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Abstract  

Single point incremental forming (SPIF) is a flexible technology that can form a wide range of 

sheet metal products without the need for using punch and die sets. As a relatively cheap and 

die-less process, this technology is preferable for small and medium customised production. 

However, the SPIF technology has drawbacks, such as the geometrical inaccuracy and the 

thickness uniformity of the shaped part. This research aims to optimise the formed part 

geometric accuracy and reduce the processing time of a two-stage forming strategy of SPIF. 

Finite element analysis (FEA) was initially used and validated using experimental literature 

data. Furthermore, the design of experiments (DoE) statistical approach was used to optimise 

the proposed two-stage SPIF technique. Mass scaling technique was applied during the finite 

element analysis to minimise the computational time. The results showed that the step size 

during forming stage two have significantly affected the geometrical accuracy of the part, 

whereas the forming depth during stage one was insignificant to the part quality. It was also 

revealed that the geometrical improvement had taken place along the base and the wall regions. 

However, the areas near the clamp system showed minor improvements. The optimised two-

stage strategy had successfully decreased both the geometrical inaccuracy and processing time. 

After optimisation, the average values of the geometrical deviation and forming time were 

reduced by 25% and 55.56%, respectively. 
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1. Introduction 

Conventional sheet metal-forming (SMF) techniques such as drawing, stamping, rolling, and 

stretch forming are well-established mass production processes for a wide range of sheet metal 

products, especially in the automotive and aerospace industries. The main disadvantage of 

conventional SMF is the need to design and manufacture special dies with the required 

geometry of the product. The cost of the SMF dies is directly proportional to the complexity of 

the geometry [1]. Therefore, these techniques are not compatible with the customisation or 

personalisation of products. On the other hand, additive manufacturing (AM) techniques offer 

the possibility of customising products with complex geometries allowing them to find 

applications in several sectors  [2-6]. However, additive manufacturing for automotive and 

aerospace industries is incapable of manufacturing large and curved sheet metals like vehicle 

body panels. Other challenges restricting AM products in automotive and aerospace industries 

are the poor surface finish, limited part size and disparities in the production quality [7, 8]. 

The demand for low/medium mass customisation is continuously growing as a promising 

approach for fabricating products with a high degree of customisation at a low production cost. 

However, the current capabilities of additive manufacturing and conventional sheet metal-

forming are incapable of satisfying the needs for mass customisation [9]. SPIF process can 

reduce production cost by eliminating the need for die manufacturing. It also offers a high 

degree of flexibility in customisation, especially for medium-sized production, resulting in 

dieless metal forming [10]. Single point incremental forming is based on the conventional sheet 

metal spinning commonly used for the production of axisymmetric shape complex parts 

without the need for using dies [11-13]. In SPIF, the metal sheet is plastically deformed into 

the desired shape through an incremental localised progressive manner by using a spherical 

head tool.  The concept was first introduced by Leszak et al. [14], and the first trials were 

carried out in Matsubara labs, Japan. However, the process was advanced further and is 

currently used in several industries such as aerospace [15], automotive [16], and marine [17]. 

The drawbacks of SPIF are around the fabricated parts’ poor dimensional and geometrical 

precision due to the absence of dies in the process, making it challenging to ensure tight 

dimensional tolerance. Other geometrical precision issues typically arise from sheet thinning 

and elastic spring back [18]. 

Recently, significant advancements have been achieved in the equipment front, such as using 

individual or in sync robots to improve the flexibility and precision of the process. Several 

researchers have studied the SPIF experimentally, analytically and/or numerically. The 
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selection of the process parameters was shown to significantly affect the thickness distribution 

of the metal sheet. Duflou and colleagues [19]  had experimentally investigated the effect of 

different parameters such as tool diameter, sheet thickness, part wall angle and vertical step 

size on the forming force in SPIF process. In their study, they had used a simple truncated cone 

part and contour forming strategy. Their results demonstrated a solid relationship between the 

induced forming forces and the selected process parameters. Bambach et al. and Dejardin et al. 

reported the significance of four SPIF process parameters which define the formability of the 

metal sheet. These were sheet thickness, tool speed, tool diameter, and forming strategy [20, 

21]. Different forming strategies lead to different strain distribution and, hence, variation in the 

formed part thickness. The tool path is the route through which the tool travels in order to 

deform the metal sheet to the required shape. Therefore, both the formed component geometry 

and the process tolerance strongly depend on the tool path. Contour and spiral tool path 

strategies are two forming strategies that are typically applied in SPIF process [22]. Arfa et 

al.[23] compared the two tool path strategies, and they stated several advantages associated 

with adopting the spiral tool path strategy. This includes uniform formed part thickness, 

homogeneous strain distribution and reduced defects on the surface of the formed part. Other 

researchers had also reported the remarkable influence of the forming strategy on the quality 

of the formed part. Therefore, optimising SPIF tool path becomes an interesting research area 

[18, 20, 22]. 

