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In this research, we have developed a computational method for droplet sorting using a non-uniform electric field. The
method is based on a three-dimensional level-set method and the leaky-dielectric electrohydrodynamics (EHD) model.
Level-set method is used for modelling the interface of the two-phase flow system. The electrostatic phenomenon is
dealt with the leaky dielectric-leaky dielectric fluid system. At first, we validated our developed model for a classical
flow case: a droplet subjected to a uniform electric field. The results obtained from the present computational method
show good agreement with the existing results from the literature. After validation, we implemented the developed
code in a practical application of droplet sorting using a non-uniform electric field (known as Dielectrophoresis- DEP)
in a rectangular microchannel with an orthogonal side channel. We mainly focus on the sorting of the droplet without
and with electric field effect as a function of different parameters of the problem. Depending on the intensity of the
physical parameters, the droplet can flow into either the downstream main channel or it can sort into the orthogonal
side branch. The sorting of a droplet is characterized by the critical branch ratio, qc above which the droplet enters the
side branch. The results and conclusions from the present thesis facilitate the understanding of the fundamental prin-
ciples and mechanisms of electrohydrodynamics (EHD) based droplet sorting using dielectrophoresis in microfluidic
channels. Therefore present results can have potential usefulness towards the design and development of droplet-based
microfluidic devices.

I. INTRODUCTION

Electrohydrodynamics which is also known as EHD is an
interdisciplinary branch of science which analyses the dynam-
ics of electrically induced fluid flow through the coupling be-
tween electric and hydrodynamic forces. Application of elec-
tric field on a liquid droplet suspended in another medium
leads to some fascinating fluid dynamics due to its ability to
deformation, motion and break-up of the droplet. Several in-
dustries such as ink jet printing1, electrospinning2, atomiza-
tion of fluids3, biotechnology4, material printing5 involve the
precise control of the size and morphology of the droplet when
subjected to electric field. Another notable field of EHD is
the sorting of droplet in microfluidic devices which are enor-
mously used in biological research such as drug delivery6,7,
biological culture8–10, cell sorting and separation for microflu-
idic systems11 or industrial products such as cosmetics12,13

and food additives14.
In droplet based microfluidics, a number of external

fields have been implemented for droplet manipulation such
as electric15,16, magnetic17,18, accoustic19,20 and pneumatic
methods21,22. Among all of the these methods, sorting of
droplet using non-uniform electric field also known as dielec-
trophoresis (DEP) is the most widely used sorting and sepa-
ration techniques for microfluidics due to its high speed, ef-
ficiency, sensitivity and selectivity while maintaining a low
running cost. DEP is a also label-free method and does not
require any modification of sample during the sorting pro-
cess. DEP is an effective way to trap23–25 , separate and
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sort various types of cells such as breast cancer cells26, red
blood cells27,28, viable yeast cells29 and characterizing micro-
organisms30, DNA31, virus32,33 and bacteria34–36.

Thus understanding the fundamental principles and mecha-
nism of EHD leading to the motion and deformation of the
drops is of utmost importance for the design and develop-
ment of microfluidic devices37. Realizing the importance of
droplet manipulation using electric field in microfluidic de-
vices, we have developed a computational method based on
three dimensional level set method and the Melcher–Taylor’s
leaky-dielectric model for two-phase EHD. The developed
method is then implemented to sort the droplet in a rectan-
gular microfluidic channel with an orthogonal side branch us-
ing dielectrophoresis (DEP). Dielectrophoresis (DEP) is the
motion of a droplet in a spatially non-uniform electric field.
Recently DEP has been playing a significant role in cell
characterization38 and diagnosis of cancer cells39.There are
two types of DEP motion: positive DEP and negative DEP. If
the droplet has lower permittivity than the suspending fluid, it
will be attracted to the stronger field regions which is known
as positive DEP (pDEP). On the other hand, when the permit-
tivity of the droplet is higher than the suspending fluid, it will
be repelled from the electric field which is known as negative
DEP (nDEP).

The DEP force for an insulating spherical particle was first
analytically defined by Pohl 40. Motivated by the pioneering
work of Pohl 40, Feng41 first analytically computed the DEP
velocity of a leaky dielectric drop in the presence of an ax-
isymmetric nonuniform electric field which is generated by
combining uniform and quadruple electric field. In his study
Feng41 concluded that DEP velocity of a drop is governed
by the combined influence of EHD and DEP force. Later,
Baret et al.42 developed a Fluorescence Assisted Droplet Sort-
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ing (FADS) device by coupling the fluorescence signal with
non-uniform electric field. FADS device depends on laser in-
duced fluorescence to detect the chemical contents within a
series of droplets which are continuously passing an excita-
tion light spot. In addition to the fluorescence signal, an elec-
tronic sorting unit is placed at the downstream of the chan-
nel to steer the droplets into the desired branching channel
based on their fluorescence signal intensity . Loo et. al43

developed a high throughput fluorescence-activated droplet
sorting of 1 nL droplets using a the sequentially addressable
dielectrophoretic array (SADA). Link et. al.44 reported an
electric droplet manipulation platform based on electrophore-
sis where the droplet is pre-charged and electrochemical re-
action occurs between the droplet and the system. Mhatre
and Thaokar45 investigated the DEP motion of perfectly con-
ducting and leaky dielectric drops in a pin-plate electrode as-
sembly. From their study, they have observed that perfectly
conducting drop showed pDEP while leaky dielectric drop
showed pDEP or nDEP depending on the electrical proper-
ties.

However, at present most of the researches on droplet sort-
ing using DEP are based on experimental study. In the exper-
imental study46, the most common material for fabrication of
microfluidic devices is polydimethylsiloxane (PDMS). PDMS
is a transparent polymer material which can be molded using
standard soft lithography techniques47,48. Electric field is in-
corporated by patterning indium tin oxide (ITO) electrodes on
the surface of the glass slide close to the channels. PDMS
are strongly hydrophobic and can be directly used to gener-
ate water droplet in a suspending oil phase. This facilitates
the sorting of droplets and eliminates the cross-contamination
caused by surface interactions. The DEP force depends on
a number of parameters such as the arrangement of the elec-
trode, electric field distribution, conductivity and permittivity
of the droplet with respect to the suspending fluid. However,
analysing the effect of these parameters on droplet sorting
through experimental investigations are merely difficult, time-
consuming, and expensive compared to the numerical analy-
sis. Numerical simulation can analyse the DEP sorting effi-
ciency by changing the relevant parameters in microfluidic en-
vironment before performing laboratory experiment. There-
fore, computational method can significantly contribute to the
design improvement of the microfluidic devices.

