.057 ± 0.034 Bw).    268 
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 269 

Temporal Analysis 270 

A significant difference between conditions for the time between MHC and MaxT as a percentage of 271 

contact time (F(2, 24) = 5.152, p = 0.014, η2 = 0.30) was apparent. Post hoc pairwise comparisons 272 

identified a significant difference between unloaded (56.91 ± 0.47 %CT) and the SC (58.11 ± 0.56 273 

%CT) condition; the SSC condition exhibited no significant difference (57.51 ± 0.61 %CT). While the 274 

ANOVA for time from heel contact to MHC indicated significant differences (F(2,24)= 3.475, p = 275 

0.047, η2 = 0.23), Bonferroni post hoc tests were too conservative to identify the specific source of the 276 

difference reported. Further examination using a lowest significant difference (equivalent to no 277 

adjustments) post hoc assessment, identified the significant difference between UN (21.29 ± 0.44 278 

%CT) and SC (20.43 ± 0.42 %CT) conditions (p = 0.040).  Examination of the data indicates that both 279 

the loaded conditions (SSC 20.87 ± 0.53 %CT; SC 20.43 ± 0.42 %CT) were characterised by a faster 280 

move to MHC than the UN condition (21.29 ± 0.44 %CT), although not enough to significantly alter 281 

loading rate at impact.   282 

 283 

Discussion 284 

Previous studies have identified a decrease in walking velocity in response to the addition of an 285 

external anterior load (Junqueira et al., 2015) and internal anterior mass (McCrory et al., 2011). Our 286 

findings do not support this. While this contradiction was unexpected, previous work used mothers 287 

only and had the infant (or mannequin) supported in the arms, conversely the focus of this work was 288 

to investigate the caregiver (non-gender specific) and investigated the effect of an ergonomic aid 289 

(carrier) to assist in the carriage task.  290 

Statistically significant increases in peak vertical force parameters (IP, MHC, MS, MaxT) were 291 

demonstrated in both loaded conditions when compared with unloaded (figure 2). These increases 292 

were in direct opposition to Birrell and Haslam (2008) who found a significant reduction in MaxT in 293 

response to the load, with all other measures demonstrating no change. This contradiction is likely 294 

due to the increased load used in the current study (9.9kg vs. 4.4 kg Birrell & Haslam, 2008), and 295 

could be influenced by the raised position of the anterior mass. Interestingly, the significant increase 296 
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in MaxT, combined with the significant increase in propulsive impulse (t (12) = 8.921, p = 0.000, d = 297 

2.47), also contradicted the propositions of Hsiang et al. (1998), who suggested a decreased impulse 298 

was required at push off with an anterior load. These contradictions could have resulted from the 299 

nature of the task, as previous research had addressed a load (Hsiang et al., 1998; Birrell and 300 

Haslam, 2008), where the current research was that of carrying an infant. While this proposition 301 

cannot be proved due to the psychological influences being outside of the scope of this paper, 302 

participants in the current study may have used an external focus of attention and as such altered the 303 

gait accordingly. As it has been shown that this approach can effect motor patterns (Wulf, Weigelt, 304 

Poulter, & McNevin, 2003) and Junqueria et al. (2015) identified that mannequin carriage and infant 305 

carriage demonstrate similar variations from unloaded walking.  306 

Increases early in foot contact, specifically the MHC, displayed variation beyond that of the load 307 

alone. The use of a structured carrier resulted in a significantly higher force (SC: 1.390 ± 0.034 Bw) 308 

being experienced by the caregiver compared to the SSC and unloaded conditions (SSC: 1.361 ± 309 

0.035 Bw, Unloaded: 1.206 ± 0.032 Bw), this was deemed to have a large effect (η2 = 0.89). This may 310 

have been influenced by the significant reduction in time between heel contact and MHC (F(2,24) 311 

=3.475, p = 0.047, η2 = 0.225). Post hoc assessment identified significance values of 0.070 between 312 

SC and SSC and 0.040 between SC and unloaded, indicating that the use of the SC is characterised 313 

by a quicker transfer from heel contact to MHC through increased acceleration, and therefore 314 

resulting in the increased force measured at MHC. When considered alongside the findings of 315 

Fiolkowski et al. (2006) and Junqueira et al. (2015), both of whom applied loads of similar magnitude 316 

to the current study (15% and 10kg, respectively), and Bonci (1999), this indicates that the caregiver 317 

is being exposing to increased stresses and possibly enhanced risk of injury due to greater magnitude 318 

of all vertical forces, reduced time to maximum load (MHC) and  the alterations in posture previously 319 

described.  320 

  321 
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 322 

Figure 2. Vertical force parameter changes due to load and carrier type. *Denotes significant difference between loaded and 323 
unloaded condition; α denotes a significant finding from Repeated Measures ANOVA, indicating difference between the 3 conditions; β 324 
denotes significant pairwise comparison between Unloaded and Semi-Structured; γ denotes significant pairwise comparison between 325 
Unloaded and Structured; δ denotes significant pairwise comparison between Semi-Structured and Structured. 326 