Generally, most of the research investigating the tool path optimisation of the SPIF process had 

focused on improving forming strategy. The optimisation of the SPIF tool path has initially 

concentrated on minimising the spring-back phenomenon and cutting down the tool trajectory. 

Although the experimental approach usually offers better accuracy, it is also much more time 

and money consuming. Essa [18] studied the use of a backing plate, tool path modification, and 

a kinematic supporting tool to improve geometrical accuracy. Azaouzi and Lebaal [22] 

examined the spiral tool path strategy by optimising the weighting factor and the tool vertical 

tour number with the objective of controlling the tool path. They used the statistical response 

surface technique to optimise the spiral tool path. Through this optimisation, they had 

successfully reduced the tool path length while improving the uniformity of the part thickness. 

Reese and Ruszkiewicz [24] realised that the spring-back of an aluminium truncated cone could 

be reduced by increasing the incremental step size in the z-direction. Recently, Maaß et al.[25] 

studied the influence of the step-down size on the characteristics of the forming mechanisms 

via numerical simulation. Their results indicated that increasing the step-down size reduced the 
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part thickness and the geometrical accuracy. However, it was also shown to increase the 

waviness of the formed part [22, 25]. Due to the dynamic and incremental concept of SPIF, it 

was reported that the process simulation often consumes considerable CPU time. Maidagan et 

al. and [26] Meier et al. [27] introduced the double side incremental forming (DSIF) to improve 

the geometrical accuracy of the formed sheet. In this technique, two forming tools 

simultaneously work on the two sides of the sheet metal. The DSIF was found effective at 

improving geometric accuracy [28].  

Gonzalez et al. [29] investigated the multistage incremental sheet forming to improve the 

formability and accuracy of SPIF of conical geometry. The results showed that multistage 

forming enhanced the geometric accuracy in the unformed areas. However, the sheet thickness 

was deteriorated compared to those formed using single-stage forming. Suresh et al. [30] 

managed to implement multistage incremental sheet forming experimentally to produce 

geometries with steep walls that were difficult to achieve using SPIF. Recent research 

introduced multistage forming as a technique to improve geometrical accuracy, spring back, 

and thickness distribution [29, 31]. However, literature on optimising this technique 

statistically is lacking. The research question of this paper is related to how effective is the use 

of the design of experiments to optimise a multistage single incremental forming and what are 

the effects and interactions of multistage forming parameters on the geometrical accuracy and 

forming time? 

 

2. Methodology 

Finite element analysis was initially used and validated using experimental literature data. Step-

down tool size and the forming depth have been varied in order to provide some insight.  

Initially, an FEA model of SPIF was built using an explicit solver and validated with 

experimental data in the literature. The part shape was a truncated aluminium alloy cone with 

a 180 mm diameter, 40 mm depth and 50° wall angle. The experiments were modelled using 

an ABAQUS/Explicit solver. Finally, the simulation results, such as the average geometrical 

deviation and the forming time in various simulation scenarios, have been used to analyse 

variance and identify the optimum parameters utilising the design of experiments (DoE) 

method and analysis of variance. The results obtained using the optimised multi-stage tool path 

parameters were compared to a single-stage one introduced by Maaß et al.[25] 
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2.1. FEA modelling of SPIF process 

Finite element modelling (FEM) has been a powerful process modelling tool allowing the study 

of the deformation mechanism of the SPIF process and by implication to avoid restrictions 

associated with facilities and location. The sheet metal part is typically modelled using shell or 

solid elements. Solid elements are preferred for meshing the thickness direction to improve the 

accuracy of the results. However, this increased the computational time [21]. Cocchetti et al. 