Several numerical studies on dielectrophoretic particle-
particle interaction and motion have been done using finite el-
ement methods (FEM) with an Arbitrary Lagrangian–Eulerian
(ALE) algorithm49,50 in two-dimensions. However, FEM re-
quires very fine mesh when particles are closely spaced or
near the electrode which makes them computationally inef-
ficient. In addition to it, a moving mesh is required to up-
date the particle location for ALE algorithm. A finite volume
method (FVM) for predicting particle trajectory in dielec-
trophoretic motion was proposed by Al-Jarro et al.51. A cou-
pled immersed interface–boundary-element method ( (IIM-
BEM)) was developed by Le et.al.52 for dielectrophoretic
particle trapping. They used BEM for computing electric
field whereas IIM was used to solve viscous fluid flow prob-
lem. However, their developed method is based on two-

dimensional geometry and not convenient for large systems.
Very recently, Amini and Mohammadi53 developed a GPU-
accelerated immersed boundary–lattice Boltzmann simulation
for microparticle separation. Derakhshan et. al.54 used Open-
FOAM for the design and numerical investigation of a cir-
cular microchannel for particle/cell separation using dielec-
trophoresis . There are several other numerical studies which
computed the DEP force and particle trajectories in microflu-
idic channel55,56 . The main drawback of these studies is that
they did not consider the interfacial phenomena. In this re-
search, we have developed a 3d level set method for two-phase
EHD problem. The developed method is also implemented to
sort the droplet in microfluidic channel using dielectrophore-
sis.

While cell sorting using an electric field has been the sub-
ject of many investigations in the past years, the numerical
analysis of droplet sorting has received very little attention.
Thus, an accurate fundamental understanding on computa-
tional method for DEP assisted droplet sorting either for 2d
and 3d geometries is still missing in the literature. This anal-
ysis of droplet sorting is of significant importance in the field
of microfluidics which involve droplet manipulation using an
electric field for biomedical and chemical application. Moti-
vated by this consideration, in the present work we have devel-
oped a three dimensional level set method for two-phase elec-
trohydrodynamics. Based on the developed computational
method, we have analysed a DEP influenced droplet sorting
on microfluidic channel based on several important parame-
ters of the system which can assist the droplet sorting in a
microfluidic channel.

The present paper is organized as follows: governing equa-
tions, non-dimensional numbers and dynamics of EHD in-
duced droplet deformation are detailed in section II. In section
III, we have validated the developed method for a droplet sub-
jected to uniform electric field case. After that, in section III
we have applied the present method to analyse the path selec-
tion of the droplet depending on different parameters of the
system. Finally conclusions on the present numerical method
is drawn in section VI.

II. PROBLEM FORMULATION

In this research, a three dimensional level set method is
developed for two phase electrohydrodynamics for sorting
droplet using non-uniform electric field. At first, the devel-
oped method has been validated for a classical fluid flow prob-
lem which is droplet subjected to uniform electric field.

A. Problem description

For this problem, we consider an initially uncharged liquid
droplet of radius, R suspending in another immiscible fluid.
The two fluids have been considered as leaky dielectric hav-
ing separate fluid and electric properties such as: densities ρ1
and ρ2, viscosities µ1 and µ2, electric permittivities ε1 and ε1
and conductivities K1 and K2. The subscripts 1 and 2 refer to
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the physical parameters inside and outside of the droplet re-
spectively. We use the suspending fluid as the reference fluid.

A three dimensional (3d) Cartesian co-ordinate is defined
with the x axis along the horizontal direction, y axis along
the lateral direction and z axis along the vertical direction.
Droplet origin is fixed at the center of the computational do-
main. The top and bottom walls are separated by a distance
2H and subjected to a uniform electric field of strength E∞ in
the transverse direction. The top wall is connected to the pos-
itive electrode of electric potential, Φ = HE∞ and the bottom
wall is connected to the negative electrode of electric poten-
tial, Φ =−HE∞ as shown in FIG 1. At drop surface the polar
angle θ is measured counter clock-wise from negative z-axis.
Here, θ = 0◦,180◦ are defined as pole region whereas θ = 90◦

is defined as equator region.

FIG. 1. Schematic illustration of a droplet suspended in another fluid
and subjected to a uniform electric field, E∞

.

B. Governing equations

We have assumed both of the fluids of the system are im-
miscible and incompressible. Therefore, the continuity Eq. (1)
and momentum equation Eq. (2) in the dimensional form are
expressed as:

∇.⃗u = 0, (1)

ρ

[
∂ u⃗
∂ t

+(⃗u.∇) u⃗
]

= −∇p+∇.
[
µ
(
∇u⃗+∇u⃗T )]+

σκδs⃗n+ F⃗e, (2)

where ρ is the fluid density, u⃗ is the velocity vector, σ is the
surface tension coefficient, n⃗ is the normal to the interface
and κ =−∇.n is the interface curvature. The surface tension
terms only acts on the interface which is represented by the
Dirac delta function, δs. The effect of electric field is incorpo-

rated into the momentum equation by the electrostatic force,
F⃗e.

1. Determination of electric force, F⃗e

The electric field effects are described using electrostatic
model. The essential formulation of EHD problems is based
on the Maxwell stress tensor which couples the electrostatic
and hydrodynamics57. Electric force can be written as the di-
vergence of electrostatic Maxwell stress tensor, T⃗e:

T⃗e = ε

(
E⃗E⃗ − E2

2
I
)
, (3)

by applying the divergence operator:

F⃗e = ∇ · T⃗e = qE⃗ − 1
2

E2
∇ε. (4)

In Eq. (4), first term of the right hand side represents Coulomb
forces due to presence of free charges while the second term
represents permittivity gradient force due to the difference in
permittivity between two phases. Using the F⃗e term, the gov-
erning equation for EHD can be written as:

ρ

[
∂ u⃗
∂ t

+(⃗u.∇) u⃗
]

= −∇p+∇.
[
µ
(
∇u⃗+∇u⃗T )]+σκδs⃗n

+(qE⃗ − 1
2

E2
∇ε). (5)

The electric field E⃗ can be defined by the negative gradient
of electric potential (Φ) as following:

E⃗ =−∇Φ. (6)

Charge conservation equation for the surface charge density
qs can be expressed as58:

∂qs

∂ t
+∇ · (qs⃗u)−∇ · (K∇Φ) = 0. (7)

At the present work, we have considered the deformation be-
haviour of a leaky dielectric drop in another leaky dielectric
fluid under a static electric field. According this model, in
spite of having very small electrical conductivity (K), elec-
tric charges always accumulate at the fluid interface almost
instantly compared with the time scale of the fluid motion.
Thus, the equation for the surface charge (qs) conservation
Eq. (7) can be simplified as:

∇ · (K∇Φ) = 0. (8)

2. Non-dimensional numbers

We non-dimensionalize the governing equations by using
the following characteristic scales59: length → R, velocity(
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uc) → εeE∞
2R/µe, time → R/uc, electric field → E∞ , vis-

cous stress → µeuc/R , electric stress → εeE∞
2. The scale

of velocity is obtained by equating the order of magnitude of
the viscous stress with the electric stress. Based on the above
characteristic scales following non-dimensional numbers and
the property ratios are obtained:

• Reynolds number, Re : measures the ratio of inertial
forces to viscous forces.