The significantly higher MHC peak force resulted in further significant alterations in the loading 327 

patterns during walking. The magnitude of the reduction from MHC to MS was significantly larger 328 

under loaded conditions (t(12) = -2.812, p = 0.016, d = 0.78). Analysis by carrier identified statistical 329 

significance between SC and Unloaded (p = 0.022). This linked to further significant differences 330 

between loaded and unloaded (F(2,24) =3.707, p = 0.040, η2 = 0.24), with the rate of force unloading 331 

from MHC to MS being significantly faster under SC conditions when compared to the unloaded 332 

condition (SSC: p = 0.051),  placing the caregiver under greater extremes of force. As a result, this 333 

may increase the likelihood of injury, if the carrier was employed for prolonged use, or could positively 334 

affect the caregiver through the overload principle attributed to resistance training (Winett & Carpinelli, 335 

2001). Further research addressing prolonged use is needed to ascertain the veracity of these 336 

propositions.  337 

The combination of the decrease in time from heel contact to MHC and maintenance of the contact 338 

time (t(12) = -0.558, p = 0.587) resulted in a significant increase in duration, as a percentage of 339 

contact time, between MHC to MaxT, with participants spending significantly longer in this transition 340 
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when wearing the infant carriage systems. When carriage systems were separated (F(2,24) =5.152, p 341 

= 0.014, η2 = 0.30), the foundation of this increase was the SC, exhibiting an increase of 1.2%. This 342 

increase in time indicates a longer period of knee flexion during stance, requiring greater muscular 343 

effort, especially given the increased forces experienced under loaded conditions. Furthermore, 344 

increasing the time in the flat foot phase of stance may be indicative of participants attempting to 345 

stabilise the system. It has been reported through kinematic analysis that stability of the body is the 346 

primary focus of the pregnant woman during gait (Branco, Santos-Rocha, Aguiar, Vieira, & Veloso, 347 

2013; Branco et al. 2014; Lymbery & Gilleard, 2005), and thus it could be expected that the same 348 

would be true of postpartum mothers and other caregivers when carrying their infant in a carrier 349 

system.  While little previous research has identified kinetic changes (Lymbery & Gilleard, 2005), what 350 

has been identified supports the importance of stability. Although the temporal findings do not directly 351 

speak to previous research addressing stability, as emphasis has been placed on the importance of 352 

stability in the medio-lateral direction (Branco et al., 2013, Branco et al. 2014, Lymbery & Gilleard, 353 

2005), they do indicate that an acute adaptation has been employed by participants resulting in a 354 

longer duration of flat foot contact a greater stability. 355 

Analysis of the medio-lateral parameters from both the pair-wise analyses and repeated measures 356 

ANOVA displayed mixed findings. Alterations in medio-lateral parameters were inconsistent; the 357 

medial impulse demonstrated no significant alteration due to load or carrier type, where rate of force 358 

transfer from medial to lateral peak, MPF, and MLR all displayed significant alterations in response to 359 

load. The rate of force transfer from medial to lateral during stance, although significant overall (X2(2) 360 

= 6.000, p = 0.050), did not clearly demonstrate the specific source, as post hoc analysis, using alpha 361 

level correction, could not ascertain the specific source of the significance. The MPF and 362 

consequently MLR increases (t(12) = -2.386, p = 0.034, d = 0.66; Z = -2.481, p = 0.013, d = 0.69, 363 

respectively) were solely a function of the SC condition. These findings, combined with those from the 364 

temporal and vertical force analysis, indicate that carrier structure in addition to load has an influence 365 

on the magnitude of forces experienced by the wearer. Careful consideration is therefore required 366 

when selecting an anterior infant carrier. 367 

 368 

 369 
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Conclusion 370 

Results indicate that the use of an infant carrier caused a significant increase in the magnitudes of the 371 

forces experienced during walking and altered the temporal characteristics of caregiver gait.  372 

The significant increases in the ground reaction forces are largely a result of the increased load 373 

applied to the system, with increases in both magnitude and rate of force application influenced. 374 

However, the localised changes due to carrier type in both kinetics and temporal measures indicate 375 

that carrier structure has an influence beyond the magnitude of the load. Resultantly, caregivers 376 

should be cautious when selecting and using such devices, as these results are based on acute 377 

application only, without consideration of prolonged use. Further investigation would be merited in 378 

exploring the postural changes associated with the observed alterations in ground reaction force and 379 

the impact of prolonged use on the wearer.  380 

     381 

Key Points 382 

 Carrying infants in ergonomic carriers has been said to improve the bond between caregiver 383 

and child but the implications of wearer health has received limited attention. 384 

 Previous work has addressed maternal mothers only with no consideration for other 385 

caregivers in an infant’s life. 386 

 Results indicate that the load increases all aspects of ground reaction force, however the 387 

magnitude and temporal alterations are dependent on carrier structure. 388 

 The structure of the carrier should be carefully considered when selecting ergonomic infant 389 

carriers, as the acute alterations indicate that the structure impacts the magnitude of the 390 

forces experienced during over ground walking. 391 

 392 

 393 

 394 

 395 

 396 
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