[32] recommended the use of shell elements to save computational time. Explicit and implicit 

FEM solvers techniques were investigated in the literature, and it was found that the explicit 

solvers were timely efficient, whereas the implicit method was accurate. Researchers have 

explored the use of implicit and explicit solvers aiming to reduce computational time. A 

simultaneous solution of equations in each time increment was used to solve the problem in the 

implicit solver. In the explicit FEA technique, the solution of the preceding step was employed 

to solve the succeeding increment. As a result, the implicit technique was reported to be more 

precise than the explicit solver due to eliminating error accumulation [23]. Therefore, using the 

explicit method primarily to explore the optimal range of process parameters, followed by 

employing the implicit solvers, could permit the prediction of more accurate results in a 

reasonable time. A schematic diagram of SPIF is illustrated in Figure 1. The spherical tip tool 

makes a sequences contours and forms the desired shape incrementally into the metal sheet. 

 

Figure 1: A schematic diagram of the SPIF system.
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An asymmetric geometry represented the truncated cone with a diameter of 180 mm, a depth 

of 40 mm, and a wall angle of 50° was constructed to simulate the SPIF in ABAQUS software. 

The sheet metal was defined as (200×200 mm) blank sheet with a 1.2 mm in thickness. The 

blank sheet was held between two blank holders and deformed using a spherical tool of 10 mm 

diameter. Figure 2 shows the FEA model in which the metal sheet is considered a deformable 

body, whereas rigid bodies were assigned to the tool and the two clamping holders. The sheet 

material was aluminium 3003-O, with the following physical and mechanical properties: 

density 𝜌 =2700 kg/m3, Poisson ratio 𝜈=0.33, Young modulus 𝐸=70 GPa, ultimate strength 𝜎𝑢 

= 95-135 MPa, yield stress 𝜎𝑦=35 MPa [19]. The flow stress equation  of the material can be 

calculated using the Swift-type hardening law, as follows: 

 

𝜎 = 𝑘(𝜀0 + 𝜀̅)𝑛     (1) 

 

Where 𝑘 is the hardening coefficient, 𝜀̅  is the effective accumulated plastic strain, and n is the 

strain hardening exponent [23]. For aluminium 3003-O; 𝑘 =184 MPa, 𝜀0= 0.00196 and 

𝑛 =0.224. 

The velocity of the tool feed was maintained at 2000 mm/min to eliminate the effect of the tool 

speed on the process. It is typical to use a lubricant covering the metal sheet in SPIF process, 

and this has been set as a friction coefficient of 0.09 between the forming tool and the metal 

sheet. In addition, the friction coefficient between the clamp, sheet and backing was set at 

0.015. The tool path was initially defined by the movement in x, y and z directions. At each 

time increment, the coordinate of the tool reference point was initially generated using 

MATLAB and converted into displacement. The tool step-down was identified as 0.5 mm, and 

the explicit time integration was set as a nonlinear analysis in which the sheet metal was 

continuously loaded. In order to stabilise the time discretisation, the time increment was set as 

small as possible [32]. The maximum time increment was calculated by the smallest mesh size 

and the sound speed as in Equation 2 [33]. 

∆𝑡 ≈  
𝐿𝑚𝑖𝑛

𝑆
    (2) 

Where ∆𝑡 is maximum stable time increment, 𝑆 is the sound speed and 𝐿𝑚𝑖𝑛 is the smallest 

mesh size. For any isotropic shell element, 𝑆 can be calculated using: 
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𝑆 = √
𝐸

(1−𝜈2)ρ
    (3) 

Where 𝜌 is the material density (ton/mm3), 𝜈 is the Poisson’s ratio, and 𝐸 is the young’s 

modulus (MPa). As shown from the above equation, as the density increases, the computational 

time decreases. However, further increases in mass scaling can result in inaccurate results. 

Therefore, the mass scaling factor was adapted according to the minimum mesh size in order 

to stabilise the time integration and save computational time. This resulted in adjusting the step 

time increment to around 10-5, and the use of shell element as the mass scaling was found 

suitable. The critical time step was controlled by the size of the in-plane elements rather than 

the thickness of the sheet metal [32]. After several simulation convergence trials, the simulation 

results were comparable to the results by Duflou et al. [19] and Arfa et al. when mesh size the 

part was 4 mm, the mesh size of the clamp and backing are 12 mm, and the mass scaling was 

4x104 [23]. Moreover, the kinetic energy was less than 5% of the model internal energy, 

indicating a negligible effect of the mass scaling on results accuracy. Therefore, a conservation 

analysis was carried out to reduce the computational time while not compromising the model 

accuracy. It was suggested that the suitable mesh size for the part would be 4 mm with a mass 

scaling of  4x104 and 2500 elements. 