Re =
ρ2ε2E2

∞R2

µ2
2

, (9)

where ρ2, µ2 are density and viscosity of suspending
fluid, R is the droplet radius.

• Electric Capillary number, CaE : measures the intensity
of electric stress over surface tension.

CaE =
ε2E2

∞R
γ

, (10)

where γ is the interfacial tension and E∞ is the uniform
electric field intensity.

• Electric conductivity ratio, (K): It measures the ratio of
the conductivity between the droplet (K1) and suspend-
ing fluid (K2).

K =
K1

K2
. (11)

• Electric permittivity ratio, (Q): It measures the ratio of
the permittivity between the droplet (ε1) and suspend-
ing fluid (ε2).

Q =
ε1

ε2
. (12)

• Viscosity ratio, (rv): It measures the ratio of the viscos-
ity between the droplet (µ1) and suspending fluid (µ2).

rv =
µ1

µ2
. (13)

• Density ratio, (rd): It measures the ratio of the density
between the droplet (ρ1) and suspending fluid (ρ2).

rd =
ρ1

ρ2
. (14)

Based on the dimensionless numbers above, the momentum
equation (Eq. 2) can be non-dimensionalized as follow:

ρc

[
∂ u⃗
∂ t

+(⃗u.∇) u⃗
]
=−∇p+

1
Re

∇.
[
µc
(
∇u⃗+∇u⃗T )]

+
1

CaRe
σκδs⃗n+

CaE

CaRe

(
qE⃗ − 1

2
E2

∇ε

)
. (15)

C. Dynamics of EHD induced droplet deformation

Based on small perturbation theory, the EHD problem has
been solved analytically by Taylor60 and then by Ajayi61 to
the first and second order in electric capillary number, CaE .
They characterise the total deformation of a spheroid droplet
by means of the parameter D given by the expression:

D =
L−B
L+B

, (16)

where L and B are the droplet lengths parallel and perpendic-
ular to the electric field.. Using a linearised asymptotic anal-
ysis and assuming that both fluids are extremely viscous and
conducting, Taylor60 also provided an expression for D as a
function of the fluid properties and the electric field intensity:

D=
9

16(2K +1)2

[
3K(3rv +2)(1−KQ)

5(rv +1)
+K2(1−2Q)+1

]
CaE ,

(17)
According to Taylor’s model, the droplet can deform into

either prolate (D > 0) or oblate shape (D < 0) depending
on the ratio conductivity (K) to the permittivity (Q) of the
fluid. The relationship between K and Q is defined by a ratio
named α which is the ratio of charge relaxation time scale of
suspending fluid, (τE

2 ) to the charge relaxation time scale of
drop,(τE

1 ). The charge relaxation time scale, (τE ) represents
the time required by the charges to reach the interface by the
sole effect of Ohmic conduction.

α =
K
Q

=
τE

2
τE

1
, (18)

where, τE
1 = ε1

K1
, τE

2 = ε2
K2

.
Different droplet behaviour at different combination of K

and Q at CaE << 1, Re = 0.1, and rd = 1 , rv = 1 is illus-
trated in FIG 2. This figure has been previously presented by
several researchers62–64 for their EHD study. We have repro-
duced this figure in order to identify the three fluid system that
we used in our validation study. In FIG 2, when the values of
K and Q fall on the solid curve, the droplet remains spherical
which means D = 0. Along the dashed line, α = 1. These solid
and dashed line divide the parameter space into three regions
namely region 1,2 and 3. We have considered three leaky di-
electric fluid systems denoted by prolate A (PRA), prolate B
(PRB) and oblate (OB) which fall into region 1,2, and 3 re-
spectively as shown through three symbols on the FIG 2. For
PRA, α > 1 whereas for PRB and OB α < 1.

For α > 1: The charge relaxation timescale of the drop fluid
is faster than suspending fluid (τE

1 < τE
2 ) . Therefore, charges

from the drop fluid reaches at the equilibrium state much
faster than the suspending fluid. As a result, surface charge
distribution is mainly controlled by the charges brought from
the drop fluid. In this case, the drop dipole moment takes the
same direction as the applied electric field and charges at the
poles are attracted toward the electrodes and pull the droplet
into a prolate, (PRA) shape65,66 as shown as an inset (1) of
FIG 2.



Submitted to Physics of Fluids 5

Conductivity ratio, K

P
er

m
it

ti
vi

ty
 r

at
io

, Q

10-2 10-1 100 101 10210-2

10-1

100

101

102

 α = 1
D = 0

OB

PRB 

PRA 

3
1

2

FIG. 2. Different droplet behaviour in the K-Q parameter space re-
produced from small deformation theory62,63. Here CaE << 1, Re =
0.1, and rd = ρ1/ρ2, rv = µ1/µ2. The solid line divides the region
of prolate (PR) and oblate (OB) drops. The dashed line separates the
region of prolate A (PRA) from prolate B (PRB) drops. The three
symbols on the diagram represent the three systems considered in
this study.

For α < 1: the charge relaxation timescale of the suspend-
ing fluid is faster than the drop fluid (τE

1 > τE
2 ). As a re-

sult, charges from the suspending fluid reaches at the equi-
librium state much faster than the drop fluid. In this case, sur-
face charge distribution is mainly controlled by the charges
brought from the suspending fluid. Consequently, the drop
dipole moment takes the opposite direction of applied elec-
tric field and charges at the poles are repelled from the elec-
trodes and push the droplet into either prolate B or oblate OB
shape65,66 as shown as insets (2) and (3) respectively of FIG 2.

III. VALIDATION OF THE METHOD

The computational domain used in the present simulation
is a cubic box. Due to the symmetry of the problem, only half
of the domain is simulated. Symmetric boundary condition is
used at x and y directions for both flow field and the electric
potential. While at z direction, no-slip boundary condition is
used for the flow field and Dirichlet boundary condition are
imposed for the electric potential. The uniform rectangular
meshes are used to discretize the computational domain. The
validation is performed by comparing the present results with
the theoretical, numerical and experimental results of other
researchers. For all validation mesh density, dx = 1/64 and
computational domain size 4R×4R×24R are used which are
sufficient to capture the important characteristics.

1. Prolate droplet deformation

For prolate deformation, , we have modeled two fluid sys-
tems denoted by PRA and PRB. For PRA: (K,Q) = (10.0,
1.37) while for PRB: (K,Q) = (25.0, 50.0). These fluid sys-
tems resemble a real fluid system consisting of silicone oil
droplet suspended in castor oil which are also used by several
researchers63,67 in their experimental and numerical study.
Both silicone and castor oil are weakly conductive fluid and
have comparable densities but have difference in viscosity.
Due to the high viscosity of the suspending castor oil, the sil-
icone drop falls slowly which makes it easier to observe its
behaviour. Therefore, the physical properties of the silicone
oil drop in castor oil are ideal for modelling a realistic leaky
dielectric drop in a leaky dielectric fluid system.
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FIG. 3. Droplet deformation as a function of electric capillary num-
ber, CaE , for prolate droplet at K =10.0, Q =1.37, Re = 0.1, and
rd = 1, rv = 0.874. Inset showing 3d droplet deformation for prolate
A droplet at CaE = 0.3 and CaE = 0.35.