 

Figure 2: The simulation model of the SPIF process. 
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2.2. Model validation 

The model’s reliability was assessed by comparing the current modelling results of a single 

stage model with the experimental and simulation data in the literature [19].  

The wall thickness of the part can be calculated using the sine principle, as shown in Equation 

4 [23]. 

 

𝑇𝑝𝑎𝑟𝑡 = 𝑇0sin (90 − 𝛼)     (4) 

 

Where 𝑇𝑝𝑎𝑟𝑡 is the formed part thickness, 𝑇0 is the thickness of the metal sheet, and 𝛼 is the 

cone angle. 

The estimated thickness of the formed part was found to be ≈ 0.77 mm. The range of the formed 

part thickness, obtained from the present simulation and shown in Figure 3(a), was from 0.6954 

to 1.200 mm, which was comparable to that reported in the literature (0.7216 -1.200 mm) [23]. 

Duflou et al. [19] used single point incremental forming forces using a table type dynamometer. 

To ensure an accurate comparison, the current study used the setup parameters as those as 

introduced by Duflou et al. [19] such as sheet material Al 3003-O, the thickness of 1.2mm, 

cone of 180 mm in diameter, 40 mm depth, mm tool diameter and 50° wall angle. They 

optimised four different process parameters and their effect on the forming forces: the tool 

diameter, the sheet metal thickness, the vertical step size, the parts’ wall angle.  The 

approximate mean thickness of the formed part in the current study and in the literature [19], 

represented by the blue areas in Figure 3(a), were 0.7374 and 0.7615 mm, respectively. Both 

values are considered accurate compared to the theoretical value (0.77 mm) with an error of 

1.4% and 5.5%, respectively. 

Figure 3(b) compares the forming force versus time in the current study with corresponding 

values found in the literature [19]. As shown, the two curves have a similar trend and coincide 

at the same maximum value. Therefore, the current simulation can be considered a valid model 

and can be reliably employed to investigate the multistage tool path optimisation. 
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Figure 3: (a) The formed part thickness distribution, (b) the forming force plot from the 

present simulation and the experimental results from the literature. The experimental graph 

was reused with permission [19]. 

 

  

3. Optimisation of the Multistage SPIF process 

3.1. Multistage Parameters   

Two spiral tool paths were considered in this study (one for each forming strategy). The paths 

parameters are the depths (h, H) and the maximum diameters (d, D). Small and capital letters 

were associated with forming strategies 1 and 2 respectively, see Figure 4. The maximum depth 

and diameter during the second stage (D, H) must be the same as part dimensions, which are 

40 and 180 mm, respectively. In addition, the part should have the same wall angle as the 
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desired geometry after the first stage to ensure high geometrical accuracy. Earlier studies had 

explored the effect of the step size in the range of 1.875 to 5.625 mm and found that a step size 

of 5 mm was optimal [22, 25]. Generally, increasing the step-down size reduces the gematrical 

accuracy and the forming time. The step-down size of forming stages 1 and 2 (denoted as ∆z1 

and ∆z2) have been considered in a range from 1 to 5 mm. Accordingly, the range of d and the 

value of h were calculated through Equations 5 and 6 and were found to be (35-39 mm) and 

178 mm, respectively. 

𝐻 − ℎ ≤ ∆𝑧     (5) 

𝑑 ≤ 𝐷 −
2∆𝑧

tan 50
   (6) 

 

The spiral tool path parametric equation can be written as follow: 

 

𝑋(𝛽) = 𝑅(𝛽) cos 𝛽  

 

𝑌(𝛽) = 𝑅(𝛽) sin 𝛽  

𝑍(𝛽) =
𝑍𝑚𝑎𝑥

2𝜋
 

 

Where 𝑅(𝛽) is the radius as a function of the spiral angle 𝛽, 𝑛 is the vertical increment =

𝑍𝑚𝑎𝑥/∆𝑧, 0 ≦ 𝛽 ≦ 2𝜋𝑛 , 𝑍𝑚𝑎𝑥 is the maximum forming depth, which is calculated using 

Equation 8. 

 

𝑅(𝛽) = 𝑟 +
𝑍(𝛽)

tan(𝜃)
   (8) 

 

Where r is the spherical tool radius and θ is the wall angle. Three parameters have been 

considered. Those are the vertical step downsizes during the first and the second forming stages 

(∆z1, ∆z2 respectively), and the depth of the first forming stage (ℎ), in which the ranges are 

1 ≦ ∆𝑧1&∆𝑧2 ≦ 5, and 35 ≦ ℎ ≦ 39. 

Maaß et al.[25] investigated the relationship between the tool path parameters such as the 

vertical step size ∆z and the part geometry of a similar truncated cone. The authors found that 

(7) 
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the optimum step size ratio for a single-stage incrementing forming ∆z/tool radius is 0.25 for 

an accurate part geometry. Therefore, initial values for ∆z of 1.25 mm were employed in the 

current study in comparison to the multi-stage optimised values.   

Figure 4: The two forming stages of the proposed SPIF process 

 

3.2. The Response Surface Method (RSM)  

The design of experiments is a statistical approach for designing and optimising processes with 

multiple input parameters, and it has been used extensively in sheet metal forming as well [34, 

35]. The response surface method was used to statistically investigate the effect of the process 

parameters using the two forming stages spiral tool paths and find the optimised parameters, as 

shown in Figure 4. The aim was to deform the sheet metal evenly and reduce spring back with 

a minimum forming time. To achieve this aim, the Box-Behnken DOE was used to create an 

experimental plan with minimum trials. Box–Behnken method is a statistical design used for 

the response surface approach to achieve each parameter is placed at one of three equally 

spaced levels, such as −1, 0, +1 [36]. 

A second-order regression equation can express the response surface function “Y”. The order 

of the regression equation is typically kept as low as possible. Typically, the accuracy of 

second-order is the lowest accurate order, see Equation 9: 

𝑌 =  𝑏0 + ∑ 𝑏𝑖𝑥𝑖 + ∑ 𝑏𝑖𝑖𝑥𝑖
2 + ∑ 𝑏𝑖𝑗𝑥𝑖 𝑥𝑗        (9) 

Where the factors xi are the process parameters, on the other hand, b0, bi, bii, and bij are the 

regression equation coefficients determined using the least-square technique. Design-Expert V 

7.0.0 (Stat-Ease Inc., Minneapolis, USA) was applied to implement the DoE approach.  
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Three parameters were deemed in the study; vertical tool increment of the first forming stage, 

vertical tool increment of the second forming stage and the depth of the first forming stage. 

According to the Box-Behnken design, 3 levels of each parameter were considered, see Table 

1. As shown, the three levels were 0 as the middle level, 1 as the high level and -1 as the lower 

level [32]. Furthermore, three centre points were considered (to permit the determination of the 

experimental error). This resulted in 15 parametric combinations, see Table 2. In this study, 

two responses: the average geometric deviation of the formed part and the forming time, were 

optimised, knowing that the geometric deviation of the part was calculated using the average 

distance between the formed and designed shapes [23, 24].  

Table 1: Factors and levels used in the DoE 

Factors Process parameters -1 0 +1 

∆z1 (mm) Tool vertical increments of the first forming stage 1 3 5 

∆z2 (mm) Tool vertical increments of the second forming stage 1 3 5 

h (mm) Depth of the first forming stage 35 37 39 

 

 

Table 2: Box-Behnken design parameters with calculated average deviation and forming time 

Run ∆z1  ∆z2  h  Average derivation Forming time  

 mm mm mm mm (s) 

1 5 3 39 1.6594 278 

2 3 1 39 0.9792 658 

3 3 5 35 2.077 258 

4 3 3 37 1.5967 345 

5 1 1 37 0.8773 1016 

6 5 1 37 1.1333 633 

7 3 3 37 1.5997 345 

8 3 3 37 1.6056 345 

9 5 5 37 2.2779 221 

10 5 3 35 1.8586 258 

11 1 3 39 1.4476 689 

12 1 5 37 1.5239 580 

13 1 3 35 1.5967 645 

14 3 1 35 1.3892 645 

15 3 5 39 2.0536 261 
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4.1. Results 

4.2. Analysis of Geometric Deviation   

Three distinct geometric deviations were found at three regions, see Figure 5a. The deviation 

in region A was created by bending the metal sheet, while the ones found in region B were due 

to the spring-back effect. Finally, the pillow effect deviation at the base of the part (Region C) 

was a result of the change in the transverse stress/strain [32, 36]. The sheet metal parameters 

such as the internal bend angle (A), internal bend radius (R),  and the sheet thickness (T), see 

Figure 5b.  