When the electric field is applied, the electrical stresses
are generated across the drop and suspending fluid interface,
which not only leads to deformation of the droplet but also
generates an electrohydrodynamic induced flow in and around
the droplet. The droplet deformation is mainly governed by
electric capillary number, CaE which is the ratio of electric
stress to surface tension. With the increase of CaE , the inten-
sity of electric stress increases over the surface tension which
leads to larger EHD induced droplet deformation.

The quantitative comparisons of Taylor deformation as
function of CaE for PRA fluid is shown in FIG 3. This figure
shows that the droplet deforms into a prolate shape and the
magnitude of deformation increase with the increasing value
of CaE . When CaE is increased from 0.3 to 0.35, the elec-
tric stress is sufficiently strong to overcome the surface ten-
sion which leads to a sudden elongation and break-up of the
droplet as shown inset of FIG 3. Here, the deformation pa-
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rameter obtained from present simulation is validated by the
existing analytic, numerical and experimental results. For an-
alytical comparison, the present results are compared to the
first- and second-order theory of Taylor60 and Ajayi61. Ana-
lytical comparison clearly depicts that the deformation curve
obtained from present simulation quickly deviates from the
first-order theoretical prediction of Taylor60. However, the
present results show good agreement with second order cor-
rections of Ajayi61 up to CaE = 0.2. A reasonable agreement
is also obtained among the present results and the axisymmet-
ric boundary integral solution of Lac and Homsy63 and also
with the experimental data provided by Ha and Yang67.
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FIG. 4. Droplet deformation as a function of electric capillary num-
ber, CaE , for prolate droplet at K =25.0, Q =50.0, Re = 0.1, and
rd = 1, rv = 0.874. Inset showing 3d droplet deformation for prolate
B droplet at CaE = 0.35 and CaE = 0.45.

The quantitative comparisons of Taylor deformation as
function of CaE for PRB fluid is shown in FIG 4. Here, the de-
formation parameter obtained from present simulation is val-
idated by the existing analytic, and numerical results. This
figure shows that the droplet deforms and forms conical ends
at both ends. With the increasing value of CaE , the conical
ends become more prominent and form Taylor cones. When
two Taylor cone develop at its opposing ends, infinitely long
thin liquid charged jets start to form from these ends which is
known as EHD tip streaming. Inset of FIG 4 shows the onset
of tip streaming at CaE = 0.45.

For analytical comparison, the present results are compared
to the first- and second-order theory of Taylor60 and Ajayi61.
Analytical comparison clearly depicts that the deformation
curve obtained from present simulation quickly deviates from
the first-order theoretical prediction of Taylor60. However, the
present results show good agreement with second order cor-
rections of Ajayi61 up to CaE = 0.25. A good agreement is
also obtained between the present results and the axisymmet-
ric boundary integral solution of Lac and Homsy63.

2. Oblate droplet deformation

For oblate deformation, we have modeled a fluid system
denoted by OB with (K,Q) = (0.10, 2.0). This fluid system is
also used by Lac and Homsy63 in their axisymmetrical study
of EHD induced droplet deformation.
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FIG. 5. Droplet deformation as a function of electric capillary num-
ber, CaE , for oblate droplet at K =0.10, Q =2.0, Re = 0.1, and rd = 1,
rv = 0.874. Inset showing 3d droplet deformation for oblate droplet
at CaE = 0.3 and CaE = 0.35.

Similar to prolate droplet, the deformation of oblate droplet
is also controlled by electric capillary number CaE . The effect
of different electric capillary number (CaE ) on droplet defor-
mation for OB system fluid is shown quantitatively in FIG 5.
From the fig, it is depicted that the droplet deformation in-
creases with the increase of CaE and maximum deformation
occurs at the perpendicular direction of applied field which
leads to oblate shape droplet. Here, the droplet reaches the
steady shape upto CaE = 0.3. After that at CaE = 0.35, the
droplet no longer takes steady shape and with time it elongates
more and more and form bulbous shape at two ends which can
lead to breakup as shown inset of FIG 5.

The deformation parameter obtained from present simula-
tion for OB fluid system is validated by the existing first and
second order perturbation theory of Taylor60 and Ajayi61 as
shown in FIG 5. Results obtained from the present simulation
deviates from the analytical results after CaE = 0.1 as analyt-
ical results fails to capture larger deformation. However, the
present result show a good agreement with the axisymmetric
boundary integral solution of Lac and Homsy63 as shown in
FIG 5.
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IV. APPLICATION OF THE METHOD

A. Sorting of droplet using non-uniform electric �eld

DEP is the motion of a droplet in a spatially non-uniform
electric field .When an initially uncharged drop suspending in
another fluid is subjected to a spatially non-uniform electric
field, all the free charges from both fluids get accumulated
at the interface and the particle get polarized. Due to non-
uniformity of the electric field, charges at the interface gener-
ate non-equal Columbic forces which causes the DEP motion
of the droplet in a particular direction depending on the elec-
trical properties.

For an insulating spherical particle of radius R, in a nonuni-
form electric field E, the net DEP force is first defined by
Pohl 40 .

FDEP = 2πR3
ε0εmβ∇E2, (19)

where R is the droplet radius, εm is the permittivity of the
fluid, ε0 = 8.854×10−12 F/m is the vacuum permittivity and
E is the electric field intensity. β (ω) is the real part of the
frequency-dependent Clausius–Mossotti factor which is given
by:

β (ω) = Re

(
ε∗p − ε∗m

ε∗p +2ε∗m

)
, (20)

ε∗p and ε∗m are the complex permittivity of the drop and the
fluid, respectively.

There are two types of DEP motion: positive DEP and neg-
ative DEP. If the droplet has lower permittivity than the sus-
pending fluid, it will be attracted to the stronger field regions
which is known as positive DEP (pDEP). On the other hand,
when the permittivity of the droplet is higher than the sus-
pending fluid, it will be repelled from the electric field which
is known as negative DEP (nDEP) .

B. Problem statement

We consider an initially uncharged liquid droplet of radius
R suspending in another medium flowing through a rectan-
gular channel with an orthogonal side branch as shown in
FIG 6 (a). Both the straight channel and the side branch have
the constant cross section 4l2 with a side length of 2l. The
length of the parent channel is 8l whereas the length of the two
daughter channels are 6l. Here, the considered length is long
enough for the droplet to reach a steady shape before reach-
ing the bifurcation region. The fluid motion is governed by
the incompressible Navier–Stokes equations. No-slip bound-
ary condition is imposed at the channel wall. Fully devel-
oped laminar channel flow profiles are set at the inlet and two
outlets with flow rates Q0,Q1,Q2 respectively in a way that
Q0 = Q1 +Q2. The droplet is initially placed along the cen-
treline of the parent channel at a distance of 2l from the inlet

which helps to get the steady state after travelling a distance of
6l. A three-dimensional Cartesian coordinate system is used
with x-axis along the axis of the main channel, z-axis along
the side branch axis and the origin of the coordinate system
is located at the intersection of the two centre lines of two
daughter channels. The droplet and suspending medium are
considered as water and oil having different physical and elec-
tric properties such as: densities ρ1 and ρ2, viscosities µ1 and
µ2, electric permittivities ε1 and ε1 and conductivities K1 and
K2. The subscripts 1 and 2 refer to the physical parameters
inside and outside of the droplet respectively. We use the sus-
pending fluid as the reference fluid.

If a spatially non-uniform electric field is generated inside a
microchannel which is containing a droplet, the droplet faces
DEP motion and moves in a particular direction. In practical
DEP applications, the non-uniform can be generated in two
ways. One way is to use electrodes of different shapes, size
and designs 68 and another way is changing the position of the
electrode at different position of the microfluidic channel.

In this research work, we have generated the non-uniform
electric field inside the microfluidic channel by placing a rect-
angular electrode at the bottom of the channel with specific
voltage. When a voltage is applied along a device, the electric
field creates a linear gradient which allows the droplet to ex-
perience a spatial difference in electric field within the chan-
nel. We have considered two electrode positions at a distance
of 4l and 6l from the inlet as shown in FIG 6 (b) and (c) re-
spectively. The electrode positions are referred as electrode
position 1 and electrode position 2. Length, width and height
of both electrodes are 4l, 2l and l respectively where l is the
half length of the cross-sectional width. With the presence of
these electrode positions, electric field intensity is defined by
capillary number CaE .

1. Non-dimensional numbers

The problem depends on a number of dimensionless pa-
rameters based on the flow configuration, hydrodynamic and
electric properties of the drop and suspending fluid.

• Branch flow ratio, (q) measures the flow rate ratio of
branch channel to main channel.

q =
Q2

Q1 +Q2
, (21)

where Q1 and Q2 are the flow rates in the downstream
main channel and in the side channel, respectively, as
indicated in FIG 6

• Reynolds number, (Re) measures the ratio of inertial
forces to viscous forces.

Re =
ρ2ul
µ2

, (22)

where u is the mean velocity of the Poiseuille flow im-
posed at the inlet of the main channel and l is the half-
cross-sectional dimension of the main channel.
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FIG. 6. Geometry of the rectangular channel with an orthogonal side branch: (a) without electrode; (b) electrode at position 1; (b) electrode at
position 2.

.

• Electric conductivity ratio, (K): It measures the ratio of
the conductivity between the droplet (K1) and suspend-
ing fluid (K2)as defined in Eq. 11.

• Electric permittivity ratio, (S): It measures the ratio of
the permittivity between the droplet (ε1) and suspend-
ing fluid (ε2) as defined in Eq. 12.

• Viscosity ratio, (rv): It measures the ratio of the viscos-
ity between the droplet (µ1) and suspending fluid (µ2)
as defined in Eq. 13.

• Density ratio, (rd): It measures the ratio of the density
between the droplet (ρ1) and suspending fluid (ρ2) as
defined in Eq. 14.

• Hydrodynamic Capillary number, Ca : measures the in-
tensity of viscous stress over surface tension.

Ca =
µ2u
γ

, (23)

• Electric Capillary number, (CaE ) measures the intensity
of electric stress over surface tension.

CaE =
ε2E2l

γ
, (24)

where γ is the interfacial tension, l is the half-cross-
sectional dimension of the main channel. and E is the
electric field intensity.

• Size ratio, (λ ): It measures the ratio of the droplet ra-
dius (R) to the half-cross-sectional dimension of the
main channel (l).

λ =
R
l
. (25)

V. PATH SELECTION OF THE DROPLET

In this problem, we have considered leaky dielectric-leaky
dielectric fluid system consisting of water droplet suspending
in soybean oil. This fluid system is also used in experimental
study of Ahn et.al.16. The physical properties considered in
this research are: K = 0.107, S = 1.34, rd = 1.09, rv = 0.018,
λ = 0.2,0.3,0.4, Ca = 0.1, CaE = 0, 0.4, 0.9, Re = 1, 20 and
different branch flow ratios q = 0.1 - 0.7. When this system of
fluid is subjected to non-uniform electric field it shows nega-
tive DEP motion as permittivity ratio >1 (S>1), which means
that the permittivity of the droplet is higher than the permit-
tivity of the suspending fluid. Therefore the droplet will be
repelled from the electric field.

At first, we investigate the influence of mesh size on the
trajectories of the droplet in x-z plane for three mesh densities
which are dx = dy = dz = 1/16, 1/32 and 1/64 . FIG 7 shows
the influence of different mesh resolution on the trajectories
the droplet flowing in the main channel for Re = 20.0, Ca =
0.1, CaE = 0, q = 0.3 λ = 0.3, rd = 1.09, and rv = 0.018 . It is
obtained that the trajectories for dx = 1/32 and 1/64 are almost
superimposed on each other. Therefore, we chose dx = 1/32
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FIG. 7. Trajectories of a droplet (R/L = 0.3) flowing in the main
channel at Re = 20.0, Ca = 0.1, CaE = 0, q = 0.3, rd = 1.09, and rv =
0.018 with three different mesh sizes

.

for the current simulation having around 20 meshes across the
diameter of the droplet which is sufficient enough to capture
the important characteristics and mass of the droplet can also
be conserved reasonably well with the relative mass change
within 0.3%.

The main objective of this research work is to character-
ize the path selection of the droplet as a function of different
physical parameters. A simple way to characterize sorting of
a droplet is to define the critical branch ratio, qc, above which
the droplet enters the side branch. Thus the droplet flows into
the main channel after the bifurcation region if q ≤ qc other-
wise, it flows into the side branch. In the following section,
we have investigated the effect of electric capillary number
(CaE ), electrode positions, inertia (Re) and size ratio (λ ) on
the path selection of the droplet. For each case at a fixed value
of particular physical properties, we progressively increase q
from 0.1 by large steps of ∆q = 0.1 until we find the transi-
tion, where the droplet flows into the side branch rather than
the main channel. Around the transition region, we then refine
the step to ∆q = 0.02.

A. E�ect of electric �eld, (CaE) at Re = 1

In this section, we have analysed the effect of electric field
on the path selection of the droplet at a rectangular microchan-
nel. The electric field effect is incorporated inside the channel
by placing an electrode at the bottom of the channel with a
specific voltage. We have considered 2 and 3V electric poten-
tial which corresponds to electric capillary number, CaE = 0.4
and 0.9 respectively.