 

Figure 5: (a) A schematic diagram of the actual and ideal geometries, (b) Sheet metal 

parameters. 

To assess the part quality in the fifteen simulation trials, the maximum error in each of the three 

regions was measured, see Figure 6. It was found that the maximum geometrical deviation in 

region A was about 4.70 mm for all simulation scenarios, which did not improve compared to 

the single-stage ( 4.67 mm). There was a significant variation in the error values in region B, 
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which ranged from 1.04 mm to 4.75 mm. The maximum geometrical deviation in region C 

varied from 0.7688 mm to 2.6546 mm. In conclusion, the second forming stage improved the 

geometric accuracy in regions B and C while not deteriorating in region A. 

 

Figure 6: The maximum geometric deviation in region A, region B, and region C. 

 

(a)  In Region A. 

(b)  In Region B. 

(c)  In Region C. 
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4.2. Analysis of variance (ANOVA) 

Results of the average deviation and forming time are listed in Table 2. The least-square fitting 

R2 was employed to define the model fit [37]. According to Box-Behnken, the average 

geometrical deviation and forming time fit quadratic models with the least square fitting R2 of 

97% and 95%, respectively. This suggests that the models accurately describe the relationship 

between the input parameters and the outputs. The two models are functions of the vertical step 

downsizes during the first forming stage (∆z1), the second forming stage (∆z2), and the depth 

during the first forming stage (h), see equation (10). 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑏0 + 𝑏1(∆𝑧1) + 𝑏2(∆𝑧2) + 𝑏3(ℎ) + 𝑏4(∆𝑧1∆𝑧2) + 𝑏5(∆𝑧1ℎ) +

𝑏6(∆𝑧2ℎ ) + 𝑏7(∆𝑧1)2 + 𝑏8(∆𝑧2)2 + 𝑏9(ℎ)2     (10) 

 

Where b0 is the average of the levels, and b1, b2. . .,b9 are the models coefficients. Least Squares 

Fitting, an approach for best curve fitting by minimising the total squares of the errors, was 

used to analyse the equation data shown in Table 3 and define the coefficients. The coefficients 

of the surface response model for the two outputs are listed in Table 3.  

 

Table 3: Coefficients of the response surface models of the average deviation and forming 

time 

Coefficient 
Average 

deviation model 

Forming 

time model 

bo +40.94938 -4769.56250 

b1 +0.21402 -254.87500 

b2 -0.64276 -275.00000 

b3 -2.06886 +330.50000 

b4 +0.031125 +1.50000 

b5 -3.13125E-003 -1.50000 

b6 +0.024162 -0.62500 

b7 -0.016468 +34.93750 

b8 -0.020424 +31.93750 

b9 +0.026445 -4.31250 
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The null hypothesis, which presumes that the process parameters have no effect, is rejected 

when the p-value is less than 0.05 (95% confidence level). As a result, parameters with p-values 

≤ 0.05 is considered significant. The calculated p-value of all the parameters and interactions 

are listed in Table 4. The ANOVA results show that the most significant parameters are the 

vertical increments during stages one and two, the interaction between both increments, and 

the depth of forming during stage one. Furthermore, the forming time was found significantly 

affected by the vertical increments of both forming stages. 

 

Table 4: The p-values of the individual parameters and the interactions for the two outputs 

Model Parameter 

P-value 

Average 

deviation 

Forming 

Time 

∆z1 0.0017 < 0.0001 

∆z2 < 0.0001 < 0.0001 

h 0.0237 0.1265 

∆z1∆z2 0.0340 0.4722 

∆z1h 0.7826 0.4722 

∆z2h 0.0746 0.7592 

(∆z1)2 0.2012 < 0.0001 

(∆z2)2 0.1276 < 0.0001 

h2 0.0645 0.0846 

             *Bold values indicate statistically significant process parameters (p-value<0.05) 

 

Figure 7 (a), (b) and (c) show the effect of the increment of the first forming stage (FS1), 

increment of the second forming stage (FS2) and the depth of the first forming stage on the 

average deviation using a quadratic model. It can be noted that the average deviation increased 

consistently with increasing any of the vertical increments of stages 1 and 2. In addition, the 

depth of the forming stage 1 was shown to have a slight adverse effect on the average deviation. 