FIG 8 shows the mass trajectories of the droplet’s centre of

FIG. 8. Effect of electric field strength, (CaE ) on the droplet trajec-
tory at different branch flow ratio, (q). Other parameters, Re = 1.0;
Ca = 0.1, λ = 0.3, rd = 1.09, and rv = 0.018

FIG. 9. The difference in path selection of the droplet at without
electric field (CaE = 0) for branch flow ratio q = 0.4 and 0.6. Other
parameters, Re = 1.0; Ca = 0.1, λ = 0.3, rd = 1.09, and rv = 0.018

mass for CaE = 0, 0.4, and 0.9. CaE is defined as the ratio of
electric stress over surface tension. At CaE = 0, the electric
field is absent and the path selection of the droplet depends on
only branch flow ratio, q and Reynolds number, Re.

FIG 8 (a) shows the mass centre trajectory of the droplet
at CaE = 0 and Re = 1 for different branch flow ratios. From
the mass centre trajectory it is depicted that without electric
field, the droplet moves along the centre line of the main chan-
nel before the bifurcation region. When the droplet comes
to the bifurcation region, it first attracted by the orthogonal
side branch. If the value of q > 0.48, the droplet enters to the
side branch otherwise, it moves back towards the main chan-
nel after passing the bifurcation region. Therefore the critical
branch flow ratio without electric field is qc = 0.48 at Re = 1.

The time evolution of the droplet profiles without electric
field (CaE = 0) at Re = 1 are shown in FIG 9 for (a) q = 0.4
and (b) q = 0.6 respectively. From the figure it is obtained that
at CaE = 0, the droplet takes the branch which receives the
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FIG. 10. Branch flow ratio as a function of electric capillary number.
Other parameters, Re = 1.0; Ca = 0.1, electrode position 1, λ = 0.3,
rd = 1.09, and rv = 0.018.

higher flow rate. Consequently it follows into the downstream
main channel towards outlet 1 at q = 0.4 where the flow rate
of the outlet 2 is lower than the outlet 1. When the flow rate
of outlet 2 is increased to 0.6, the droplet enters to the side
branch which can be sorted from outlet 2.

On the application of electric field with CaE = 0.4 and 0.9,
it is obtained that the droplet enters the side branch even at
lower branch flow ratio. At CaE = 0.4, the droplet enters the
side branch from q = 0.38 whereas at CaE = 0.9, it enters the
side branch at very low value of branch flow ratio which is
q = 0.14. Therefore, electric field plays a significant role in
reducing the value of critical branch flow ratio qc.

A phase diagram for branch flow ratio (q) as a function
of electric capillary number (CaE ) is shown in FIG 10 for a
droplet flowing in a microchannel without electric field and
with electric field through an electrode at position 1. With-
out electric field, it is obtained that the qc = 0.48 for Re = 1.
When a non-uniform electric field is introduced through an
electrode at distance of 4l from the inlet (position 1), the ob-
tained qc = 0.36 and 0.12 for CaE = 0.4 and 0.9 respectively.
Therefore, electric field can play a significant role in reduction
of qc which can faciliates the sorting of the droplet at desired
outlet.

The time evolution of droplet profile at q = 0.2 are shown
in FIG 11 for CaE = 0.4, and 0.9 respectively. In this research
we have considered water droplet suspending in soybean oil.
For this system, permittivity of the droplet is higher than the
suspending fluid which gives rise to negative dielectrophoresis
(nDEP) motion. Due to nDEP, the droplet starts to repel from
the centre of the channel when it comes close to the electrode.
Larger the value of CaE , larger the repulsive force acts on the
droplet which promotes the sorting of the droplet at the side
branch even at smaller value of q. Therefore at q = 0.2, the

FIG. 11. The difference in path selection of the droplet at (a)
CaE = 0.4 and (a) CaE = 0.9 for same branch flow ratio q = 0.2 and
electrode position 1 . Other parameters, Re = 1.0; Ca = 0.1, λ = 0.3,
rd = 1.09, and rv = 0.018

droplet favours the side branch at CaE = 0.9 while it flows
into the downstream main channel at CaE = 0.4.

B. E�ect of electrode position at Re = 1

We have considered two electrode positions at a distance
of 4l and 6l from the inlet as shown in FIG 6 (b) and (c) re-
spectively. Length, width and height of both electrodes are 4l,
2l and l respectively where l is the half length of the cross-
sectional width.

FIG. 12. Effect of electrode position on the droplet trajectory at dif-
ferent branch flow ratio, (q). Other parameters, Re = 1.0; Ca = 0.1,
CaE = 0.9, λ = 0.3, rd = 1.09, and rv = 0.018

FIG 12 present the effect of electrode position on the
droplet trajectory at different branch flow ratio, (q). From
the mass centre trajectory it is depicted that for both electrode
positions, the droplet move along the centre line of the main
channel until it comes closer to the electrode position which
is 4l and 6l position from the inlet for electrode position 1 and
2 respectively. Here both electrodes create a spatially non-
uniform electric field with electric potential of 3 volt which
corresponds to CaE = 0.9. When the droplet comes closer to
the electrode, it deforms in an oblate shape as conductivity ra-
tio is less than the permittivity ratio, (K<S). In addition to it,
the droplet also faces the repulsive electric force due to nega-
tive DEP (nDEP) and move far away from the centreline and
reaches the bifurcation region. At the bifurcation region, it
slows down and first attracted by the orthogonal side branch.
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For electrode position 1, this electric repulsive electric force
overcome the hydrodynamic force and the droplet enters into
the side branch when q > 0.12 otherwise, it moves back to-
wards the main channel after passing the bifurcation region
as shown in FIG 12(a). However when we move the electrode
from position 1 to 2, it is found that the value of q at which the
droplet enters the side branch increases. For electrode position
2, the droplet enters into the side branch if q > 0.16. There-
fore, the closer the electrode to the droplet initial position, the
lower the critical branch flow ratio for sorting is obtained.

C. E�ect of inertia, Re

We now investigate the trajectory of the droplet for higher
Reynolds number at different branch flow ratios, q. FIG 13
presents the trajectories of the droplet’s centre of mass for Re
= 1 and 20 at different branch flow ratios. Here, other pa-
rameters are: Ca = 0.1, CaE = 0.0, λ = 0.3, rd = 1.09, and
rv = 0.018. The figure illustrates that the mass centre trajec-
tory of the droplet for Re = 20 follows the same pattern as Re
= 1. The droplet remains the centerline of the channel before
reaching the bifurcation region. When the bifurcation region
starts, the droplet first attracted towards the side branch. After
passing the bifurcation region at Re = 1, the droplet enters into
the side branch at and above equal branch flow ratio (q = 0.5).
Therefore without electric field (CaE = 0.) the critical branch
flow ratio, qc = 0.48 at Re = 1. However, when then the inertia
effect is increased to Re = 20, the value of qc is also increased
to 0.62.

FIG. 13. Effect of inertia on the droplet trajectory at different branch
flow ratios, (q). Other parameters, Ca = 0.1, CaE = 0.0, λ = 0.3,
rd = 1.09, and rv = 0.018

The time evolution of the droplet profiles without electric
field (CaE = 0) at q = 0.5 are shown in FIG 14 for (a) Re = 1
and (b) Re = 20 respectively. From the figure it is obtained that
at equal branch flow ratio, the droplet selects the path towards
the orthogonal side branch at Re = 1 whereas it goes back to
the main channel when inertia effect is increased to Re = 20.

Therefore it is found that when the flow is governed only by
poiseuille flow, the inertia plays an important role on critical
branch flow ratio (qc) above which sorting can be achieved. In
most practical application, sorting will be delayed where iner-
tia effect is significant. Here it comes the necessity of droplet
manipulation for rapid sorting. In the following section, we

FIG. 14. The difference in path selection of the droplet at (a) Re =
1 and (b) Re = 20 at same branch flow ratio, q = 0.5. (q). Other
parameters, Ca = 0.1, CaE = 0.0, λ = 0.3, rd = 1.09, and rv = 0.018

will study how non-uniform electric field can facilitate the
droplet sorting even at higher Re.

FIG. 15. Combined effect of inertia and electrode positions on the
droplet trajectory at different branch flow ratios, (q). Other parame-
ters, Ca = 0.1, CaE = 0.9, λ = 0.3, rd = 1.09, and rv = 0.018

FIG 15 shows the combined effect of inertia (Re = 1 and
20) and electric field (CaE = 0.9) on the droplet trajectory at
different branch flow ratios (q) with electrode positions 1 (a,b)
and electrode positions 2 (c,d). From the figure it is obtained
that when the electrode is at position 1, the droplet takes the
side branch when q> 0.12 both for Re =1 and 20. However
at electrode position 2, the droplet takes the side branch at q>
0.16 and q> 0.22 for Re =1 and 20 respectively. Therefore for
electrode position 1, critical branch ratio qc = 0.12 both for Re
= 1 and 20. On the other hand, for electrode position 2, qc =
0.16 at Re = 1 and qc = 0.22 at Re = 20. For both electrode
positions, the presence of electric field promotes the droplet
sorting at lower branch flow ratio (q) even at higher inertia
regime which can not be obtained without electric field effect.
Moreover at electrode position 1, we get the same value of qc
for both lower and higher inertia effect. Therefore, in practical
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application where inertia is significant, placing an electrode
closer to the droplet with sufficient electric potential can speed
up the sorting process with a lower value of qc.

D. E�ect of size ratio, λ at Re = 20

In this section we have investigated the effect of droplet
size ratio (λ = R/l), with Re = 20, electrode at position 1 and
CaE = 0.9. We have considered three different size ratios,
λ = 0.2,0.3, and 0.4. The trajectories of the droplet’s centre
of mass and a phase diagram for different branch flow ratios
are shown in FIG 16 and FIG 17 for different branch flow ra-
tios at λ = 0.2,0.3, and 0.4. From the figures, it is observed
that at a given value of other parameters, the size ratio, λ has
significant effect on the path selection of the droplet. At λ

= 0.2, after passing the bifurcation region the droplet follows
the path towards the straight channel upto q = 0.28 after that
it enters into the side branch. Therefore, the critical branch
ratio, qc = 0.28 at λ = 0.2. When the increase the size ratio to
λ = 0.3, qc is reduced to 0.12. Further increase of size ratio
to λ = 0.4 leads to further reduction of qc which is 0.08. This
reduction of the value of qc as a function of λ is also illus-
trated in FIG 17 through a phase diagram. As dielectrophore-
sis force is proportional to the droplet radius, larger droplet
undergoes higher dielectrophoresis force which promotes the
droplet sorting at the side branch even at the lower value of
branch flow ratio.

FIG. 16. Effect of droplet size on the droplet trajectory at different
branch flow ratio, (q). Other parameters, Re = 20.0; Ca = 0.1, CaE =
0.9, electrode position 1, rd = 1.09, and rv = 0.018

FIG. 17. Branch flow ratio as a function of size ratio. Other parame-
ters, Re = 20.0; Ca = 0.1, CaE = 0.9, electrode position 1, rd = 1.09,
and rv = 0.018.

VI. CONCLUSIONS

In this research work, we have developed a 3d dimensional
level set model for two-phase EHD problem. The developed
model has been implemented to a practical engineering prob-
lem of droplet sorting in microfluidics. In this study, we con-
sider a water droplet suspending in soybean oil and flowing
through a rectangular channel with an orthogonal side branch.
Main findings from the present analysis are summarized as
follows:

i) Three types of droplet deformation namely prolate A
(PRA), prolate B(PRB), and oblate (OB) drop is obtained
depending on the ratio of K and Q which is defined by
α = K/Q. If α > 1, the droplet takes PRA shape. How-
ever when α < 1, the droplet can take either PRB or OB
shape.

ii) The results obtained from the present simulation show
good agreement with the existing analytical result of
Taylor60 and Ajayi61, axisymmetric boundary integral so-
lution of Lac and Homsy63 and experimental results pro-
vided by Ha and Yang67.

iii) Without any electric field effect (CaE = 0), the droplet
trajectory is mainly governed by the value of q and Re. At
low value of inertia, the droplet favours the outlet which
receives higher flow rate. However when inertia effect is
significant, the droplet takes the outlet 1 even it receives
lower flow rate until qc is achieved.
From the present analysis we find that without electric
field effect, qc for droplet sorting are 0.48 and 0.62 for Re
= 1 and 20 respectively which implies that the inertia has
a leading role on increasing the value of qc.
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iv) The spatially non-uniform electric field is created by plac-
ing a single electrode at the bottom of the microchannel.
Electric field intensity is represented by electric capillary
number, (CaE ). We have investigated trajectory of the
droplet for different branch flow ratios (q) for two differ-
ent values of CaE which are 0.4 and 0.9 and compared it
to the result without electric field effect (CaE = 0) . It has
been observed that higher the value of CaE , higher the
reduction of critical branch flow ratio (qc) is observed.

At CaE = 0, the critical branch flow ratio is qc = 0.48
at low inertia (Re = 1). However, at CaE =0.4 and 0.9,
the branch flow ratio reduces to qc = 0.36 and 0.12 at the
same inertia (Re = 1). Therefore, spatially non-uniform
electric field can play a significant role in droplet sorting
at desired outlet.

v) Next, we study the effect of electrode positions on the
path selection of the droplet. Two electrode positions are
considered namely electrode 1 and electrode 2 which are
placed at a distance of 4l and 6l from the inlet of the chan-
nel. At electrode position 1, qc = 0.12 at Re = 1. When
electrode is move to position 2, a slight increase of criti-
cal branch ratio is obtained which is qc = 0.16 at the same
Re. Therefore the closer the electrode is placed from the
initial position of the droplet, smaller the critical branch
flow ratio.

vi) After that, we studied the effect on inertia by increasing
the value of Re from 1 to 20. When there is no elec-
tric field effect (CaE = 0.0), it has been obtained that the
value of qc = 0.62 at Re = 20 whereas it is 0.48 at Re =
1. Therefore, without any electric field at high Re, the
droplet can flow into the downstream main channel even
when it receives lesser flow rate than the side branch.