Finally, the model shows that the interaction of the increments during the two forming stages 

was also significant. The geometric deviation significantly increases as the increment of any of 

the forming stages increase, Figure 8 (d). On the other hand, and as shown in Figure 8 (a) and 

(b), each of the increments of forming stages 1 and 2 was significant on the forming time, and 

the relationship between them follows a quadratic model. Both factors were shown to have 

virtually the same inverse effect on the forming time. At a depth of stage 1 of 37 mm, increasing 

the increment of forming stage 1 from 1 to 5 mm (at a constant value of increment of forming 

stage 2 of 3 mm) resulted in a reduction of the forming time from 677 to 292 seconds, while 
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the same increase of the increment of forming stage 2 (at a constant value of increment of 

forming stage 1 of 3 mm) caused the forming time to decrease from 677 to 269 seconds.   

 

Figure 7: Effect of (a) increment of forming stage 1 (FS1), (b) increment of forming stage 2 

(FS2), (c) depth of forming stage 1 and (d) the interaction between the increments of both 

forming stages on the average deviation. 
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Figure 8: Effect of (a) increment of forming stage 1(FS1), (b) increment of forming stage 2 

(FS2), on the forming time. 

4.2. Optimisation of Process Parameters  

The process parameters of the two stages process were optimised. The objective function is to 

minimise both the geometrical deviation and forming time.  However, two different priorities 

were used in the objective function. The geometrical accuracy was defined with high priority, 

while the forming time was defined with low priority. Therefore, if both objectives have an 

inverse relationship, a trade-off will be made. In this case, the geometrical accuracy objective 

function will be met at the expense of the forming time to obtain a valid solution. 

The experimental data was analysed, and the genetic algorithm (GA) was employed to calculate 

the process parameters [38]. Genetic algorithm is a search optimisation technique that is 

inspired by natural evolution. The geometrical deviation and forming time shown in equation 

(10) and the corresponding constants listed in Table 3 were simultaneously solved, and the 

contour plot of the optimisation is shown in Figure 9.  The model shows that the optimum 

values of the vertical increment of stage 1, vertical increment of stage 2 and the depth of 

forming stage 1 would be 4.5 mm, 1.59 mm, and 39 mm, respectively. At these values, the 

predicted average deviation and forming time were 1.21 mm and 473 seconds, respectively.  
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4.3. Validation and Comparison   

The aim of using the DoE optimisation was to minimise the geometrical deviation and forming 

time. The optimum process parameters were ∆z1=4.5 mm, ∆z2=1.6 mm, and h=39 mm. This 

set was employed in the FE model, and its effect on the part geometrical deviation and forming 

time is listed in Table 5. It was found that both the forming time and geometrical deviation 

were reduced by about 56% and 25%, respectively. Figure 10 shows the part geometry created 

by an optimised tool path parameters of a single-stage model created by Maaß et al.[25] and 

the current optimised process. The geometry of the formed part obtained using the current study 

optimised parameters was found more accurate to the ideal profile than the one obtained using 

the single-stage [25], especially the regions along the part wall and the base. The deviations in 

the geometry caused by the spring-back effect and the transverse strain/stress in regions B & C 

were slightly penalised. However, the change in the geometrical deviation in region A, caused 

by sheet bending, was found negligible. Figure 11 demonstrates a comparison of the part 

thickness distribution between the single-stage and double stage optimised processes. The 

minimal part thickness of the optimised formed part was decreased by 1.6%, resulting in a more 

uniform thickness compared with the single-stage process. 
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Figure 10: Section of the formed part produced using the single-stage [25], the optimised 

multi-stage and ideal part 

 

Table 5: Comparison between the forming time, average deviation, and minimum sheet 

thickness 

 
Single-stage using 

∆z=1.25 mm, [25]  

Optimised 

solution 
Reduction 

Forming time (s) 1024 455 55.56% 

Average deviation (mm) 1.5438 1.2351 25% 

Minimum sheet thickness 

(mm) 
0.6954 0.6770 1.6% 
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Figure 11: Thickness distribution of the (a) single-stage and (b) the optimised multistage 

SPIF process 

 

4.4. Forming force 

The forming force calculated using the optimised SPIF process parameters, shown in Figure 

12, increases during the first stage then breaks at ~120 s as the tool trajectory moves between 

the two forming stages. The figure also shows that the forming force during the first forming 

stage of the part is more significant than that of the second stage, as the deformation primarily 

occurs during the first stage. In the second stage, the tool deforms the sheet metal slightly 

compared to the first one. Hence, the small reaction force in the second forming stage works 

better in improving the part geometry and the wall thickness. This is because, after the first 

stage, there is still undeformed depth, in which the forming force increases. As the forming 

depth in the first stage increases, the peak of the forming force in the second stage decreases. 