However when electric field is applied at higher inertia, it
is still possible to sort the droplet at side branch at lower
value of qc. For example at electrode position 1, we have
obtained qc = 0.12 both for Re = 1 and 20. For electrode
position 2, qc is increased from 0.16 to 0.22 when Re is
increased from 1 to 20 which is still lower than the value
of qc without electric field at high inertia . Therefore with
electric field, the droplet can be manipulated to sort at the
side branch even at a higher inertia with smaller value of
qc.

vii) Finally we analyse the effect of size ratio (λ ) on the path
selection of the selection when electrode is placed at po-
sition 1 with CaE = 0.9 and Re =20. We consider three
different value of λ which are 0.2, 0.3 and 0.4. It is obtain
that with the increase of the value of λ , a reduction of the
value of qc is obtained. When we increase the value of λ

from 0.2 to 0.3, we obtain the reduction of qc = 0.28 to
0.12. After that when we further increase the value of λ

to 0.4, a very small value of qc is obtained which is 0.08.
Larger the size ratio (λ ), the larger the value of dielec-
trophoresis force acting on the droplet which promotes
the droplet sorting at side branch even at lower branch
flow ratio with high inertia effect.

viii) To conclude, from the present investigation we have ob-
served that electrode at position 1 with CaE = 0.9 and λ

= 0.4, the critical branch flow ratio is the lowest qc which
is 0.08.

VII. SCOPE OF FUTURE STUDY

In the present work we developed a three-dimensional level
set method for two-phase electrohydrodynamics (EHD) prob-
lem which opens a myriad of scope for future studies. Au-
thors primary focus is to study the path selection of the droplet
without and with electric field effect as a function of different
parameters of the system. Based on the observation of the
present work, a simplified model can be developed which can
help understand the droplet sorting mechanism when subject
to non-uniform electric field. The authors study the dielec-
trophoresis assisted droplet sorting for rectangular microchan-
nel with cartesian grids. Therefore, the present model can be
improved to deal with complex geometry for example, mi-
crochannel with Y-bifurcation. Additionally, further paramet-
ric analysis can be performed to elucidate the effect of other
parameters such as multiple number of droplets and elec-
trodes, complex interactions between the droplet themselves,
or more interestingly different geometry of the microchannel
including a series of successive bifurcations.
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Appendix A: Numerical Procedures

In this research we have developed a three dimensional
level set method for two phase electrohydrodynamics. The
non-dimensional partial differential equations are discretised
using the finite volume method on a staggered grid with veloc-
ity and electric field components are defined at the cell faces
and scalar variables (e.g. pressure, electric properties and the
level-set function) at the cell centres as shown in FIG 18.

The motion of the interface is dependent on the evolution
of the velocity field, therefore the advection of the level-set
function and the Navier-Stokes equations must be solved in a
manner that is temporally matched. In our numerical simula-
tion, the following computational order is followed from time
level n to n + 1:
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FIG. 18. Position of variables in a three-dimensional mesh cell.

1. Update the level-set function through the advection
equation using the velocity field at time level n and n
- 1 using Eq. (A1).

2. Determine the surface tension force at the time level n
+ 1/2 using the averaged value of the level-set function
at time level n and n + 1 using Eq. (A2).

3. Determine the electric potential at the time level n + 1/2
using Eq. (A3).

4. The electric field is then straightforwardly computed at
the time level n + 1/2 by taking the negative gradient of
electric potential at the same time level using Eq. (A4).

5. Determine the electric charge at the time level n + 1/2
using Eq. (A5).

6. Determine the electric force term at the time level n +
1/2 using the value of electric field and electric permit-
tivity at the same time level using Eq. (A6).

7. Update the velocity field for time level n + 1 by solving
the momentum and continuity equations with Eq. (A9).

1. Updating the level-set function to determine the surface
tension force

The update the level-set function at time level n and n - 1 is
done through the following advection equation:

φ
n+1 = φ

n −∆t
{

1.5W [(u ·∇φ)n]−0.5W
[
(u ·∇φ)n−1]} .

(A1)
The Crank-Nicholson method is used for the discretisation
of the time-stepping procedure and the Adams-Bashforth
method for the advective term. W is the discrete con-
vection operator where fifth-order weighted essentially non-
oscillatory (WENO) scheme is applied. The ‘reinitialisation’
step is applied after solving the advection equation to make
sure that φ n+1 is kept approximately the signed distance func-
tion. Once φ n+1 is updated, the intermediate value of φ n+ 1

2

is used to calculate the physical properties of the fluids at the
interface and the surface tension forces.

φ
n+ 1

2 =
φ n +φ n+1

2
. (A2)

a. Determining the electric force

For leaky-dielectric fluids, the electric potential, Φ at the
time level n + 1/2 is determined by solving the following equa-
tion by successive over-relaxation (SOR) iterative method.
SOR method shows a good performance in terms of number
of iteration and computational time.

∇ ·
(

Kn+ 1
2
∇Φn+ 1

2

)
= 0. (A3)

Electric field, E⃗n+ 1
2

is then determined from following:

E⃗n+ 1
2
=−∇Φn+ 1

2
. (A4)

The electric charge, q at the time level n + 1/2 is determined
by solving the following equation:

∇ · (εn+ 1
2
∇Φn+ 1

2
) =−(q)n+ 1

2
. (A5)

Finally, the electric force, F⃗en+ 1
2

then obtained from follow-
ing:

F⃗en+ 1
2
= ∇ · (εn+ 1

2
∇Φn+ 1

2
)E⃗n+ 1

2
− 1

2
E2

∇εn+ 1
2
. (A6)

2. Solving the momentum and continuity equations

The projection method69 provides an efficient way to solve
for velocity and pressure field by coupling the momentum
equation and the continuity equation. First, the pressure term
is removed from the momentum equation and an intermediate
velocity u⃗∗ is obtained through a semi-implicit discretisation
and is solved by successive over-relaxation (SOR) iterative
method.

ρn+ 1
2

[
u⃗∗− u⃗n

∆t

]
=−

[
3
2
H (⃗un)−

1
2
H (⃗un−1)

]
+

1
2Re

[
L
(⃗
un,µn+1/2

)
+L

(⃗
u∗,µn+1/2

)]
+

1
CaERe

σκδ(n+
1
2
)⃗n+

1
Re

F⃗en+ 1
2

(A7)

where H represents the discrete convection operator and
L denotes the discrete diffusion operator.
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In order to obtain a divergence-free velocity field, the inter-
mediate velocity u⃗∗ is corrected by:

u⃗n+ 1
2
− u⃗∗

∆t
=−

∇pn+ 1
2

ρn+ 1
2

(A8)

Since the velocity field at time level n + 1 is divergence free,
we first calculate the pressure field by solving the pressure
Poisson equation using the SOR method.

∇pn+ 1
2

ρn+ 1
2

=−∇ · u⃗∗
∆t

(A9)

Once the pressure field is obtained, the velocity field at time
level n + 1 is calculated with Eq. A9.
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