In addition, the forming force in the first stage rises rapidly and then experiences almost a flat 

plateau within, as shown in Figure 12. On the other hand, the forming force in the second stage 

initially increases, stabilises for a short time, and then increases rapidly at the end of the second 

stage. When the step size of the second stage and the undeformed depth are small, the strain 

and stress near the part base become relatively small by the end of the second forming stage, 

making the pillow effect phenomenon negligible.  
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Figure 12: The forming force plot after optimisation 

 

5. Discussion 

The contact between the tool and the metal sheet occurs within region B, where the metal sheet 

has been forced into the ideal shape by a tool progressing according to the designed path. With 

the tool movement, a sheet metal part is continuously free from constraints, and the residual 

stress makes it deform without a forming force. Hence, the actual part deflects further from the 

ideal profile, and the build-up of the local spring back increases the geometrical deviation. 

Typically, the increase in the forming force increases the residual stress. For parts created in a 

single stage, local deformation becomes more significant as the residual stresses increase. 

However, after introducing the second forming stage, the developed local springback is small, 

which reduces the geometric deviation in region B [20]. The forming force in the second stage 

is smaller than in the first stage, though it is still sufficient to deform the metal sheet into the 

desired profile. As the forming force and the associated residual stress in the second stage 

become small, the deformation also becomes small, and the part thickness deforms more 

uniformly than the first stage. 

Although the tool and sheet metal do not directly connect in region A, the bending occurs due 

to deformation in region B. The length of the neutral line in the A region can be denoted by the 

bend allowance, as shown in Equation 11. 

𝐵𝐴 = 𝐴 (
𝜋

180
) (𝑅 + (𝐾𝑇))                  (11) 
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Where 𝑅 is the inside bend radius, 𝐴 is the bend angle in degrees, 𝑇 is the material thickness, 

and 𝐾 is the 𝐾-factor, which typically has a value between 0.3~0.5. From Equation 11, it can 

be assumed that the bend allowance does not depend on the forming force. Therefore, the 

geometric deviation in region A is less dependant on the process parameters. On the other hand, 

the pillow effect that develops in region C develops from the bending of metal sheet (due to in-

plane stresses) [39]. This is because the material is largely deformed in the transverse direction 

within the tool vicinity. Consequently, it flows toward the metal sheet centre, which causes a 

significant pillow effect. The undeformed depth from the first stage can reduce the development 

of the pillow effect by restricting material plastic deformation near the base of the part.  

Although the part dimensional accuracy is enhanced by using the proposed two-stage forming 

strategy, there is still a deviation between the formed part and the ideal shape, particularly near 

the area between the formed part and the clamping. As a result, the pillow effect becomes more 

evident as the size of the step-down increases. Further improvements in the design of the 

process can be considered in future work. For example, the tool path can be extended to the 

sheet centre point, reducing the pillow effect. In addition, the tool path start and the endpoints 

of the two forming stages can be the same in order to reduce the spring back effect due to the 

repeated forming. Furthermore, the distance between the forming and the clamped area can be 

reduced to minimise the sheet bending at the maximum diameter [40]. 

6. Conclusion 

A two-stage forming strategy in SPIF was introduced and optimised to reduce the geometrical 

deviation and the processing time compared to those manufactured using a single forming 

tooling. A simulation model of the SPIF has been developed and solved using an explicit finite 

element analysis to study the optimal tool path for a truncated cone. The design of experiments 

using a response surface method was used to optimise the proposed two stages forming 

strategy. The simulation results showed that the two-stage forming technique could 

significantly reduce both the geometrical deviation and the forming time. The step-down size 

in each forming stage was found the most significant parameter that affects the SPIF process’s 

formability. Meanwhile, the step size of the second stage affects the part accuracy more than 

the step size of the first stage. The proposed and optimised two-stage forming strategy can 

reduce the geometric deviation caused by the springback and pillow effect while having an 

insignificant effect on those caused by sheet bending near the part and the clamp. The forming 
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time and part geometric deviation have been reduced by 56% and 25%, respectively. In 

addition, the part thickness distribution was found more uniform after optimisation, and the 

minimal thickness decreased by 1.6%. 
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